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1 Protecting Spatiotemporal Event Privacy in
2 Continuous Location-Based Services
3 Yang Cao , Yonghui Xiao, Li Xiong , Liquan Bai, and Masatoshi Yoshikawa

4 Abstract—Location privacy-preserving mechanisms (LPPMs) have been extensively studied for protecting users’ location privacy by

5 releasing a perturbed location to third parties such as location-based service providers. However, when a user’s perturbed locations are

6 released continuously, existing LPPMs may not protect the sensitive information about the user’s real-world activities, such as “visited

7 hospital in the last week” or “regularly commuting between location A and location B every weekday” (it is easy to infer that location A

8 and location B may be home and office), which we call it spatiotemporal event. In this paper, we first formally define spatiotemporal

9 event as Boolean expressions between location and time predicates, and then we define �-spatiotemporal event privacy by extending

10 the notion of differential privacy. Second, to understand how much spatiotemporal event privacy that existing LPPMs can provide, we

11 design computationally efficient algorithms to quantify the spatiotemporal event privacy leakage of state-of-the-art LPPMs. It turns out

12 that the existing LPPMs may not adequately protect spatiotemporal event privacy. Third, we propose a framework, PriSTE, to

13 transform an existing LPPM into one protecting spatiotemporal event privacy by calibrating the LPPM’s privacy budgets. Our

14 experiments on real-life and synthetic data verified that the proposed method is effective and efficient.

15 Index Terms—Location-based services, location privacy, location obfuscation, Markov model, trajectory privacy

Ç

16 1 INTRODUCTION

17 THE continued advances and usage of smartphones and
18 GPS-enabled devices have provided tremendous oppor-
19 tunities for Location-Based Service (LBS), such as Yelp or
20 Uber for snapshot or continuous queries, for example,
21 “where is the nearest restaurant” or “continuously report
22 the taxis within one mile of my location”. Mobile users have
23 to share their real-time locations or a sequence of locations
24 with the service providers, which raises privacy concerns
25 since users’ digital trace can be used to infer sensitive infor-
26 mation, such as home and workplace, religious places and
27 sexual inclinations [2], [3], [4].
28 A large number of studies (see surveys [5], [6], [7]) have
29 explored how to protect user’s location privacy which can
30 be categorized from different aspects: privacy goals, adver-
31 sarial models, location privacy metrics, and location privacy
32 preserving mechanisms (LPPMs). Privacy goals indicate
33 what should be protected or what are the secrets (e.g., a sin-
34 gle location or a trajectory); adversarial models make assump-
35 tions about the adversaries; location privacy metrics formally
36 define the quantitative measurement of the protection w.r.t.
37 the privacy goal; LPPMs are designed to achieve a specified
38 privacy metrics. For instance, Geo-Indistinguishability [8] is

39a location privacy metrics, which is receiving increasing
40attention since it extends the notion of differential privacy
41[9] to the location privacy setting so that the protection level
42does not depend on adversaries’ prior knowledge; the pri-
43vacy goal of Geo-Indistinguishability is to protect a single
44location (can be extended for protecting location trace [10]);
45Laplace Planar Mechanism [8] is an LPPM satisfying Geo-
46Indistinguishability. Another example is Planar Isotropic
47Mechanism [11] for the metrics of d-location set privacy to
48protect each location in a trajectory. These state-of-the-art
49LPPMs take an actual location and a privacy parameter as
50inputs and probabilistically output a randomly perturbed
51location. A LPPM privacy parameter controls the location
52privacy level. For examples of the above mechanisms, the
53privacy parameter is dened as a positive real value and a
54smaller privacy parameter indicates stronger privacy pro-
55tection. In other words, the privacy parameter can be con-
56sidered as the controlled level of privacy loss.

57We argue that the existing techniques may not ade-
58quately protect users’ sensitive information in their real-
59world activities because the privacy goal is not well-defined.
60Most of the existing studies only focused on the protection
61of either a single location or a trajectory, which does not
62completely reflect the secrets that should be protected in
63users’ real-world activities. To explain this, we need to for-
64mally define the sensitive information in the users’ real-
65world activities. We define a user’s a single location at time
66t as a predicate lt ¼ si where lt is a variable representing the
67user’s position at time t and si 2 S; i 2 ½1;m� is a location on
68the map S ofm locations. The value of such predicate can be
69either true or false, which could be a secret of the user. Then,
70we can generalize users’ secrets in their real-world activities
71as Boolean expressions of combining different predicates
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72 over spatial and/or temporal dimensions, which is called
73 spatiotemporal event in this paper.
74 In Fig. 1, we illustrate six representative Boolean expres-
75 sions between location and time dimensions. We use s1 and
76 s2 to denote two locations on the map S, and use l1 and l2 to
77 denote two variables about a user’s locations at timestamps
78 1 and 2, respectively. Event (a) is always false since a user
79 cannot be physically at two different locations at the same
80 time. Event (b) means that the secret is a sensitive region (or
81 area) of fs1; s2g. Event (c) represents a sensitive trajectory
82 s1 ! s1 between timestamps 1 and 2, i.e., the user stays at s1
83 at time 1 and time 2. Event (d) denotes that the secret is the
84 visit to s1 at timestamp 1 or 2. Event (e) depicts the secret as
85 a type of trajectory pattern, i.e., the user may stay at two sen-
86 sitive regions successively; a real-world example of such
87 event is “regularly commuting between Address 1 and
88 Address 2 every morning and every afternoon”, i.e., peri-
89 odic spatiotemporal events may happen every week day.
90 Event (f) indicates the secret as user’s presence in sensitive
91 region fs1; s2g at either timestamp 1 or 2; a real-world exam-
92 ple of such event is “visited hospital in the last week”, i.e.,
93 the hospital visit may happen once or multiple times at any
94 time in last week.
95 We can see that the spatiotemporal events representing
96 sensitive locations and a trajectory (i.e., (b) and (c)), which
97 are the major privacy goals of previous studies, are only
98 two cases among the six enumerated examples. Hence,
99 even if an LPPM protects each location or a trajectory, it

100 may not protect a complex spatiotemporal event such as the
101 ones shown in Figs. 1e and 1f since such new privacy goals
102 have not been formalized in the literature.
103 In this paper, we attempt to achieve spatiotemporal event
104 privacy by leveraging the existing LPPMs designed for con-
105 ventional location privacy. There are three major challenges
106 below. First, we lack the formal definition of spatiotemporal
107 event and privacy metrics for it. Second, evaluating the
108 privacy guarantee of a given spatiotemporal event could be
109 computationally intractable since the event can be extremely
110 complicated. Taking the pattern event (e.g., Fig. 1e) for
111 example, if the sensitive region includes m locations and
112 the length of such event spans T timestamps, there are mT

113 possible trajectories that need to be protected, which
114 may lead to exponential time computation. Third, similar to

115Geo-Indistinguishability, we hope to design a mechanism
116that is robust to adversaries with any prior knowledge.
117Contributions. To the best of our knowledge, this is the
118first paper that studies how to achieve spatiotemporal event
119privacy. Our contributions are summarized as follows.
120First, we study the privacy goal and privacy metrics for
121protecting spatiotemporal event (Section 2). We formally
122define a new type of privacy goal, i.e., spatiotemporal events,
123as Boolean expressions of location-time predicates, and pro-
124pose a privacy metric, �-spatiotemporal event privacy, for pro-
125tecting spatiotemporal events by extending the notion of
126differential privacy. We also explore the difference between
127the metrics of location privacy and spatiotemporal event pri-
128vacy. It turns out that, although the definition of spatiotem-
129poral event is more general than a single location or a
130trajectory, the privacy metrics between spatiotemporal event
131privacy and location privacy can be orthogonal and comple-
132mentary: Location privacy provides general protection
133against unknown risks, while spatiotemporal event privacy
134guarantees flexible and customizable protection which may
135not be provided by the existing LPPMs. Hence, it would be
136preferable that an LPPMachieving a location privacymetrics
137such as Geo-Indistinguishability can also satisfy �-spatiotem-
138poral event privacyw.r.t. user-specified events.
139Second, we develop efficient algorithms for quantifying
140how much �-spatiotemporal event privacy a given LPPM
141can provide w.r.t. adversaries with a specific prior knowl-
142edge about the user’s initial probability distribution over
143possible locations (Section 3). We model an LPPM as an
144emission matrix that takes user’s true position as input and
145outputs a perturbed location. As we mentioned previously,
146one of the challenges in quantifying the probability of a spa-
147tiotemporal event is that the computational complexity may
148be exponentially increasing with the number of predicates
149in a user-specified spatiotemporal event. We develop a
150novel two-possible-world method to quantify spatiotemporal
151event privacy with linear complexity.
152Third, based on our quantification method, we propose a
153framework, i.e., PriSTE (Private Spatio-Temporal Event),
154which converts a mechanism for location privacy into one
155for spatiotemporal event privacy against adversaries with
156any prior knowledge (Section 4). We demonstrate the effec-
157tiveness of our framework by two case studies using state-
158of-the-art LPPMs, i.e., Laplace Planar Mechanism for Geo-
159Indistinguishability [8] and Planar Isotropic Mechanism for
160d-location set privacy [11].
161Finally, we evaluate our algorithms on both synthetic
162and real-world datasets testing its feasibility, efficiency, and
163the impact of various parameters (Section 5).

1642 DEFINING SPATIOTEMPORAL EVENT PRIVACY

1652.1 Scenario

166We consider a scenario that a single user continuously
167releases her perturbed location with an untrusted third
168party such as a location-based service provider. The user’s
169true locations are denoted by l1; l2; . . . ; lT . A location

170privacy-preserving mechanism (LPPM) blurs user’s true
171location lt to a perturbed one ot that satisfies a privacy met-
172rics such as Geo-Indistinguishability[8] or d-location set privacy

Fig. 1. Six examples of spatiotemporal events. Event (a) is always false.
Event (b) represents a sensitive region. Event (c) represents a sensitive
trajectory. Event (d) represents the presence or not in a sensitive loca-
tion. Event (e) indicates a mobility pattern passing through sensitive
regions. Event (f) indicates the presence or not in a sensitive region.
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IEE
E P

ro
of173 [11]. Essentially, the LPPM is an emission matrix that takes

174 user’s true location as input and outputs a perturbed one.
175 We clarify our assumptions about LPPM and users’
176 mobility model as follows. First, we consider an LPPM that
177 takes input as user’s true location lt and outputs a perturbed
178 location ot at time t. We use anm�m emissionmatrix where
179 each cell is the emission probability (as shown in Fig. 2a) to
180 represent the LPPM. Second, we assume a user’s location at
181 time tþ 1 is correlated with her location at time t, represent-
182 ing by an m�m transition matrix as shown in Fig. 2b, and
183 such transition matrix is public information which can be
184 learned from either historical trajectory or the pattern of road
185 networks. Wemodel the correlation between user’s consecu-
186 tive locations using first-order1 time-homogeneous2 Markov
187 model, i.e., the transition matrix is identical at each t. The
188 transition matrix is given in our system. The major notations
189 are summarized in Table 1.

190 2.2 Spatiotemporal Events

191 We first define location-time predicate, which is an atomic
192 element in spatiotemporal events. Let S ¼ fs1; . . . ; smg be
193 the domain of all possible locations, where m is the size of
194 the domain and si is one location (we use state interchange-
195 ably) on the map. At time t, a user’s location can be stated
196 as lt ¼ si, which means the user is at location si at time t.
197 We call lt ¼ si location-time predicate, whose value can be
198 true or false depending on the ground truth of user’s state at
199 t.
200 We define spatiotemporal events as Boolean expressions
201 of the location-time predicates.

202 Definition 2.1 (Event). A spatiotemporal event, denoted by
203 Event, is a single location-time predicate or a combination of
204 location-time predicates linked by the Boolean operators AND,
205 OR, NOT (i.e., ^, _, :, respectively).

206 For the ease of exposition, we define the following nota-
207 tions. We denote a region (i.e., a set of locations) by a vector
208 s 2 f0; 1gm�1 where the ith element is 1 only if the region
209 contains si. We use S to indicate a sequence of regions. We
210 denote the corresponding timestamp of each region by T as
211 a sequence of timestamps with the same cardinality of S.
212 Using Boolean logic to define spatiotemporal events ena-
213 bles users to customize their privacy preference for diverse
214 real-world activities as shown in Fig. 1. A pair of ith

215elements in S and T could form a single region event as
216shown in Event (b) in Fig. 1. These single region events
217could be combined by AND or OR, which form PRESENCE or
218PATTERN (e.g., Events (e) and (f) in Fig. 1).

2192.2.1 PRESENCE Event

220When the secret is whether or not a user visited a sensitive
221region (e.g., medical facilities) in a given time period, we
222can use PRESENCE to represent such secret. A PRESENCE event
223holds if a user appears in any one of the regions with user-
224specified timestamps. In the simplest case of PRESENCE,
225when the region includes only one location and the time
226period consists of one timestamp, it reduces to a single loca-
227tion event. Hence, PRESENCE event can be seen as a generaliza-
228tion of single location event.

229Definition 2.2 (PRESENCE). Given a sequence of regions
230S ¼ ½s1; . . . ; sn� and a sequence of timestamps T ¼ ½t1; . . . ; tn�,
231if a user appears in at least one sk 2 S at the corresponding
232time tk 2 T , then it is a presence event, denoted by
233PresenceðS; T Þ.

234Example 2.1 (Example of PRESENCE). Fig. 3 shows a map of
235S ¼ fs1; s2; s3g. For this event, the region s ¼ ½1; 1; 0�œ
236denoting the states s1 and s2; the time period T ¼ ½3; 4�
237denoting timestamp 3 and 4. Let S ¼ ½s; s�. This PRESENCE

238ðS; T Þ event is expressed as ðl3 ¼ s1Þ _ ðl3 ¼ s2Þ _ ðl4 ¼ s1Þ
239_ðl4 ¼ s2Þ. The shaded region shows a PRESENCE event
240that the user appears in a region of fs1; s2g during

Fig. 2. Illustration of emission matrix and transition matrix.

TABLE 1
Notations

S Domain of the states, S ¼ fs1; s2; . . . ; smg
si; sj; sk variables of the states, i.e., si; sj; sk 2 S

m the amount of all possible locations on the map

s a vector representing a region, s 2 f0; 1gm�1

t a timestamp in f1; 2; . . . ; Tg
S a sequence of regions

T a sequence of timestamps

lt a user’s true location at time t

ot a user’s perturbed location at time t

Event a spatiotemporal event

~pot
emission probabilities given the observation ot.

~pD
ot

a diagonal matrix with the vector ~pot
on the diagonal.

pp initial probability pp 2 R1�m

Fig. 3. We show two events, i.e., PRESENCE(S; T ) and PATTERN(S; T ). If
the user’s ground truth trajectory is the black one, only PRESENCE(S; T ) is
true; if the user’s trajectory is the blue one, both events are true; if the
user’s trajectory is the red one, both events are false.

1. If the Markov model is high-ordered, i.e., the transition matrix has
a larger state domain, our approach still works.

2. If the Markov model is time-varying, i.e., transition matrices at
different t are not identical, our approach still works. We explain this in
the next section.

CAO ET AL.: PROTECTING SPATIOTEMPORAL EVENT PRIVACY IN CONTINUOUS LOCATION-BASED SERVICES 3



IEE
E P

ro
of

241 timestamps 3 and 4. If the user’s true trajectory passes
242 through the shaded region (at least one timestamp), the
243 event is true.

244 2.2.2 PATTERN Event

245 We use PATTERN to represent the secret whether or not a
246 user visited multiple sensitive regions successively. In a
247 simple case of PATTERN event, the regions consist of locations
248 at a sequence of timestamps, then it is reduced to single tra-
249 jectory event. Hence, PATTERN is a generalization of a user’s
250 trajectories.

251 Definition 2.3 (PATTERN). Given a sequence of regions
252 S ¼ ½s1; . . . ; sn� and a sequence of timestamps T ¼ ½t1; . . . ; tn�,
253 if a user appears in all fs1; . . . ; sng sequentially at the corre-
254 sponding time during T , then it is a pattern event, denoted by
255 PatternðS; T Þ.

256 Example 2.2 (Example of PATTERN). The PATTERN event in
257 Fig. 3 represents trajectories with a pattern going through
258 a sensitive region fs1; s2g at timestamp 2 and the same
259 region fs1; s2g at timestamp 3 successively. This PATTERN

260 event is expressed as ððl2 ¼ s1Þ _ ðl2 ¼ s2ÞÞ ^ ððl3 ¼ s1Þ_
261 ðl3 ¼ s2ÞÞ.

262 2.2.3 Discussion

263 From the above definitions, we can see that, in terms of pri-
264 vacy goal, spatiotemporal event privacy can be a generaliza-
265 tion of location privacy studied in the literature in which the
266 privacy goal is protecting a single location or a trajectory. In
267 this paper, we focus on the two representative events
268 defined above, i.e., PRESENCE and PATTERN, which are the two
269 most complicated and unexplored events among examples
270 in Fig. 1. We note that Presence and Pattern include the
271 cases when the time T is not consecutive. Users can specify
272 one or multiple events to be protected.
273 On the other hand, it could be a non-trivial task for end-
274 users to define a spatiotemporal event that needs to be pro-
275 tected. We provided a tool in our recent demonstration [12]
276 to help users explore how accurate an adversary could infer
277 a given event so that to identify and protect risky spatiotem-
278 poral events. Boolean logic is an expressive tool for repre-
279 senting spatiotemporal events which could be complicated.
280 Besides the users burden on defining privacy preference,
281 another negative effect (due to the expressiveness) may be
282 that an event with complicated logic could be hard to protect
283 with meaningful utility and reasonable runtime. We address
284 the problem of computation complexity in Section 3.

285 2.3 �-Spatiotemporal Event Privacy

286 Inspired by the definition of differential privacy [9], we
287 define �-Spatiotemporal Event Privacy as follows.

288 Definition 2.4 (�-Spatiotemporal Event Privacy). A mech-
289 anism preserves �-Spatiotemporal Event Privacy for a spatio-
290 temporal EVENT if at any timestamp t in f1; . . . ; Tg given any
291 observations fo1; . . . ; otg

Prðo1; . . . ; otjEventÞ � e� Prðo1; . . . ; otj:EventÞ; (1)
293293

294 where EVENT is a logic variable about the user-specified spatio-
295 temporal event and :Event denotes the negation of Event.

296Prðo1; o2; . . . ; otjEventÞ denotes the probability of the obser-
297vations o1; o2; . . . ; ot given the value of EVENT.

298There are two major benefits of extending differential pri-
299vacy to protecting spatiotemporal events. First, it provides a
300well-defined semantics for spatiotemporal event privacy.
301Similar to differential privacy that requires the indistin-
302guishability between any two neighboring databases[9],
303�-Spatiotemporal Event Privacy requires the indistinguish-
304ability regarding whether the Event is true or false given
305any observations. It provides a clear privacy semantics: it is
306hard for adversaries to distinguish whether the event hap-
307pened or not. Another benefit is that, similar to differential
308privacy whose privacy guarantee is independent of the
309prior probability of a given database, the privacy provided
310by �-Spatiotemporal Event Privacy is independent of the
311prior probability of the protected event.
312To better understand the characteristics of spatiotempo-
313ral event privacy, we illustrate the indistinguishability-
314based privacy metrics for the three privacy goals in Fig. 4,
315where the lines connecting two secrets indicate the require-
316ments of indistinguishability between the corresponding
317two possible values of the secrets.
318As shown in Fig. 4a, indistinguishability-based loca-
319tion privacy metrics (such as Geo-Indistinguishability[8])
320requires indistinguishability between each pair of locations.
321Indistinguishability-based trajectory privacy metrics [10], [11],
322[13] requires indistinguishability between each pair of possible
323trajectories as shown in Fig. 4b. Whereas, �-spatiotemporal
324event privacy requires indistinguishability between thedefined
325event and its negation. For example, if the spatiotemporal event
326is defined as PatternðS; T Þ where S ¼ ½s1; s2�; s1 ¼ fs1g; s2 ¼
327fs1; s2; s3g and T ¼ ½1; 2� (i.e., a trajectory passes through s1
328and then a region fs1; s2; s3g successively), then it only requires
329the indistinguishability between the set of all possible trajecto-
330ries that pass through fs1g and fs1; s2; s3g and the set of trajec-

331tories that do not. This spatiotemporal event privacy makes
332sense when some mobility patterns are sensitive. For example,
333if s1 is “hospital”, s2 is “home”, and s3 is “office”, the pattern
334from s1 to fs1; s2; s3g could be sensitive.

335We note that spatiotemporal event privacy is orthogonal
336to location privacy or trajectory privacy. First, protecting
337the privacy of a single location or a trajectory may not imply
338the protection of spatiotemporal event privacy because spa-
339tiotemporal event can be complex as shown in Figs. 1e or 1f.
340The existing LPPMs are designed to ensure privacy metrics
341defined on locations or trajectories. One of our focus in this
342study is to quantify how much spatiotemporal event pri-
343vacy a given LPPM can provide, which will be elaborated in
344the next section. Second, protecting spatiotemporal event

Fig. 4. Illustration of indistinguishability-based privacy metrics for distinct
privacy goals when S ¼ fs1; s2; s3g and T ¼ 2.
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345 privacy does not imply the protection of location privacy
346 because they define indistinguishability over different level
347 of secrets. Taking Fig. 4c for example, the indistinguish-
348 ability between s1 ! s1 and s1 ! s2 is not required in such
349 spatiotemporal event privacy guarantee; however, it is
350 required in trajectory privacy as shown in Fig. 4b. Even if
351 we define the event in spatiotemporal event privacy as a
352 single location, say s1, the guarantee of spatiotemporal
353 event privacy is the indistinguishability between s1 and
354 fs2; s3g, which does not guarantee the indistinguishability
355 between s1 and s2.
356 It would be preferable if we achieve both location pri-
357 vacy and spatiotemporal event privacy so that a user can
358 enjoy the best of two worlds: Location privacy provides
359 general protection against unknown risks when sharing
360 location with the third parties, while spatiotemporal
361 event privacy guarantees customizable protection which
362 may prevent against profiling attacks [3], [14]. Therefore,
363 in this paper, we study how to use an existing probabilis-
364 tic LPPM (e.g., Laplace Planar Mechanism [8] and Planar
365 Isotropic Mechanism [11]) to achieve �-spatiotemporal
366 event privacy.
367 We note that the definition of events may reveal a user’s
368 sensitive information. In this paper, we assume that the
369 events and the protection mechanisms are locally and
370 securely stored in the user’s device. The user may specify
371 one or multiple events that need to be protected. In practice,
372 we can also have default that are suggested by a privacy
373 preference recommendation system for users’ selection [15]
374 or pre-specified event templates that are given by the user.

375 3 QUANTIFYING SPATIOTEMPORAL

376 EVENT PRIVACY

377 3.1 Overview of Our Approach

378 For ease of exposition, we first assume that adversaries who
379 have a specific knowledge of the user’s initial probability
380 distribution over possible locations, which is denoted by pp;
381 in the next section, we will remove this assumption so that
382 the spatiotemporal event privacy leakage will be bounded
383 in � w.r.t. adversaries with any prior knowledge of user’s
384 initial probability.
385 Now, we explain the main goal of quantifying the spatio-
386 temporal event privacy leakage of the LPPM and our
387 approach. Based on Definition 2.4 of �-spatiotemporal event
388 privacy, we need to calculate the maximum ratio of

389
Prðo1;o2;...;oT jEventÞ
Prðo1;o2;...;oT j:EventÞ

in which o1; o2; . . . ; oT are released by a

390 given LPPM. This ratio can be considered as spatiotemporal
391 event privacy leakage w.r.t. the user-specified event. We
392 quantify this ratio w.r.t. given observations o1; o2; . . . ; oT
393 and a given user’s initial probability pp, so that we can
394 directly calculate the Prðo1; o2; . . . ; oT jEventÞ. In Section 4,
395 we will design a mechanism for spatiotemporal event pri-
396 vacy w.r.t. any observations and arbitrary initial probability.
397 Our goal in this section is to calculate the likelihood of
398 the observations given Event or :Event , i.e., Prðo1; o2; . . . ;
399 oT jEventÞ or Prðo1; o2; . . . ; oT j:EventÞ, which can be

400 derived by Prðo1; o2; . . . ; oT jEventÞ ¼ Prðo1;o2;...;oT ;EventÞ
PrðEventÞ . We

401 call PrðEventÞ as prior probability of the event, and
402 Prðo1; o2; . . . ; oT ;EventÞ as joint probability of the event.

403A severe challenge of calculating the prior or joint proba-
404bilities of the event is the computational complexity. Given
405an arbitrary spatiotemporal event, we need to enumerate all
406possible combination of the Boolean expression for prior and
407joint probabilities, which can be exponential to the number
408of predicates in the expression. To address this problem, we
409propose a two-possible-world method for computing the
410prior and joint probabilities in Sections 3.2 and 3.3.
411For ease of exposition, we define notations below.
412M 2 Rm�m denotes a transition matrix that describes tempo-
413ral correlations in user’s location. At timestamp 1, an initial

414probability is denoted by pp 2 ½0; 1�1�m. During timestamp

415f1; 2; . . . ; Tg, the probability of the true location PrðltÞ is
416denoted by a row vector pt 2 ½0; 1�1�m where ith element

417denotes Prðlt ¼ siÞ. A Markov model follows the transition
418property of ptþ1 ¼ ptM, e.g., after a Markov transition,

419p2 ¼ ppM at timestamp 2 given p1 ¼ pp.

420The notations below for matrix computation are also
421used in the rest of this paper. Let 0 and 1 be row vectors
422with m elements being 0 and 1 respectively. ½0;1� is a row
423vector in R1�2m. a � b denotes the Hadamard product of a

424and b. aD is a diagonal matrix with the elements of vector a
425on the diagonal.

4263.2 Computing Prior Probability of an Event

427To avoid the exponential complexity, we propose an effi-
428cient algorithm with two possible worlds. The idea is to
429elaborate a “new” transition matrix Mt 2 R2m�2m at each
430time t which encodes the complex spatiotemporal event
431inside, so that the calculation of the prior or joint probability
432for a complicated event is the same as one simple predicate.
433Intuition. The main idea of our method is to use two vir-
434tual worlds denoting whether the EVENT is true or false. The
435states in the two worlds denote the joint probabilities
436Prðlt ¼ si;EventÞ and Prðlt ¼ si;:EventÞ. For PRESENCE,
437once a trajectory enters into the region of the PRESENCE, its
438probability will be kept in the world of true EVENT forever.
439For PATTERN, the probability distribution among the two
440worlds are derived at the beginning timestamp of the EVENT,
441and only the trajectories satisfying the PATTERN will be kept
442in the world of true EVENT. At last, the sum of probabilities
443in the world of true EVENT will be PrðEvent is trueÞ.
444In the following, we study how to compute the prior prob-
445abilities of PRESENCE and PATTERN events. For simplicity, the
446events in the rest of the paper are defined in consecutive time
447and use start and end to denote the start time point and end
448time point of the user-specified spatiotemporal event. We
449assume S to be fs1; s2; s3g in the following examples.

4503.2.1 Presence Events

451Example 3.1. Let us consider the same PRESENCE event
452defined in Example 2.1, It is defined as an event passing

453through s1 or s2 during t ¼ 3 or t ¼ 4, i.e., s ¼ ½1; 1; 0�œ,
454start ¼ 3; end ¼ 4. The transition matrix M is given

455below:

M ¼
0:1 0:2 0:7
0:4 0:1 0:5
0 0:1 0:9

2
4

3
5: (2)

457457
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459 the top world and the bottom world separated by the

460 dashed line in Fig. 5, corresponding to the two possible

461 worlds where the presence event is false or true respec-

462 tively. From time 1 to 2, a normal transition can be made.

463 At timestamp 2, all the transitions going to the states s1
464 and s2 will be re-directed to the new states s01 and s02,

465 denoting the states when the PRESENCE happens. Other

466 transitions that do not go to the region will be performed
467 normally. Similarly at time 3, the transition from s3 to s2
468 will also go to the state s02 because the event is also true

469 in this case. After time 4, the original Markov transitions

470 come back to work again.

471 The intuition can be formalized as follows. First, the original
472 probabilities in R1�m is extended to R1�2m. Thus the initial
473 probability pp becomes ½pp;0�. Second, the transition matrix
474 Mt takes the form of four transition matrices between the
475 two virtual worlds, i.e., the EVENT is true or false, in Eq. (3).
476 Then the new transition matrix can be derived in Eqs. (4)
477 and (5) for different time period where M is the original
478 transition matrix and sD is the diagonal of the region s of
479 PRESENCE defined in Definition 2.2

Mt ¼
false! false false! true
true! false true! true

� �
on the event. (3)

481481

482

Mt ¼ M�MsD MsD

0D M

� �
; start� 1 � t � end� 1:

(4)
484484

485

Mt ¼ M 0D

0D M

� �
; t < start� 1 or t � end: (5)

487487

488 Eq. (4), designed to capture and maintain all the transitions
489 going to the region of the Presence, is the new transition
490 matrix when entering (and inside) the event time. Eq. (5),
491 designed to keep the original transitions in the two virtual
492 worlds, is the new transition matrix when leaving (and
493 before) the event time. Third, at the last time T , the probabil-
494 ity of the Presence will be the sum of all probabilities in the
495 bottom world (where Presence is true).

496 3.2.2 Pattern Events

497 For PATTERN events, the bottom world denoting the event is
498 true only needs to preserve the transitions going to the
499 defined regions of the PATTERN event. The following exam-
500 ple shows the mechanism.

501Example 3.2. We study the PATTERN event as illustrated in
502Fig. 6. At time 1, the transitions entering s1 and s2 go to s01
503and s02. From time 2 to 4, the transitions in the top world
504were performed normally. However, the transitions from

505the bottom world go back to the top world if the destina-

506tions are not in the defined regions. At time 5, the original

507Markov transitions come back to work again.

508From above example, the transition matrices for PATTERN

509differ from the ones for PRESENCE during the event time from
510start to end� 1 (i.e., Eq. (7)). On the other hand, when it is
511outside the event, i.e., t < start� 1 or t � end, the transi-
512tion matrices for PATTERN are the same as the ones for PRES-

513ENCE (i.e., the matrices in (8) and (5) are the same). Finally,
514when t ¼ start� 1, the transition matrices for PATTERN is
515also as same as the ones for PRESENCE (i.e., the matrices in (6)
516and (4) are identical)

Mt ¼ M�MsD MsD

0D M

� �
; t ¼ start� 1: (6)

518518

519

Mt ¼
M 0D

M�MsDt MsDt

� �
; start � t � end� 1: (7)

521521

522

Mt ¼ M 0D

0D M

� �
; t < start� 1 or t � end: (8)

524524

525

526In summary, the prior probability of any Event can be
527derived as the sum of probabilities in the world where the
528Event is true. Lemma 3.1 shows the formal computation.

529Lemma 3.1. For initial probability pp 2 R1�m, the prior probabil-
530ity of an Event of PRESENCE and PATTERN is

PrðEventÞ ¼ ½pp;0�
Yend�1
i¼1

Mi½0;1�œ; (9)

532532

533whereMi is computed by Eqs. (4), (5), (6), (7), (8).

534If the Markov model is time-varying, i.e., when the tran-
535sition matrices M at different t are not identical, the only
536extra effort is to re-compute Eqs. (4)	(8) using the corre-
537sponding transition matrixM at t.

5383.3 Computing Joint Probability of an Event

539The calculation of a spatiotemporal event and a sequence of
540observed locations, i.e, Prðo1; o2; . . . ; oT ;EVENTÞ is a little

Fig. 5. New Markov transitions: all transitions going to the PRESENCE

region will be re-directed to the virtual worlds.
Fig. 6. New Markov transitions: at timestamp 1, all transitions going to
the defined region will be re-directed to the bottom world; at timestamp
2 	 4, only the transitions from the bottom world to the defined regions
remain below.
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541 more complicated than previous sections since it depends on
542 not only the initial probabilities but also the emission matrix
543 of the LPPM. Similarly, we use two-possible-world method
544 to avoid enumerating all possible cases of an event. We uti-
545 lize forward-backward algorithm[16] to estimate the proba-
546 bility of the true state (true location) at timestamp t given all
547 observations Prðltjo1; o2; . . . ; oT Þ. It first calculates a forward

548 probability ak
t ¼ Prðlt ¼ sk; o1; o2; . . . ; otÞ iteratively, i.e.,

ak
t ¼ Prðotjlt ¼ skÞ

X
i

ai
t�1Prðlt ¼ skjlt�1 ¼ siÞ: (10)

550550

551 Then, a backwardprobabilitybk
t ¼Prðotþ1; otþ2; . . . ; oT jlt ¼ skÞ

552 can also be derived by

bk
t ¼

X
i

Prðltþ1 ¼ sijlt ¼ skÞPrðotþ1jltþ1 ¼ siÞbi
tþ1: (11)

554554

555 By initializing bk
T ¼ 1 for all k, we can obtain the estimation

556 of lt as follows:

Prðlt ¼ skjo1; o2; . . . ; oT Þ ¼
ak
tb

k
tP

i a
i
tb

i
t

: (12)

558558

559 Intuition. The intuition of our solution is to use the forward-
560 backward algorithm in the two virtual worlds where the
561 Event is true and false. This is feasible because the emis-
562 sion probability, which determines the probabilities of
563 the observations, is independent from any Events. Hence
564 in our computation the forward probability and back-
565 ward probability are PrðEvent; o1; o2; . . . ; otÞ for t � end and

566 Prðoendþ1; oendþ2; . . . ; otjEventÞ for t > end respectively. By
combining them together, we can obtain the posterior prob-

ability of the Event. Note that at any timestamp t � end, we

do not see the future (t > end) observations. Thus the pos-

terior probability only counts to the current timestamp t.
567 Before and During the Event. In the forward algorithm,
568 the probability ak

t ¼ Prðlt ¼ sk; o1; o2; . . . ; otÞ is derived at

569 timestamp t. We represent ak
t in the vector form aat ¼

570 ½a1
1;a

2
t ; . . . ;a

m
t �. Then it can be derived as aat ¼ ðaat�1Mt�1Þ�

571 ~pot
¼ aat�1Mt�1~p

D
ot
. Without any further observations, the

572 joint probability can be derived from Lemma 3.1. The result
573 is shown in Lemma 3.2.

574 Lemma 3.2. Given an initial probability pp, the joint probability
575 of an EVENT of Presence or Pattern and observations
576 o1; o2; . . . ; ot at any timestamp t � end is

PrðEvent; o1; o2; . . . ; otÞ ¼ ½pp; 0� ~pD
o1

Yt
i¼2
ðMi�1~p

D
oi
Þ
Yend�1
i¼t

Mi½0; 1�œ
 !

:

(13)578578

579

580 After the Event. In the backward algorithm, bk
t ¼ Pr

581 ðotþ1; otþ2; . . . ; oT jlt ¼ skÞ. We represent it in the vector form

582 bbt ¼ ½b1
t ;b

2
t ; . . . ;b

m
t �. Then it can be derived as bbt ¼ ðbbtþ1 �

583 ~potþ1ÞMt ¼ bbtþ1~p
D
otþ1

Mt for any t > end. Similarly, we have

584 Lemma 3.3 for joint probability.

585 Lemma 3.3. Given an initial probability pp, the joint probability
586 of an EVENT of Presence or Pattern and observations
587 o1; o2; . . . ; ot at any timestamp t > end is

PrðEvent; o1; o2; . . . ; otÞ ¼ ½pp;0�

~pD
o1

Yend
i¼2
ðMi�1~p

D
oi
Þ

 !
½1;1�

Yend
i¼t�1
ð~pD

oiþ1
MiÞ � ½0;1�

 !œ

:

(14)
589589

590

591To summarize, now we can quantify the ratio Pr

592ðo1; o2; . . . ; oT jEventÞ ¼ Prðo1;o2;...;oT ;EventÞ
PrðEventÞ for spatiotemporal

593event privacy using Lemma 3.1 to compute PrðEventÞ and
594Lemmas 3.2, 3.3 to compute Prðo1; o2; . . . ; oT ;EventÞ. We
595note that our approach of computing the joint probability of
596an event is able to deal with different emission matrices at
597each t. Since ~pot

is a vector of emission probabilities given
598the observation ot, i.e, a column in the emission matrix, and
599~pD

ot
is a diagonal matrix whose diagonal elements are ~pot

, we

600only need to obtain ~pot
and ~pD

ot
from the corresponding emis-

601sionmatrix at t, and then use such ~pD
ot
in Eqs. (13) and (14).

6024 PRISTE FRAMEWORK

603In previous section, we designed methods for quantifying
604�-spatiotemporal event privacy provided by an LPPM w.r.t.
605a specified initial probability, which means that the privacy
606loss may not be bounded within � if an attacker has a differ-
607ent initial probability.
608In this section, we first design the Private Spatio-Temporal
609Event (PriSTE) framework and then solve the above problem
610by checking if �-spatiotemporal event privacy for any initial
611probabilities. Finally, we demonstrate two case studies that
612instantiate the framework based different location privacy
613metrics for protecting spatiotemporal event privacy.

6144.1 PriSTE

615Based on the quantification techniques that we developed in
616previous sections, we propose a framework that converts a
617location privacy protection mechanism into one protecting
618spatiotemporal event privacy. The PriSTE framework is
619illustrated in Fig. 7 and described in Algorithm 1.
620The major components are Quantification and a given
621LPPM. Their interactions are described as follows. First, the
622LPPM generates a perturbed location from the true location
623(Line 2 in Algorithm 1) and pass it to the Quantification com-
624ponent. By Theorem 4.1, the Quantification component (Line
6253) checks whether this perturbed location satisfies the ratio
626in Eq. (1) (i.e., �-spatiotemporal event privacy), under a
627sequence of previous observations and user-specified spa-
628tiotemporal events. If not, we need to calibrate the emission
629matrix to ensure that it satisfies �-spatiotemporal event
630privacy. The strategy of emission matrix calibration is

Fig. 7. PriSTE framework.
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631 LPPM-dependent. In the next section, we demonstrate
632 case studies of Geo-Indistinguishability[8] and d-location set
633 privacy [11], which are the state-of-the-art location privacy
634 metrics.

635 Algorithm 1. PriSTE Framework

636 Require: true location, �, LPPM,M, EVENTS

1: for t in f1; 2; . . . ; Tg do
2: generate ot with LPPM w.r.t. the true location;

3: while �-Spatiotemporal Event Privacy not hold do

4: calibrate LPPM and generate ot;

5: end while

6: release ot;

7: end for

637 4.2 Privacy Checking With Arbitrary
638 Initial Probability

639 According to the quantification in Section 3, we can calcu-

640 late Prðo1;o2;...;oT jEventÞ
Prðo1;o2;...;oT j:EventÞ

given o1; o2; . . . ; oT and a given initial

641 probability pp. In this section, we show how to make sure the
642 ratio is bounded given arbitrary initial probability.
643 Our idea to is taking pp as a variable and solving the maxi-

644 mization problem of Prðo1;o2;...;oT jEventÞ
Prðo1;o2;...;oT j:EventÞ

� e�. We want to

645 make sure the maximum value is always less than or equal
646 to 0, i.e., the user enjoys plausible deniability for her speci-
647 fied spatiotemporal event.
648 The following theorem shows the conditions related to pp

649 that satisfies �-spatiotemporal event privacy. We will formu-
650 late it as an optimization problem.

651 Theorem 4.1. For an Event of PRESENCE or PATTERN and an
652 arbitrary initial probability pp, �-spatiotemporal event privacy

653 is satisfied at any timestamp t, i.e., Prðo1;o2;...;oT jEventÞ
Prðo1;o2;...;oT j:EventÞ

� e�,

654 if the observation ot is released based on the following two
655 conditions

pp ½1D; 00DD� ðe� � 1Þaaœbb� e�aaœccð Þ½1DD; 00DD�œ
� �

ppœ þ pp½1DD; 00DD� bbœð Þ � 0

(15)657657

658

pp ½11DD; 00DD� ðe� � 1Þaaœbbþ aaœccð Þ½11DD; 00DD�œ
� �

ppœ � pp½11DD; 00DD� e�bbœð Þ � 0;

(16)
660660

661 where

aa ¼
Yend�1
i¼1

MMi½00; 11�œ: (17)
663663

664 For t � end

bœ ¼ ~pD
o1

Yt
i¼2
ðMi�1~p

D
oi
Þ
Yend�1
i¼t

Mi½0; 1�œc ¼ ~pD
o1

Yt
i¼2
ðMi�1~p

D
oi
Þ½1;1�œ:

(18)
666666

667 For t > end

bœ ¼ ~pD
o1

Yend
i¼2
ðMi�1~p

D
oi
Þ ½1;1�

Yend
i¼t�1
ð~pD

oiþ1
Mœ

i Þ � ½0;1�
 !œ

(19)669669

670

cœ ¼ ~pD
o1

Yend
i¼2
ðMi�1~p

D
oi
Þ ½1;1�

Yend
i¼t�1
ð~pD

oiþ1
Mœ

i Þ � ½1;1�
 !œ

:

(20) 672672

673

674Quadratic Programming. To determine whether Eqs. (15)
675and (16) are true or not for arbitrary pp, we transform them
676to maximization problems: finding the maximum values of
677the left parts of Eqs. (15) and (16) under the constraints of
6780 � pi � 1 where pi 2 pp. As long as one maximum value is
679larger than 0, we know that the LPPM (emission matrix)
680may not satisfy �-spatiotemporal event privacy. The maxi-
681mization are equivalent to quadratic programing problem
682since they can be rewritten in a form of ppAppœ ¼ 1

2ppðAþ
683AœÞppœ where A is a matrix. We skip the computation details
684about solving such quadratic programing problem since
685many methods and tools have been proposed in literature.
686In the experiments, we use IBM CPLEX optimizer [17] as
687our computation engine.

6884.3 Case Study 1: PriSTE With
689Geo-Indistinguishability

690In this section, we instantiate PriSTE framework using
691a-Planar Laplace mechanism (a-PLM) which is designed for
692Geo-Indistinguishability[8]. We first show the computation
693details for quantifying �-spatiotemporal event privacy by
694Theorem 4.1, and then design a greedy strategy for approxi-
695mately achieving �-spatiotemporal event privacy.
696Algorithm Design. To implement the quantification com-
697ponent, we need to (1) compute the internal parameters a, b
698and c shown in Theorem 4.1, and (2) design a strategy to cal-
699ibrate the emission matrix.
700For the calibration strategy for Planar Laplace Mecha-
701nism (PLM) with a specified privacy budget a (which solely
702determines the shape of the output distribution), we expo-
703nentially decay its privacy budget because a smaller privacy
704budget implies stronger protection for location privacy and
705less information disclosure. In our algorithm, decay rate 1

2
706for the privacy budget in Line 19 of Algorithm 2 is a tun-
707able parameter that provides a trade-off between efficiency
708and utility of the released locations. Setting a small value
709allows the algorithm converge faster, but at the cost of over-
710perturbing the location at each timestamp. In contrast, using
711a large value is less efficient but allows better utility.
712A natural question is whether we can always find an a to
713release a perturbed location that satisfies Eq. (1). The answer
714is affirmative because a converges exponentially to 0. When
715a ¼ 0, it releases no useful information about the true loca-
716tion, i.e., uniformly returning a random location without
717using user’s true position. It is easy to verify that the
718Eqs. (15) and (16) are always true in this situation.
719Algorithm 2 shows the computation process. To boost
720the efficiency of our algorithm, we use intermediate matri-
721ces A and B to facilitate the computation of b and c. At
722time 1, we initialize the variables as line 4 	 8. At any time
723before and inside the Event, we compute the variables as
724line 10 	 11. At any timestamps after the Event, the varia-
725bles are derived as line 13 	 14. Then we use quadratic pro-
726gramming methods to check Eqs. (15) and (16) to decide
727whether to release the ot or not. If not, we generate a new ot
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728 with only half a, and repeat the above process again.
729 Finally, we update the matrices A and B as line 21 	 25. If
730 t ¼ end, in line 10, the product

Qend�1
i¼t Mi will be the identity

731 matrix. In line 22, M0 is the identity matrix when t ¼ 1. We
732 note that for multiple EVENTS, Algorithm 2 can be executed
733 multiple times for each EVENT.

734 Algorithm 2. PriSTE With Geo-Indistinguishability

735 Require: �, EVENT, a-PLM,Mi, 8i 2 f1; 2; . . . ; Tg
736 1: for t in f1; 2; . . . ; Tg do
737 2: ot  a-PLM; "initial budget¼ a

738 3: if t ¼¼ 1 then
739 4: aœ  

Qend�1
i¼1 Mi½0;1�œ

740 5: A I "identity matrix

741 6: B I
742 7: bœ  ~pD

o1
aœ

743 8: cœ  ~pœ
o1

744 9: else if t <¼ end then "before and duringEVENT

745 10: bœ  AMt�1~p
D
ot

Qend�1
i¼t Mi½0;1�œ

746 11: cœ  AMt�1~p
D
ot
½1;1�œ

747 12: else "afterEVENT

748 13: bœ  A ð½1;1�~pD
ot
Mœ

t�1BÞ � ½0;1�
� �œ

749 14: cœ  A ð½1;1�~pD
ot
Mœ

t�1BÞ � ½1;1�
� �œ

750 15: end if
751 16: if Eqs. (15) and (16) hold then "� is used here.

752 17: release ot; "okay to release ot
753 18: else
754 19: a a

2, goto Line 2; "halve the budget

755 20: end if
756 21: if t � end then
757 22: A AMt�1~p

D
ot

"updateA by the real ot
758 23: else
759 24: B ~pD

ot
Mœ

t�1B "updateB by the real ot
760 25: end if
761 26: end for

762 Complexity. The internal parameters a, b and c in Algo-
763 rithm 2 need OðmT Þ time to be evaluated. The major
764 computational cost lies in the quadratic program for check-
765 ing Eqs. (15) and (16). The complexity will be determined

766 by the quadratic matrix ½1D;0D�aœc½1D;0D�œ. If it is positive
767 definite, then the complexity is Oðm3Þ. Otherwise, with any
768 negative eigenvalues, it will be NP-hard [18]. In our experi-
769 ments, we use IBM CPLEX which can provide globally opti-
770 mal results for quadratic program but may need a long
771 computation time. We use a conservative release strategy to
772 remedy this: we use a threshold to limit the computation
773 time of quadratic program for checking Eqs. (15) and (16). It
774 will not release a perturbed location unless the equations are
775 true. Although it may lead to suboptimal solution in budget
776 calibration, it always guarantees �-spatiotemporal event pri-
777 vacy since every released locations satisfy Eqs. (15) and (16).
778 Privacy Analysis. PriSTE framework relies on a local
779 model, i.e., the assumption that adversaries cannot obtain
780 user’s locally stored information as shown in Fig. 7. Although
781 line 2 may be executed more than once at a timestamp t,
782 Algorithm 2 still satisfies a0-Geo-Indistinguishability where
783 a0 is the final privacy budget used for releasing ot because
784 that is the only observation of attacker at time t. If we remove
785 the assumption of local model, the above statements may not

786be true since attacker may observe the internal states of the
787algorithm (which is the privacy goal of pan-privacy [19]).
788Examples of internal states includes multiple ot tested at t
789or the final a0 used in the algorithm. Another assumption
790that may affect the privacy guarantee is the transition
791matrix M, which we use it to model the correlations bet-
792ween locations and assume that it is given. It is an interesting
793future work to quantify the change of privacy loss in terms of
794�-spatiotemporal event privacy if the ground truth of correla-
795tion is not themodeled one.

7964.4 Case Study 2: PriSTE With d-Location
797Set Privacy

798To evaluate the effectiveness of PriSTE under different loca-
799tion privacy protection mechanisms, we also instantiate it
800using another privacy metrics d-location set privacy[11], [20],
801which is proposed for obtaining better utility by taking
802advantage of temporal correlation between consecutive loca-
803tions in user’s trajectory. The key idea is that hiding the true
804location in any impossible locations (e.g., whose probabilities
805are close to 0) is a lost cause because the adversary already
806knows the user cannot be there. In other words, it restricts
807the output domain of the emission matrix to d-location set,
808which is a set containing minimum number of locations that
809have prior probability sum no less than 1� d. A larger d indi-
810cates weaker privacy guarantee.
811The privacy metrics of a-Geo-Indistinguishability and
812d-location set privacy are orthogonal because the former
813requires a specific “shape” of emission distribution and the lat-
814ter restricts output domain of the emission distribution. In [11],
815Xiao and Xiong proposed a framework to achieve d-location
816set privacy using a given LPPM. For ease of comparison, we
817use a-PLMas the underlying LPPM for d-location set privacy.

818Algorithm 3. PriSTE With d-Location Set Privacy

819Require: �, EVENT, a-PLM,Mi, 8i 2 f1; 2; . . . ; Tg, p, d,M.
8201: for t in f1; 2; . . . ; Tg do
8212: p�t  pþt�1M; "Markov transition

8223: Construct DXt "d-location set

8234: ot  a-PLM within DXt;
8245: the same as Lines 3 	 15 in Algorithm 2;
8256: if Eqs. (15) and (16) hold then "� is used here.

8267: release ot; "okay to release ot
8278: Derive posterior probability pþt by Eq. (21);
8289: else
82910: a a

2, goto Line 4; "halve the budget

83011: end if
83112: the same as Lines 21 	 25 in Algorithm 2;
83213: end for

833In Line 2, when t ¼ 1, we have pþ0 ¼ p. In Line 8, accord-

834ing to [11], the posterior probability can be calculated by
835Eq. (21) where pþt ½j� and p�t ½i� are ith elements in the corre-

836sponding probability vectors

pþt ½i� ¼ Prðlt ¼ sijotÞ ¼
Prðotjlt ¼ siÞ 
 p�t ½i�P
j Prðotjlt ¼ sjÞ 
 p�t ½j�

: (21)

838838

839

840Hence, we need the initial probability p in order to calcu-
841late d-location set. In experiments, we set p to a uniform
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843 note that PriSTE is agnostic to such initial probability since it
844 guarantees spatiotemporal event privacy against adversaries
845 with arbitrary knowledge about the initial probability.

846 5 EXPERIMENTAL EVALUATION

847 In experiments, we verified that Algorithms 2 and 3 can
848 adaptively calibrate the privacy budget of Planar Laplace
849 Mechanism (PLM) at each timestamp for both location pri-
850 vacy and spatiotemporal event privacy. Especially, we high-
851 light the following empirical findings.

852 � A stricter LPPM can satisfy a certain level of spatio-
853 temporal event privacy without any change (i.e., no
854 need of privacy budget calibration), whereas a more
855 loose LPPM may need to reduce its privacy budget
856 significantly for protecting the same event.
857 � For achieving the same level of �-spatiotemporal
858 event privacy using different LPPMs, a stricter
859 LPPM is not always better in terms of data utility.
860 � If the user’s transition matrix has a significant pat-
861 tern, an LPPM may need a small privacy budge to
862 achieve �-spatiotemporal event privacy.

863 5.1 Experiment Settings and Metrics

864 Dataset. We used real-life and synthetic datasets in experi-
865 ments. Geolife data [21] was collected from 182 users in a
866 period of over three years. It recorded a wide range of users’
867 outdoor movements, represented by a series of tuples con-
868 taining latitude, longitude and timestamp. The user’s entire
869 trajectory is used to train the transition matrix M, e.g., with
870 R package “markovchain”.
871 We generated a synthetic trajectory and its transition
872 probability matrix as follows. First, a map with 20 
 20 cells
873 is generated. Then, the transition probability from one cell
874 to another is drawn from the two-dimensional Gaussian
875 distribution with scale parameter s based on the distance
876 between the cells. Here, a smaller s indicates that the user
877 moves to the adjacent cells with a higher probability, i.e.,
878 the transition matrix has a more significant pattern. Finally,
879 we produced trajectories with 50 timestamps using such
880 transition matrix to simulate movement of a user.
881 Quadratic Programming. We use the IBM CPLEX opti-
882 mizer 12.7.1 [17] to find the globally optimal solution for the
883 quadratic programming in Algorithm 2. We adopt a strat-
884 egy of conservative release as mentioned previously and limit
885 the computation time for each optimization to 1 second.
886 EVENTS.We investigate Presence and Pattern events,which
887 are represented by two parameters S and T . For example,

888PresenceðS ¼ f1 : 10g; T ¼ ½4 : 8�Þ is PRESENCE event denoting
889the user appears in the region of fs1; s2; . . . ; s10g during time-
890stamps f4; 5; 6; 7; 8g.
891UtilityMetrics.Weuse twometrics to evaluate data utility.

892� Privacy budget a used in PLM, including a at each
893timestamp (see Section 5.2) and the average a during
894the whole time period (see Section 5.3). A higher pri-
895vacy budget indicates higher utility.
896� The euclidean distance between the perturbed loca-
897tions and the true locations. A smaller euclidean dis-
898tance indicates higher utility.
899We run our algorithm 100 times and aggregate the results
900to calculate average privacy budget and euclidean distance.

9015.2 Utility at Each Timestamp

902In this section, we show the utility (average privacy budget
903over 100 runs) at each timestamp for protecting PresenceðS ¼
904½1 : 10�; T ¼ ½4 : 8�Þ and PresenceðS ¼ ½1 : 10�; T ¼ ½16 : 20�Þ.
905Due to the space limitation, we only show the results on syn-
906thetic data. We could draw the same conclusions from the
907results onGeolife data.
908PriSTE with Geo-Indistinguishability . In Fig. 8a, it turns
909out that, 0.2-PLM satisfies 1-spatiotemporal event privacy
910with only slight privacy budget reduction, and satisfies 0.5-
911spatiotemporal event privacy with few budget reduction,
912but need to reduce more privacy budgets (to be stricter) in
913order to achieve 0.1-spatiotemporal event privacy. Similar
914results can be observed in Figs. 8b and 9. We also observe
915that the standard deviation is larger for weaker LPPMs
916since these privacy budgets need to be frequently calibrated.
917Hence, we can conclude that a stricter PLM for location pri-
918vacy can protect spatiotemporal event without much cali-
919bration, but a more loose PLM may need to reduce its
920privacy budget significantly for �-c.
921In other words, in order to achieve a certain level of spa-
922tiotemporal event privacy, we need to sacrifice extra utility
923of an LPPM if the protection of the LPPM is weak (i.e., using
924a large privacy budget); as shown in the red lines in Figs. 8a
925and 9a, the LPPM, i.e., 0.2-PLM needs to reduce its budgets
926significantly for satisfying 0.1-spatiotemporal event privacy.
927On the other hand, we may not need to sacrifice utility of an
928LPPM to achieve the same level of spatiotemporal event pri-
929vacy when the LPPM protection is strong (i.e., using a small
930privacy budget); as shown in the red lines in Figs. 8a and
9319a, the LPPM, i.e., 0.2-PLM does not reduce its budgets sig-
932nificantly for 1-spatiotemporal event privacy.
933We can see that the red line in Fig. 9a and the blue line in
934Fig. 9b during timestamps 10-30 occur larger standard devi-
935ation. Essentially, this is due to the fact that these PLMs are

Fig. 8. PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ on synthetic data. Fig. 9. PresenceðS ¼ ½1 : 10�; T ¼ ½16 : 20�Þ on synthetic data.
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937 higher because the perturbation of the LPPM is enhanced
938 with a smaller a.
939 Comparing Fig. 8 with Fig. 9, where the events are
940 defined on time periods 4	8 and 16	20 respectively, we
941 can see that privacy budgets tend to be reduced during the
942 defined time periods. This indicates that the final a used by
943 PLM at each timestamp may disclose the definition of spa-
944 tiotemporal event as we discussed in Section 4.3. Hence, a
945 local model is needed for PriSTE framework.
946 Protecting Multiple Events. Fig. 10 depicts the utilities
947 when protecting two events sequentially using Algorithm 2.
948 We can see that the utility is much worse than protecting
949 each single event in Figs. 8 or 9 because the algorithm needs
950 to simultaneously check if �-spatiotemporal event privacy is
951 satisfied for both events at each time. If no perturbed loca-
952 tion satisfying the privacy requirement of both events
953 simultaneously, the algorithm needs to halve the privacy
954 budget until finding an appropriate output.
955 PriSTEwith d-Location Set Privacy. In Fig. 11,we show theutil-
956 ity of PriSTE with LPPMs that satisfies d-Location Set Privacy
957 (Algorithm 3). Comparing Fig. 11 with Fig. 8, although both of
958 them are using 0.2-PLM, the essential difference between them
959 is the privacy metric: the former satisfies d-location set privacy
960 and the latter satisfies Geo-Indistinguishability, i.e., 0.2-PLM in
961 Fig. 11 has a constrained output domain. We can see that such
962 0.2-PLM in Fig. 11 has to reduce more privacy budgets to
963 achieve �-spatiotemporal event privacy. Intuitively, it is because
964 the privacy metrics of d-location set privacy implies a weaker
965 privacy guarantee and its LPPM has to be stricter (using a
966 smaller privacy budget) for protecting the event.

967 5.3 Utility Over Timestamps

968 In this section, we demonstrate the utility against different
969 factors on the Geolife data and synthetic data. Figs. 12 and 13
970 are for protecting PRESENCE event. Due to the space limitation,

971the results of protecting PATTERN event are included in
972Appendices, which can be found on the Computer Society
973Digital Library at http://doi.ieeecomputersociety.org/
97410.1109/TKDE.2019.2963312. Different from the utility in
975previous section which is averaged at each time, this section
976displays the utility that is further averaged over timestamps.
977Hence, in the left parts of Figs. 12 and 13 (ave. budget), the
978steeper lines indicate the budget may be reduced heavily at
979some timestamps. Generally, the utility increases with a
980larger � in Figs. 12 and 13.
981Utility versus a- Geo-Indistinguishability. In Fig. 12, we can
982see that a larger a-PLM needs to be calibrated heavily (i.e.,
983steeper) for a small �. Interestingly, PLMs with larger aver-
984age budgets (in the left figures) may not necessarily have
985better utility in terms of euclidean distance. For example, at
986� ¼ 0:5, the euclidean distance of 5-PLM and 3-PLM are
987very close; at � ¼ 1 or 2, 0.5-PLM and 1-PLM appear to have
988almost the same euclidean distance. The reason is that
989PLMs that have larger average budgets may have extremely
990small budgets at some timestamps, which results in the
991higher average euclidean distance over timestamps.
992Utility versus d-Location Set Privacy. In Fig. 13, we can see
993that a PLM with a larger d tends to have a smaller average
994budget. It is because the PLM with a larger d indicates a
995weaker privacy metrics. Hence, the PLM needs to be stricter
996(i.e., a small budget) to achieve spatiotemporal event pri-
997vacy. However, such PLMmay have a better utility in terms
998of euclidean distance as shown in right figure of Fig. 13. The
999reason is that d-location set privacy with a larger d restricts
1000the output domain significantly, which makes perturbed
1001location close to the true location with a high probability.
1002The results are in line with the main purpose of d-location
1003set privacy: to achieve a better privacy-utility trade-off.
1004Utility versus Transition Matrices. We compare the utility
1005against transition matrices that have different strength of
1006mobility patterns. As we explained previously, a smaller s
1007indicates a more significant mobility pattern. Fig. 14 shows
1008that, for the same LPPM, it is hard to protect a spatiotemporal

Fig. 10. Protecting two events PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ and
PresenceðS ¼ ½1 : 10�; T ¼ ½16 : 20�Þ on synthetic data.

Fig. 11. PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ on synthetic data.

Fig. 12. PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ on Geolife data.

Fig. 13. PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ on Geolife data (0.5-PLM with
d-location set privacy).
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of1009 event if user’s mobility pattern is significant, i.e., the LPPM

1010 needs to be very strict by using a small privacy budget. We
1011 also observe that there is no best LPPM for all �-spatiotempo-
1012 ral event privacy in terms of euclidean distance.

1013 5.4 Runtime

1014 We name the size of T and the size of S as event length and
1015 event width, respectively. We also report the performance
1016 evaluation on conservative release described in Section 4.3.
1017 Runtime versus Event Length. We fix the event width as 5
1018 and test 100 random events with length ranging from 5 to
1019 15. Fig. 15 shows that the average runtime of the baseline is
1020 exponential to event length and the runtime of our method
1021 is linear to the event length.
1022 Runtime versus Event Width. We fix the event length as 5
1023 and test 100 random events with width ranging from 5 to
1024 15. Fig. 15 shows that the average runtime of the baseline is
1025 exponential to the event width, while our method is polyno-
1026 mial to the event width, which is in line with the complexity
1027 of Oðm3Þ.
1028 Runtime versus Conservative Release. In Line 16 ofAlgorithm2,
1029 we set a threshold runtime in solving the quadratic program.
1030 We do not release the perturbed location unless we are sure
1031 that Eqs. (15) and (16) are true. The threshold is a trade-off
1032 between runtime and utility as shown in Table 2 among 100
1033 runs. We note that each runtime in Table 2 includes the whole
1034 process of Algorithm 2. In our implementation, we set the
1035 threshold to 1 second. We can see as the threshold increases,
1036 the number of conservative releases decreases, which results in
1037 increasing runtime. On the other hand, the calibrated privacy
1038 budgets increasse as the threshold increases. This verifies the
1039 tradeoff between runtime and utility that can be achieved by
1040 the strategy of conservative release.

1041 6 RELATED WORKS

1042 6.1 Location Privacy Preserving Mechanisms

1043 Existing works on location privacy can be roughly classified
1044 into two categories. The first type is the aggregated setting

1045[22], [23], [24], [25], [26], [27], where the goal is to protect the
1046existence of a user’s trajectory or a user’s location when
1047releasing aggregate location statistics of a dataset that con-
1048sists of location sequences of a population of users. For
1049example, DPT [24] used differential privacy techniques to
1050synthesize a set of user trajectories based on statistical infor-
1051mation that guarantees differential privacy. This is different
1052from our problem setting of an individual user in location-
1053based applications. The second type is the individual set-
1054ting, which is also our setting, to protect the user’s location
1055when interacting with some location-based services. The
1056LPPMs [8], [11], [28], [29], [30], [31] generally use some
1057obfuscation methods, like spatial cloaking, cell merging,
1058location precision reduction or dummy cells, to manipulate
1059the probability distribution of users’ locations. As differen-
1060tial privacy becomes a standard for privacy protection, [8]
1061proposed a Geo-Indistinguishability notion based on differ-
1062ential privacy and a planar Laplace mechanism to achieve
1063it. Xiao et al. [11], [20] studied how to protect location pri-
1064vacy under temporal correlations with an optimal differen-
1065tially private mechanism. Rodriguez-Carrion et al. [32] also
1066studied the effect of temporal dependencies on entropy-
1067based location privacy metrics. They proposed a new pri-
1068vacy metrics entropy rate and perturbative mechanisms
1069based on it, which can be an alternative LPPM in our frame-
1070work for protecting spatiotemporal event privacy. Several
1071studies [33], [34], [35] tried to achieve an optimal trade-off
1072between the utility of applications and the privacy guaran-
1073tee in the LPPMs. Overall, above works all focused on the
1074mechanisms of location privacy, which can be used in our
1075framework as given LPPMs. Whereas we study a new prob-
1076lem of spatiotemporal event privacy.

10776.2 Inferences on Location

1078Various inference attacks can be carried out based on loca-
1079tion information and external information such as moving
1080patterns. In the aggregated setting, recent works have stud-
1081ied location or trajectory recovery attacks from aggregated
1082location data[6], [36] or proximity query results from loca-
1083tion data [4]. We mainly discuss the individual setting that
1084is closely related to our work. Studies [33], [37], [38] investi-
1085gated the question of how to formally quantify the privacy
1086of existing LPPMs, given an adversary who can model
1087users’ mobility using a Markov process learned from popu-
1088lation, which is commonly used for modeling user mobility
1089pattern. Liao et al. [39] used a hierarchical Markov model
1090to learn and infer a user’s trajectory based on the places
1091and temporal patterns they visited. Qiao et al. [40] used the
1092Continuous Time Bayesian Networks to predict uncertain

Fig. 14. PresenceðS ¼ ½1 : 10�; T ¼ ½4 : 8�Þ on synthetic data (1-PLM with
Geo-Indistinguishability).

Fig. 15. Runtime evaluation.

TABLE 2
Runtime versus Threshold

threshold
(s)

ave. total
runtime (s)

# of
Conservative

Release

ave.
privacy
budget

ave. euclidean
dist. (km)

0.01 1.1 33 0.16 2.22
0.1 2.6 30 0.23 1.51
1 5.9 21 0.22 1.52
2 10.4 12 0.29 0.93
5 19.5 8 0.27 1.41
none 52.5 0 0.31 0.97
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1093 trajectories of moving objects. Li et al. [41] used frequent
1094 mining approach to find moving objects that move within
1095 arbitrary shape of clusters for certain timestamps that are
1096 possibly nonconsecutive.

1097 7 CONCLUSION AND FUTURE WORK

1098 In this paper, we investigate a new type of pivacy goal
1099 called spatiotemporal event. We formally define spatiotem-
1100 poral events and design a privacy metrics extending the
1101 notion of differential privacy. We proposed PriSTE, a frame-
1102 work integrating an LPPM for protecting the spatiotemporal
1103 event privacy. An interesting direction is to find optimal
1104 way for achieving both location privacy and spatiotemporal
1105 event privacy. Another question is how we can design a
1106 generic mechanism for spatiotemporal event privacy.
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