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ABSTRACT

Brain network analysis is of great importance in clinical diag-
nosis and treatments. In this paper, we present a novel graph-
based kernel learning approach for brain network classifica-
tion. Specifically, we demonstrate how to exploit the natu-
ral graph structure of brain networks to encode prior knowl-
edge in the kernel using the tensor product operator. For
each brain network, we first proposed to apply sparse ma-
trix factorization with a symmetric constraint to extract ten-
sor product based approximation. We then used them to de-
rive a structure-persevering symmetric graph kernel to be fed
into the support vector machine (SVM). Quantitative evalu-
ations on challenging EEG-based emotion recognition tasks
with respect to different frequency bands demonstrate the su-
perior performance of our proposed method, compared with
the state-of-the-art traditional and deep learning methods. To-
gether, results show that relevant EEG signals are primarily
encoded in the alpha and theta bands during the emotion reg-
ulation task, which is consistent with previous findings.

Index Terms— Brain network, graph kernel, tensor prod-
uct, SVM, EEG, emotion regulation

1. INTRODUCTION

Brain network analysis, enriched by the advances of neu-
roimaging technologies such as electroencephalography
(EEG) and diffusion tensor imaging (DTI), has been an ap-
pealing research topic in recent years in neuroscience [1].
The study originates from modeling the human brain con-
nectome as a graph – a mathematical construct mapping
the connectivity of anatomically distinct brain regions (i.e.,
nodes) and inter-regional pathways (i.e., edges). By graph
based analysis, the information encoded by the connectome
can promote critical understanding on how the brain manages
cognition, what signals the connections convey and how these
signals affect brain regions [2]. It has shown great potential
in disease diagnosis, clinical outcome prediction, therapeu-
tic adjustment and collection of biological features [3, 4, 5].
With the development of machine learning algorithms on

graph-structured data, it is of great importance to apply such
approaches to brain network analysis. In particular, it is
desirable to develop more accurate predictive methods as a
complement to the effort of pathologists in diagnosis process
and treatment decision-making.

In the past decades, a variety of machine learning methods
have been explored for brain network selection and classifica-
tion. For example, support vector machine (SVM) [6], graph
kernel [7], frequent graph-based pattern mining (gSpan) [8],
tensor decomposition [9, 10]. Deep learning methods such as
convolution neural network (CNN) [11] and graph convolu-
tional network [12], which are successful on many tasks, are
exploited as well. Although great achievements have been
made in various research aspects of these methods, some is-
sues still exists. The human connectome has complex and
non-linear characteristics, which may not be well captured
by linear models. Meanwhile, deep learning methods suffer
from the enormous parameter sizes, which is both difficult for
training and vulnerable to overfitting. Besides, many methods
do not make good use of graph structure. Thus, it is desirable
to develop a concise method for brain network analysis.

In this paper, we propose a novel graph-based kernel
learning approach for brain network predictive analysis, and
apply it to the challenging EEG-connectome emotion regula-
tion task. The contributions of this work are threefold:

• We derived a structure-preserving symmetric graph kernel
(SSGK) in tensor product space for brain network classifi-
cation. A new matrix factorization scheme was introduced
to incorporate the graph structure as well as the symmetric
constraint and sparse layouts.

• Extensive experiments on multiclass EEG-based emo-
tion regulation task with respect to different frequency
bands demonstrate the superior performance of SSGK,
compared with the state-of-the-art traditional and deep
learning methods. Results also show that relevant EEG
signals are primarily encoded in alpha and theta bands
during the emotion regulation task, which is consistent
with previous studies.

• SSGK is a general graph-kernel framework for efficiently
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Fig. 1. The framework of graph-based kernel learning.

measuring the similarity of structured data. It has great
potentials for a wide range of applications, in conjunction
with various kernel-based methods and kernel functions.

2. MATERIALS AND METHODS

In this section, we introduce notations and basic concepts, and
then describe our method in detail.

2.1. Notations and Concepts.

Following [13], we denote vectors by lowercase boldface
letters, e.g., x; and matrices by uppercase boldface, e.g.,
X. An index is denoted with a lowercase letter, spanning
the range from 1 to the uppercase letter of the index, e.g.,
i = 1, 2, · · · , I . We denote a matrix as A ∈ RI×J , and
their elements by ai,j . We will often use calligraphic letters
(A, B, C, · · · ) to denote general space. The inner prod-
uct of two matrices A,B ∈ RI×J is defined as 〈A,B〉 =∑I

i=1

∑J
j=1 ai,jbi,j . A rank-one matrix A equals to the outer

product of two vectors: A = u⊗v, where ai,j = uivj . Note
that for rank-one matrices it holds that

〈a⊗ b,u⊗ v〉 = 〈a,u〉〈b,v〉. (1)

Kernel learning. Support vector machines (SVMs) are one of
the most popular kernel-based learning algorithms, which are
effective on the data by linear boundaries, and kernel func-
tions are adopted to classify by non-linear boundaries [6].
The kernel function encapsulates the hypothesis language,
i.e., how to perform data transformation and knowledge en-
coding. In general, it maps data from the original input
feature space to a higher dimensional feature space (known
as Hilbert space), and a kernel function corresponds to the
inner product in this higher dimensional feature space. The
computational attractiveness of kernel methods comes from
the fact that quite often a closed form of ‘feature space inner
products’ exists [14]. Instead of mapping the data explicitly,
the kernel can be calculated directly. According to Mercer’s
theorem [6], we can verify whether a kernel function is valid
by the following Theorem [15].
THEOREM 1 A function κ defined onX×X is a positive def-
inite kernel of H if and only if there exists a feature mapping
function φ(·) : X 7→ H such that κ(x,y) = 〈φ(x), φ(y)〉,
for any (x,y) ∈ X × X .

In particular, an important property of positive definite
kernels is that they are closed under sum, multiplication by
a scalar and product [16].

2.2. Structure-Preserving Symmetric Graph Kernel

The brain networks are biologically expected to be both
sparse and highly localized in space. Such unique charac-
terizations put specific topological constraints onto machine
learning models we can use effectively. We propose a new
matrix factorization scheme to incorporate the graph structure
as well as the symmetric constraint and sparse layouts, which
allows one to interpret brain network as a bilinear tensor
product approximation. We then use this approximation to
define a structure-preserving symmetric graph kernel func-
tion (SSGK) for the SVM classifier. The framework of the
proposed method is illustrated in Figure 1, and we present the
key steps of our methods in detail as below.

Feature extraction. The graph provides a natural repre-
sentation for connectome data, but there is no guarantee that
such representation will be good for kernel learning. Since
learning will only be successful if the regularities that under-
lie the data can be discerned by the kernel. From the char-
acteristics of connectome objects, we know that the essential
information in the connectome is embedded in the structure
of the graph. Thus, one important aspect of kernel learning
for such complex objects is to represent them by sets of key
structural features which are easier to manipulate. In previ-
ous work [10], it was found that matrix factorization is par-
ticularly effective for extracting this structure. It can take
the correlation in the graph matrix into account and represent
it directly into a sum of rank one matrices (bilinear bases),
yielding a more compact representation of connectome data.
Motivated by these observations, we use matrix factorization
for feature extraction. In particular, given a graph matrix
X ∈ RI×I , we investigate the following optimization prob-
lem:

min
ar

‖X−
R∑

r=1

ar ⊗ ar‖2F + λ

R∑
r=1

‖ar‖1, (2)

where R is the rank of the matrix X defined as the smallest
number of rank-one matrices in an exact matrix factorization,
‖ · ‖F is the Frobenius norm of a matrix, and ‖ · ‖1 is the `1
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Fig. 2. Schemic diagram of the feature extraction and graph
structure mapping

norm, also known as the lasso regularization for a sparse so-
lution. Equation (2) can be solved by the tensorlab toolbox1.

Graph structure mapping. Although matrix factoriza-
tion operation decomposes the graph matrix, the graph struc-
ture can still be preserved and retrieved based on the factor-
ized results. We show how the above feature extraction results
can be exploited to induce a structure-preserving graph ker-
nel. Suppose we are given the matrix factorization of X,Y ∈
RI×I by X =

∑R
r=1 xr⊗xr and Y =

∑R
r=1 yr⊗yr, respec-

tively. We assume the graph observations are mapped into the
Hilbert spaceH by

φ : X→ φ (X) ∈ RH×H. (3)

Importantly, the mapping result φ(X) is still a symmetric ma-
trix, but its dimension is higher than X, even infinite depend-
ing on the feature mapping function φ(·).

Based on the definition of the kernel function, we know
that the feature space is a high-dimensional space generated
from the original space, equipped with the same operations.
Thus, we can factorize graph data directly in the feature space
in the same way as in the original space. This is formally
equivalent to performing the following mapping:

φ :

R∑
r=1

xr ⊗ xr →
R∑

r=1

φ(xr)⊗ φ(xr). (4)

In this sense, it corresponds to mapping graphs into high-
dimensional graphs that retain the original structure. More
precisely, it can be regarded as mapping the original graph
matrix to matrix feature space and then conducting the matrix
factorization in the feature space, as illustrated in Fig. 2.

After mapping the matrix factorization into the outer
product feature space, the kernel can be defined directly
with the inner product in that feature space. Thus, based on
equation (1), we can derive our SSGK model:

κ(X,Y) = κ(

R∑
r=1

xr ⊗ xr,

R∑
r=1

yr ⊗ yr)

=
〈 R∑
r=1

φ(xr)⊗ φ(xr),

R∑
r=1

φ(yr)⊗ φ(yr)
〉

=

R∑
p=1

R∑
q=1

κ(xp,yq)κ(xp,yq).

(5)

1https://www.tensorlab.net/

Based on Theorem 1, it is not difficult to see that this ker-
nel is ‘valid’ as it is described as an inner product of two ma-
trices

∑R
r=1 φ(xr)⊗ φ(xr) and

∑R
r=1 φ(yr)⊗ φ(yr). From

the derivation process, we know that such a kernel can take
into account the flexibility of graph structure. In general,
SSGK is an extension of the conventional kernels in the vec-
tor space to matrix space, and each vector kernel can be used
in this framework for EEG-connectome analysis in conjunc-
tion with kernel machines. Our positive result can be viewed
as saying that designing a good graph kernel function is much
like designing a good graph structure in the feature space.

3. EXPERIMENTS

Participants and data acquisition. The dataset used in this
paper were collected from 22 healthy participants at the Uni-
versity of Illinois at Chicago (UIC) and from 11 healthy par-
ticipants at the University of Michigan (UMich). Each partic-
ipant underwent an Emotion Regulation Task (ERT). During
the ERT session, participants were instructed to look at pic-
tures displayed on the screen. Emotionally neutral pictures
(e.g., landscape, everyday objects) and negative pictures (e.g.,
car crash, nature disasters) would appear on the screen for
seven seconds in random orders. One second after the picture
on display, a corresponding auditory guide would instruct the
participant to neutral: viewing the neutral pictures; to main-
tain: viewing the negative pictures as they normally would; or
to reappraise: viewing the negative pictures while attempting
to reduce their emotion response by re-interpreting the mean-
ing of pictures. All subjects were recorded using the Biosemi
system equipped with an elastic cap with 34 scalp channels.
The acquisition connectivity matrix is 34× 34 with 130 time
points and 50 frequencies ranging from 1Hz to 50Hz in incre-
ments of 1Hz. A detailed description about data acquisition
and preprocessing is available in [17].

Tasks. We study multi-class EEG-connectome emotion
regulation tasks and analyze the effect of different frequency
bands of EEG signals. In emotion regulation, studies have
shown that relevant EEG information is primarily encoded in
the low frequency bands [18]. Thus, we analyze the EEG-
connectome data in 5 frequency bands: Delta (1–3 Hz), Theta
(4–7 Hz), Alpha (8–12 Hz), Beta (13–30 Hz), for relative
power, as well as the total power of the EEG (1–30 Hz) [19].
The average EEG-connectome during neutral, maintain and
reappraise in the five different frequency bands are shown in
Figure 3, where the x– and y–axes represent the vertex id, and
the color of the cell represents the strength of the connectivity
between vertices x and y. We can see that the connectivity
in the alpha band is generally stronger than other frequency
bands, and theta band is the second one.

Compared methods. We evaluate eight algorithms in
Table 1 on the five tasks above, each of which represents a
different strategy: the edge based feature extraction (Edge),
where edge values are directly used as features by flatting
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Fig. 3. Average EEG-connectome during neutral, maintain
and reappraise in the five different frequency bands.

connectivity matrices of EEG-connectome into vectors; the
local clustering coefficients (CC) [20], which measures a
network’s local segregation; the characteristic path length
(CPL) [21] that quantifies the global information integration;
the graph-based substructure pattern mining (gSpan) [22]
as a discriminative subgraph selection approach; the dual
structure-preserving kernel (DuSK) [10], which takes multi-
dimensional tensors as input. We use second- (i.e., averaged
over time and frequency), third- (i.e., averaged over time), and
fourth-order (i.e., all data with dimension 34× 34× 130× x,
where x corresponds to a number of the frequency level)
version of this scheme, denoted as DuSK-2D, DuSK-3D and
DuSK-3D, respectively; the convolutional neural network
(CNN) with 2D convolutions for averaged 2D brain network
data and 3D convolutions for averaged 3D brain network
data [23]; the graph convolutional network (GCN) for av-
eraged 2D brain network data [12], where the average of
all brain networks is used as the graph structure (i.e., ad-
jacency matrix) for information propagation; the proposed
method and its variant without sparse-constraint (SSGK and
SSGKw/o sparse).

Experimental settings. In our experiments, we use the
subjects collected from UIC as the training set (66 samples),
and UMich as the testing set (33 samples). Following [10],
we choose SVM with Gaussian RBF kernel as the classi-
fier for all methods. Classification accuracy is used as the
evaluation metric. All compared methods select the op-
timal trade-off parameter of SVM and kernel width from
{2−8, 2−7, · · · , 28}. Other parameters for gSpan and DuSK

Table 1. The classification accuracy in percentage (%) by
competing methods and the proposed method for five tasks.
The best results for each task are highlighted in boldfont.

Frequency Band
Category Method Delta Theta Alpha Beta All

Traditional

Edge 42.42 54.55 51.52 51.52 45.45
CC 54.55 54.55 42.42 51.52 42.42

CPL 48.48 42.42 45.45 48.48 39.39
gSpan 39.39 51.52 39.39 54.55 48.48

DuSK–2D 51.52 63.64 51.51 51.52 54.55
DuSK–3D 57.58 57.58 57.58 54.55 48.48
DuSK–4D 54.55 54.55 51.52 54.55 57.58

Deep Learning

CNN–2D 51.11 43.71 43.07 42.54 41.48
CNN–3D 46.67 45.93 41.48 57.04 44.44

GCN 41.31 48.08 41.01 40.61 37.37

Ours SSGKw/o sparse 57.58 66.67 63.64 54.55 57.58
SSGK 63.64 69.70 72.73 60.61 57.58

are set according to [22] and [10], respectively. For our
SSGK and SSGKw/o sparse methods, the parameter R and λ
was selected from the value set of R = {1, 2, · · · , 12} and
λ = {2−2, 2−1, · · · , 28} using grid search.

Results. Detailed results of compared methods are listed
in Table 1. From Table 1, it can be seen that the proposed
SSGK-based methods outperform all compared methods by
10%- 20% on almost all five different frequency bands. The
superiority of the proposed methods demonstrate the effec-
tiveness of utilizing the structure information within the graph
representation during encoding. Specifically, among all five
bands, SSGK produces the best performance on Alpha band
and second best performance on Theta band, which is con-
sistent with previous findings [17] and can also be observed
in our visualization in Figure 3. Furthermore, by compar-
ing SSGK and SSGKw/o sparse, it is noticed that the proposed
SSGK approach with sparse regularization consistently out-
performs the same approach without sparse regularization,
and the advantage of sparsity characterization indicates the
importance of modeling the redundant information of ob-
served frequency bands.

4. CONCLUSION

This paper proposes a graph-based kernel learning approach
called Structure-preserving Symmetric Graph Kernel (SSGK)
for brain network classification task. The proposed method
mainly follows two consecutive steps: first, a sparse-inducing
symmetric matrix factorization strategy is applied to extract
structural features from the natural symmetric graph repre-
sentations of the brain network data, then the extracted struc-
tural features are directly used to define the SSGK function
and further fed into the support vector machine for the clas-
sification. Experimental results on challenging EEG-based
emotion recognition task demonstrates the effectiveness of
the proposed method for encoding prior knowledge in the ker-
nel using structural information of brain networks.
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