
Learning Task-Aware Effective Brain Connectivity
for fMRI Analysis with Graph Neural Networks

(Extended Abstract)
Yue Yu†, Xuan Kan⋄, Hejie Cui⋄, Ran Xu⋄, Yujia Zheng#, Xiangchen Song‡, Yanqiao Zhu§,

Kun Zhang#,‡, Razieh Nabi∗, Ying Guo∗, Chao Zhang†, Carl Yang⋄
†College of Computing, Georgia Institute of Technology

⋄Department of Computer Science, ∗Biostatistics and Bioinformatics, Emory University
#Department of Philosophy, ‡Machine Learning, Carnegie Mellon University

§Department of Computer Science, University of California, Los Angeles
{yueyu,chaozhang}@gatech.edu,

{yujiazh,xiangchensong,kunz1}@cmu.edu,
yzhu@cs.ucla.edu,

{xuan.kan,hejie.cui,ran.xu,razieh.nabi,yguo2,j.carlyang}@emory.edu

Abstract—Functional magnetic resonance imaging (fMRI) has
become one of the most common imaging modalities for brain
function analysis. Recently, graph neural networks (GNN) have
been adopted for fMRI analysis with superior performance.
Unfortunately, traditional functional brain networks are mainly
constructed based on similarities among region of interests (ROI),
which are noisy and agnostic to the downstream prediction tasks
and can lead to inferior results for GNN-based models. To better
adapt GNNs for fMRI analysis, we propose TBDS, an end-to-
end framework based on Task-aware Brain connectivity DAG
(short for Directed Acyclic Graph) Structure generation for fMRI
analysis. The key component of TBDS is the brain network
generator which adopts a DAG learning approach to transform
the raw time-series into task-aware brain connectivities. Besides,
we design an additional contrastive regularization to inject task-
specific knowledge during the brain network generation process.
Comprehensive experiments on two fMRI datasets, namely Ado-
lescent Brain Cognitive Development (ABCD) and Philadelphia
Neuroimaging Cohort (PNC) datasets demonstrate the efficacy of
TBDS. In addition, the generated brain networks also highlight
the prediction-related brain regions and thus provide unique
interpretations of the prediction results. Our implementation will
be published upon acceptance.

Index Terms—fMRI analysis, Brain Network, Direct Acyclic
Graph Generation, Graph Neural Network

I. INTRODUCTION

Human brains play a vital role in orchestrating complex
neurological systems. Understanding the mechanisms of hu-
man brains has always been a core interest in the field of
neuroscience and valuable to extensive downstream biomed-
ical applications [11], [20]. Towards this goal, functional
magnetic resonance imaging (fMRI) has been acknowledged
as a valuable resource of information for brain investigation,
which can reflect local changes in cerebral blood oxygenation
evoked by sensory, motor, or cognitive tasks [4]. There has
been a significant increase of interest in utilizing fMRI for
brain connectome analysis, which focuses on comprehending

the brain organizations and their changes, identifying disease-
specific biomarkers, as well as supporting clinical decisions
such as biological sex prediction [14].

To leverage fMRI signals for neurological analysis, tradi-
tional biomedical research usually follows a two-stage ap-
proach [15]. In the first step, functional brain networks are
generated from blood-oxygen-level-dependent (BOLD) time-
series to model the interactions among regions of interests
(ROIs). Then, the target classifier is stacked on top of the gen-
erated brain networks for downstream clinical predictions [8],
[9]. Recently, end-to-end neural frameworks have been studied
to generate learnable brain networks based on embedding
similarity and make the prediction simultaneously [6], [18].
Thus the learned brain networks are more task-oriented un-
der the supervision of task-specific objectives. However, two
major shortcomings exhibit in both the traditional functional
brain networks and the learnable ones. Firstly, these brain
network generation methods focus on capturing the statistical
associations between ROIs. Since correlation does not imply
causation, they provide insufficient understandings of the
complicated brain organization. Secondly, the connectivity in
existing generated brain networks depends on the pairwise
similarity between the time-series or embeddings of brain
regions, which means that the constructed brain networks are
fully or densely connected. The noisy signals contained in
those dense networks hinder the identification of biological
insights on the structure of brain networks and increase the
time complexity of the downstream analysis.

Researchers have proposed a particular type of brain net-
work, effective brain networks [3], which can overcome these
two flaws. This type of brain network aims to infer causal rela-
tionships among brain regions and produce sparse connections.
To construct effective brain networks from BOLD signals,
there are several mathematical algorithms available, including
Granger causality [1], dynamic causal modeling [5], and
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Fig. 1: The framework of TBDS.

Bayesian search methods [12]. However, there are several ma-
jor drawbacks in directly adopting these techniques for brain
connectivity generation tasks: (1) Unrealistic assumptions:
these methods often model the brain connectivity with overly
simplistic assumptions, such as the absence of unmeasured
confounding and lack of temporal dependencies. In reality,
such assumptions are hard to satisfy. (2) Limited scalability:
existing works based on constraint- or score-based methods for
brain connectivity generation [13] are usually evaluated on a
selected ROI subset (less than 50 regions) for their difficulty
on scalability. But in real application scenarios, there exist
hundreds of ROIs, and directly adopting these methods could
take several hours, or even several days for each instance.
(3) Difficulty of injecting task-specific information: the above
brain network generation methods are not customized for
downstream clinical applications [7]. As a result, the mismatch
between the network generation and downstream application
would hurt the final performance and interpretation.

Fortunately, there is a recent trend in the machine learning
community to view structure learning as a directed acyclic
graphs (DAG) structure learning problem, which can be further
converted to a continuous optimization constrained by addi-
tional structural regularizations to ensure acyclicity [10], [19].
Then, this optimization can be solved with some gradient-
based approaches, which are efficient, flexible, and can be
integrated with other deep learning models.

Motivated by these studies, we propose TBDS, a task-
aware brain network generation approach via modeling the
connections among different ROIs as DAGs to identify ef-
fective brain connectivities and predict the target in an end-
to-end fashion. To tackle the inscalability issue, we leverage
the recently proposed approach [10], [19] and reformulate the
DAG structure learning task as a gradient-based optimization
problem, which could benefit from GPU acceleration and
scales gracefully to hundreds of brain regions. In addition,
to customize the generation process with downstream task
knowledge, we design a contrastive loss [17] to push the
brain networks with the same label close and pull the brain
networks with different labels apart [16]. Such a regularization
enforces the brain networks from different classes to be more
distinguishable, so that the downstream GNN classifier can

learn to make better decisions. In this manner, we can optimize
the brain networks towards the downstream tasks, and provide
task-specific interpretations to support clinical predictions.

We evaluate TBDS on two real-world fMRI benchmarks
datasets [2], [14] for the important and accessible task of
biological sex prediction. The results illustrate that TBDS
achieves competitive performance when compared with ad-
vanced baselines. Besides, TBDS is able to characterize the
most important brain regions for the target tasks, justifying its
efficacy on providing clinically useful interpretations.
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