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Abstract—Location privacy-preserving mechanisms (LPPMs)
have been extensively studied for protecting a user’s location
at each time point or a sequence of locations with different
timestamps (i.e., a trajectory). We argue that existing LPPMs
are not capable of protecting the sensitive information in user’s
spatiotemporal activities, such as “visited hospital in the last
week” or “regularly commuting between Address 1 and Ad-
dress 2 every morning and afternoon” (it is easy to infer that
Addresses 1 and 2 may be home and office). To address this
problem, we define the spatiotemporal event as a new privacy
goal, which can be formalized as Boolean expressions between
location and time predicates. We show that the spatiotemporal
event is a generalization of a single location or a trajectory
which is protected by existing LPPMs, while some types of
spatiotemporal event may not be protected by the existing
LPPMs. Hence, we formally define ε-spatiotemporal event privacy
which is an indistinguishability-based privacy metric. It turns
out that, interestingly, such privacy metric is orthogonal to
the existing indistinguishability-based location privacy metric
such as Geo-indistinguishability. We also discuss the potential
solution to achieve both ε-spatiotemporal event privacy and Geo-
indistinguishability.

I. INTRODUCTION

The continued advances and usage of smartphones and GPS-
enabled devices have provided tremendous opportunities for
Location-Based Service (LBS), such as Google Maps, Yelp
and Uber. In location-based services, mobile users have to
share their locations or trajectories with the service providers
in order to issue snapshot or continuous queries, for example,
“where is the nearest gas station” or “continuously report the
taxis within one mile of my location”. It has raised privacy
concerns as users’ digital trace can be used to infer sensitive
information, such as home and work place, religious places
and sexual inclinations [1] [2] [3].

A large number of studies (see surveys [4] [5] [6] [7])
have explored how to protect user’s location privacy from
different aspects: privacy goals, adversarial models, location
privacy metrics, and Location Privacy Preserving Mechanisms
(LPPMs). Privacy goals indicate what should be protected
or what are the secrets (e.g., a single location or a trajec-
tory); adversarial models make assumptions about the adver-
saries; location privacy metrics formally define the quantitative
method for the privacy goal (e.g., Geo-indistinguishability [8]
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or δ-location set privacy [9]); LPPMs study how to achieve a
specified privacy metric.

We argue that existing LPPMs may not fully protect users’
sensitive information in their spatiotemporal activities because
their privacy goal is focused on protection of either a single
location or a trajectory. A user’s location data can be repre-
sented by a tuple (we consider the single user setting in this
paper), i.e., <location, time>, which corresponds to informa-
tion about “where” and “when” in user’s real-world activities.
Hence, the privacy goals in literature can be categorized into
protecting a single position or a trajectory. Many LPPMs are
proposed for these goals based on different privacy metrics.
For example, Gruteser et al. [10] designed a spatiotemporal
cloaking mechanism satisfying k-anonymity to protect move-
ment trajectories of users; Andrés et al. [8] proposed Planar
Laplace mechanism [8] achieving Geo-indistinguishability to
protect single locations; Xiao and Xiong [9] designed Planar
Isotropic Mechanism for δ-location set privacy to protect each
location in a trajectory.

However, the privacy goals in the literature of location
privacy only focus on protecting a user’s exact location or a
trajectory, and cannot cover all cases of complex combination
of spatial and temporal information (as shown in Fig.1), which
we refer to as spatiotemporal events in this paper. Examples of
the spatiotemporal event include “visited hospital in the last
week” (i.e., the hospital visit may happen once or multiple
times at any time in last week) and “regularly commuting
between Address 1 and Address 2 every morning and every
afternoon” (these periodic spatiotemporal events may happen
every day).

We show six cases of the Boolean expression between lo-
cation and time predicates in Fig.1. It turns out that protecting
a single location or a trajectory are only two special cases
in protecting a user’s spatial and temporal information. Let
ut be a user’s position at time t, and si ∈ S, i ∈ [1,m] be
one of all m locations on the map. The element of a user’s
secrets in her spatiotemporal activities can be represented by a
predicate ut = si (the value can be either true or false). Then,
a spatiotemporal event can be defined as a Boolean expression
by combining different predicates over spatial and/or temporal
dimensions (a predicate alone also can be a spatiotemporal
event). As shown in Fig.1, the events representing a sensitive
location/area and a trajectory, which are the main focuses
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in previous studies of location privacy, are only two cases
(i.e., (b) and (c)) in the six enumerated examples. Even if
each location or a trajectory is protected, it is not clear
whether or not an adversary can infer the value of a sensitive
spatiotemporal event. Protecting the privacy of spatiotemporal
events has not been studied in literature.
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Fig. 1: Examples of spatiotemporal events. s1 and s2 are two
locations on the map S. u1 and u2 are two variables about
user’s possible locations at time point 1 and time point 2,
respectively. Event (a) is always false since a user cannot be
at two different locations at the same time. Event (b) means
that the secret is a sensitive area including locations {s1, s2}.
Event (c) represents a sensitive trajectory s1 → s1. Event (d)
denotes that the secret is the visit to s1 at time point 1 or 2.
Event (e) depicts the secret as a type of trajectory pattern, i.e.,
the user may stay at two sensitive areas successively. Event
(f) indicates the secret as user’s presence in sensitive area
{s1, s2} at either time point 1 or 2.

Although an LPPM protecting a single location or a trajec-
tory (i.e., Fig.1(b) or Fig.1(c)) ensures user’s location privacy,
it is not clear whether an LPPM also provide a certain level of
spatiotemporal event privacy. In this paper, we formalize the
new privacy goal of spatiotemporal event privacy by defining
ε-spatiotemporal event privacy, and propose a framework,
i.e., PriSTE (Private SpatioTemporal Event), for protecting
spatiotemporal event privacy using existing LPPMs.

II. SPATIOTEMPORAL EVENT PRIVACY

A. Problem Setting

We study how to protect spatiotemporal event in a single
user setting. Consider a user who is sharing her location
sequence with a location-based service provider. Since the
server may not be trusted or can be compromised by other
malicious parties, the user does not want to share her sensitive
information with the server (we also assume that the at-
tacker/sever does not have the knowledge of user’s predefined
spatiotemporal event(s)); instead, she uses a local LPPM that
guarantees location privacy at each timestamp. We denote a
moving user’s true locations as {u1, u2, · · · , uT }. The LPPM
blurs user’s true location ut to a perturbed one ot that satisfies
a privacy metric such as geo-indistinguishability [8] or δ-
location set privacy [9]. Hence, an LPPM can be considered
as an emission matrix that takes user’s true location as input
and outputs a perturbed one.

B. Spatiotemporal Events

Spatiotemporal events can represent user’s secrets in their
real-world activities, such as “visited hospital in the last week”
or “commuting between Address 1 and Address 2 every
morning and afternoon”. Let S = {s1, s2, · · · , sm} be the
domain of space, where m is the number of all locations and
si is one location (we use state interchangeably) on the map. A
user’s trajectory consists of a set of {u, t} denoting the user’s
location at timestamp t in {1, 2, · · · , T}. Each pair of location
and time can be represented by a predicate. For example, the
pair {u1, s3} can be denoted by a predicate u1 = s3. If the
user is in location s3 at timestamp 1, then the ground truth of
the predicate is true. A spatiotemporal event is defined as a
Boolean expression of the (location, time) predicates using the
AND, OR, NOT operators, denoted by ∧, ∨, ¬ respectively.

Definition II.1 (EVENT). A spatiotemporal event, denoted by
EVENT, is a set of (location, time) predicates, i.e. ut = si,
under the Boolean operations.

Using Boolean logic to define spatiotemporal events enables
users to customize their privacy preference for diverse real-
world activities. Table I shows some representative examples
of EVENT. If a user is in a state si at timestamp t, then ut = si.
If the user is in a region of {si, sj , · · · , sk} at timestamp t,
then (ut = si) ∨ (ut = sj) ∨ · · · ,∨(ut = sk) holds. If the
trajectory of the user is {si, sj , · · · , sk} over timestamps 1 to
T , then (u1 = si)∧ (u2 = sj)∧· · · ,∧(ut = sk) holds. Based
on the Boolean operations, complicated spatiotemporal events
can be defined as follows.
PRESENCE. When the secret is whether or not a user visited
a sensitive area (e.g., medical facilities) in a given time
period, we can use PRESENCE to represent such secret. A
PRESENCE event holds if a user appears in a region during
some time. In the simplest case, the region consists of one
location, and time period consists of one timestamp, then
it becomes one single location shown in Table I. Hence,
PRESENCE is a generalization of secrets about single locations.
To denote a region, which is a set of locations, we use a vector
s ∈ {0, 1}m×1 where the ith element is 1 if the region contains
si. The time period is denoted by T as a set of timestamps.

Definition II.2 (PRESENCE). Given a set of regions S and a
time period T, if a user appears in s at any timestamp t ∈ T,
then it is a presence event, denoted by PRESENCE(S,T).

Example II.1 (PRESENCE). Fig.2 shows a map of S =
{s1, s2, s3}. The shaded region shows a PATTERN event that
the user appears in a region of s1 or s2 during timestamps
3 and 4. The lines indicate possible trajectories. As long as
user’s true trajectory passes through the shaded region, the
ground truth of the event is true. For this event, the region
s = [1, 1, 0]ᵀ denoting the states s1 and s2; the time period
T = {3, 4} denoting timestamp 3 and 4. The PRESENCE event
is expressed as (u3 = s1)∨(u3 = s2)∨(u4 = s1)∨(u4 = s2).

PATTERN. When the secret is whether or not a user visited
multiple sensitive areas successively (e.g., a love hotel and
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EVENT Boolean Expression Interpretation
single location ut = si the location at timestamp t is si

PRESENCE at si during T (u1 = si) ∨ (u2 = si) ∨ · · · ∨ (ut = si) appears at location si during time {1, 2, · · · , T}
PRESENCE at s and t (ut = si) ∨ (ut = sj) ∨ · · · ,∨(ut = sk) appears in region s : {si, · · · , sk} at timestamp t

single trajectory (u1 = si) ∧ (u2 = sj) ∧ · · · ,∧(un = sk) a trajectory of locations during a time period

PATTERN of trajectories ((u1 = si) ∨ (u1 = sj) ∨ · · · ,∨(u1 = sk)) ∧ · · ·
∧((un = sl) ∨ (un = sm) ∨ · · · , (un = sn))

a PATTERN of trajectories

TABLE I: EVENTS of Boolean operations on the (location, time) predicates

s1

s2

s3

1 time2 3 4 5 6

Presence or Pattern

Fig. 2: PRESENCE: the user appears in regions of {s1, s2} during
timestamps 3 and 4; PATTERN: the trajectories all go through {s1, s2}
at timestamp 2 and {s2, s3} at timestamp 3.

then home), we can use PATTERN to represent such secret. In
a simple case, the regions consist of single locations at a set of
timestamps, then it becomes single trajectory shown in Table
I. Hence, PATTERN is a generalization of secrets about user’s
trajectories. We define PATTERN as follows where the set of
regions [s1, s2, · · · , sn] is denoted by S.

Definition II.3 (PATTERN). Given a sequence of regions S =
{s1, s2, · · · , sn} and a time period T where si ∈ {0, 1}m×1, if
a user appears in {s1, s2, · · · , sn} sequentially during T, then
it is a pattern event, denoted by PATTERN(S,T).

Example II.2 (PATTERN). Fig.2 shows a set of trajectories
with a PATTERN that all trajectories go through {s1, s2} at
timestamp 2 and {s2, s3} at timestamp 3. For this event, the
region at timestamp 2 is s2 = [1, 1, 0]ᵀ denoting s1 and 22; the
region at timestamp 3 is s3 = [0, 1, 1]ᵀ denoting s2 and s3. The
PATTERN event is expressed as ((u2 = s1) ∨ (u2 = s2)) ∧ ((u3 =

s2) ∨ (u3 = s3)).

From the above definitions, we can see that, in terms of
privacy goal, spatiotemporal event privacy is a generalization
of location privacy. In this paper, we focus on the two repre-
sentative events defined above, i.e., PRESENCE and PATTERN,
which are the two most complicated events in examples of
Fig.1. We note that PRESENCE and PATTERN include the
cases when the time T is not consecutive. For simplicity, we
assume that the events are defined in consecutive time and
use start and end to denote the start point and end point
of the defined spatiotemporal event. Users can customize one
or multiple spatiotemporal events to be protected. We need a
formal privacy metric to preserve user’s plausible deniability
about the truth of her specified spatiotemporal events. We
propose such a privacy metric for spatiotemporal event privacy
in the next section.
C. ε-Spatiotemporal Event Privacy

Inspired by the definition of differential privacy [11], we
define ε-Spatiotemporal Event Privacy as follows.

Definition II.4 (ε-Spatiotemporal Event Privacy). A mech-
anism preserves ε-Spatiotemporal Event Privacy for a spa-

(a) indistinguishability-based
Location Privacy

(b) indistinguishability-based
Trajectory Privacy

(c) ε-Spatiotemporal Event Privacy

s1

s2 s3

s1 ! s1
s1 ! s2

s1 ! s3

s2 ! s1

s2 ! s2s2 ! s3

s3 ! s1

s3 ! s2

s3 ! s3

s1 ! s1

s1 ! s2

s1 ! s3

s2 ! s2

s2 ! s3

s3 ! s1

s3 ! s2

s2 ! s1

s3 ! s3

Fig. 3: Illustration of indistinguishability-based privacy metrics
for distinct privacy goals when S = {s1, s2, s3} and T = 2.
tiotemporal EVENT if at any timestamp t in {1, 2, · · · , T}
given any observations {o1, o2, · · · , oT },
Pr(o1, o2, · · · , ot|EVENT) ≤ eε Pr(o1, o2, · · · , ot|¬EVENT) (1)

where EVENT is a logic variable about the defined spa-
tiotemporal event and ¬EVENT denotes the negation of
EVENT. Pr(o1, o2, · · · , ot|EVENT) denotes the probability of the
observations o1, o2, · · · , ot given the value of EVENT.

There are two major benefits of adopting such “DP-like”
privacy metric. First, it provides a well-defined semantics for
spatiotemporal event privacy. Similar to differential privacy
that requires the indistinguishability between any two neigh-
boring databases [11], ε-Spatiotemporal Event Privacy requires
the indistinguishability regarding whether the EVENT is true or
false given any observations. Another benefit is that, similar to
differential privacy whose privacy guarantee is independent of
the prior probability of a given databases, the privacy provided
by ε-Spatiotemporal Event Privacy is independent of the prior
probability of the given spatiotemporal event.

Although the privacy goal of spatiotemporal event privacy
can be considered as a generalization of location privacy, we
note that it may not be true in terms of privacy metrics.
We illustrate the indistinguishability-based privacy metrics for
the three privacy goals in Fig.3, where the lines connecting
two secrets indicate the requirements of indistinguishability
between the corresponding two possible values of the secrets.

As shown in Fig.3 (a), indistinguishability-based loca-
tion privacy metrics (such as geo-indistinguishability [8])
require indistinguishability between each pair of locations.
Indistinguishability-based trajectory privacy metrics [9] [12]
[13] requires indistinguishability between each pair of possible
trajectories as shown in Fig.3 (b). Whereas, ε-spatiotemporal
event privacy only requires indistinguishability between the
defined event and its negation. For example, if the spa-
tiotemporal event is defined as PATTERN(S,T) where S =
{s1, s2}, s1 = {s1}, s2 = {s1, s2, s3} and T = {1, 2} (i.e.,
a trajectory passes through s1 and {s1, s2, s3}) successively,
then it only requires the indistinguishability between the set of
all possible trajectories that pass through {s1} and {s1, s2, s3}
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and the set of trajectories that do not. Such privacy requirement
makes sense; for example, s1 can be a “love hotel”, s2 is
“home”, and s3 is “office”. Such spatiotemporal event privacy
may not be protected by LPPMs that are designed to ensure
indistinguishability between pairs of locations or trajectories
as shown in Fig.3(a) and 3(b).

While we can define simple events such as a location or
trajectory, the corresponding ε-spatiotemporal event privacy
does not imply the indistinguishability-based location privacy
or trajectory privacy. For example, even if a user specifies all
possible trajectories as her requirements for ε-spatiotemporal
event privacy, it only ensures the indistinguishability between
“one trajectory” and “not this trajectory”, but no guarantee on
the indistinguishability between any two trajectories. Hence,
the privacy guarantee of ε-spatiotemporal event privacy is
orthogonal to geo-indistinguishability.

Location privacy provides general protection against un-
known risks when sharing location with the third parties,
while spatiotemporal event privacy guarantees flexible and
customizable protection which may prevent against profiling
attacks such as inferring user’s trajectory pattern (location
privacy cannot provide such protection). Therefore, it would
be preferable that an LPPM achieving location privacy metrics
such as geo-indistinguishability also satisfies ε-spatiotemporal
event privacy, which will be discussed in the next section.

III. PRISTE FRAMEWORK

In this section, we propose a framework PriSTE for
achieving both spatiotemporal event privacy and geo-
indistinguishability. The idea is to adopt an existing LPPM
and adjust its privacy level for achieving spatiotemporal event
privacy. For example, we can adjust the privacy parame-
ter of Planar Laplace Mechanism [8], which is designed
for geo-indistinguishability, to satisfy the requirement of ε-
spatiotemporal event privacy w.r.t. the given event(s).

The PriSTE framework is described in Algorithm 1. At
each time point t, the algorithm takes the true location as
input, and outputs a perturbed location ot that satisfies ε-
spatiotemporal event privacy for continuous release and geo-
indistinguishability for each single location. In Line 2, a
perturbed location ot is generated based on an LPPM (such
as Planar Laplace Mechanism). Since we are not sure whether
this location satisfies ε-spatiotemporal event privacy, we need
a quantification module which is involved in Line 3. The
quantification module can properly answer whether such per-
turbed location may disclose too much information about the
predefined spatiotemporal event w.r.t. an informed adversary
who has knowledge of the LPPM and the user’s mobility
pattern, i.e, transition matrix between locations. If such LPPM
is not able to provide ε-spatiotemporal event privacy w.r.t. the
given event, we calibrate the privacy parameter of LPPM (e.g.,
reduce the privacy parameter of Planar Laplace Mechanism)
as shown in Line 4 until it satisfies ε-spatiotemporal event
privacy. Finally, we release ot in Line 6.

A significant challenge to implement the framework is the
computational complexity of quantifying the spatiotemporal

Algorithm 1 PriSTE Framework
Require: true location, ε, α, LPPM, M, EVENTS

1: for t in {1, 2, · · · , T} do
2: generate ot with LPPM w.r.t. the true location;
3: while ε-Spatiotemporal Event Privacy not hold do
4: calibrate the privacy level of LPPM and re-generate ot;
5: end while
6: release ot;
7: end for

event privacy loss w.r.t. a given LPPM (i.e., Lines 3∼5).
For example, given a complex spatiotemporal event, i.e., a
Boolean expression, checking its value (true or false) requires
enumeration of all possible values of the predicates in the
Boolean expression, which is exponential to the number of
predicates. Due to the space limitation, we omit the technical
details of our solution for addressing this issue and refer reader
to the full version of this work [14].

IV. CONCLUSION

In this paper, we formalized spatiotemporal event, which is
a more general privacy goal than location privacy considered
in the literature. We formally defined ε-spatiotemporal event
privacy, which is orthogonal to the state-of-the-art location
privacy metric such as Geo-indistinguishability. We proposed
a framework PriSTE that achieves both spatiotemporal event
privacy and location privacy.
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