CS573 Data Privacy and Security

Local Differential Privacy

Li Xiong
Privacy at Scale: Local Differential Privacy in Practice (Module 1)

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang
Differential Privacy in the Wild (Part 2)
A Tutorial on Current Practices and Open Challenges

Ashwin Machanavajjhala, Michael Hay, Xi He
Outline

• Local differential privacy - definition and mechanisms
• Google: RAPPOR
• Apple: learning with LDP
Differential Privacy - Centralized Setting

Private Data D → Differential Privacy Mechanism → Statistics/Models

Trusted Data Aggregator
Problem

What are the frequent unexpected Chrome homepage domains?

→ To learn malicious software that change Chrome setting without users’ consent

Finance.com

Fashion.com

WeirdStuff.com

[Erlingsson et al CCS’14]
Why privacy is needed?

Liability (for server)
Storing unperturbed sensitive data makes server accountable (breaches, subpoenas, privacy policy violations)
Trying to Reduce Trust

• Centralized differential privacy setting assumes a trusted party
 • Data aggregator (e.g., organizations) that sees the true, raw data
 • Can compute exact query answers, then perturb for privacy

• A reasonable question: can we reduce the amount of trust?
 • Can we remove the trusted party from the equation?
 • Users produce locally private output, aggregate to answer queries
Local Differential Privacy Setting

\[x_1 \quad Y_1 \leftarrow A(x_1) \]

\[x_2 \quad Y_2 \leftarrow A(x_2) \quad Y_1 \]

\[\ldots \ldots \]

\[x_N \quad Y_N \leftarrow A(x_N) \quad Y_N \]

Data collector and analytics
Local Differential Privacy

- Having **each user run a DP algorithm** on their data
 - Then combine all the results to get a final answer

- On first glance, this idea seems crazy
 - Each user adds noise to mask their own input
 - So surely the **noise** will always **overwhelm the signal**?

- But ... noise can **cancel out** or be **subtracted out**
 - We end up with the true answer, plus noise which can be smaller
 - However, noise is still **larger than** in the **centralized case**
Local Differential Privacy: Example

• Each of \(N \) users has 0/1 value, estimate total population sum
 • Each user adds independent Laplace noise: mean 0, variance \(\frac{2}{\epsilon^2} \)

• Adding user results: true answer + sum of \(N \) Laplace distributions
 • Error is random variable, with mean 0, variance \(\frac{2N}{\epsilon^2} \)
 • Confidence bounds: ~95% chance of being within \(2\sigma \) of the mean
 • So error looks like \(\sqrt{N/\epsilon} \), but true value may be proportional to \(N \)

• Numeric example: suppose true answer is \(N/2 \), \(\epsilon = 1 \), \(N = 1M \)
 • We see \(500K \pm 2800 \): about 1% uncertainty
 • Error in centralized case would be close to 1 (0.001%)
Local Differential Privacy

• We can achieve LDP, and obtain reasonable accuracy (for large N)
 • The error typically scales with \sqrt{N}

• Generic approach: apply centralized DP algorithm to local data
 • But error might still be quite large
 • Unclear how to merge private outputs (e.g. private clustering)

• So we seek to design new LDP algorithms
 • Maximize the accuracy of the results
 • Minimize the costs to the users (space, time, communication)
 • Ensure that there is an accurate algorithm for aggregation
Randomized Response (a.k.a. local randomization)

With probability p,
Report true value

With probability $1-p$,
Report flipped value
Differential Privacy Analysis

• Consider 2 databases D, D’ (of size M) that differ in the jth value
 • D[j] \neq D’[j]. But, D[i] = D’[i], for all i \neq j

• Consider some output O

\[
\frac{P(D \rightarrow O)}{P(D' \rightarrow O)} \leq e^\varepsilon \iff \frac{1}{1 + e^\varepsilon} < p < \frac{e^\varepsilon}{1 + e^\varepsilon}
\]
Utility Analysis

• Suppose \(n_1 \) out of \(n \) people replied “yes”, and rest said “no”

• What is the best estimate for \(\pi = \text{fraction of people with disease} = Y \)?

\[
\hat{\pi} = \frac{n_1/n - (1-p)}{(2p-1)}
\]

• \(E(\hat{\pi}) = \pi \)

• \(\text{Var}(\hat{\pi}) = \frac{\pi(1-\pi)}{n} + \frac{1}{n(16(p - 0.5)^2 - 0.25)} \)

 Sampling Variance due to coin flips
LDP framework

• Client side
 • Encode: \(x = \text{Encode}(v) \)
 • Perturb: \(y = \text{Perturb}(\text{Encode}(v)) \)

• Server side
 • Aggregate: aggregate all \(y \) from users
 • Estimate the function (e.g. count, frequency)
Privacy in practice

• Differential privacy based on coin tossing is widely deployed!
 • In Google Chrome browser, to collect browsing statistics
 • In Apple iOS and MacOS, to collect typing statistics
 • In Microsoft Windows to collect telemetry data over time
 • From Snap to perform modeling of user preference
 • This yields deployments of over 100 million users each

• All deployments are based on RR, but extend it substantially
 • To handle the large space of possible values a user might have

• Local Differential Privacy is state of the art in 2018
 • Randomized response invented in 1965: five decades ago!
Outline

• Local differential privacy definition and mechanisms
• Google: RAPPOR
• Apple: learning with LDP
Google’s RAPPOR

• Each user has one value out of a very large set of possibilities
 • E.g. their favourite URL, www.nytimes.com

• Basic RAPPOR
 • Encode: 1-hot encoding
 • Perturb: run RR on every bit
 • Aggregate

• Privacy: 2ε-LDP (2 bits change: 1 \rightarrow 0, 0 \rightarrow 1)
• Communication: sends 1 bit for every possible item in the domain
Bloom Filters & Randomized Response

- **RAPPOR**
 - **Encode**: Bloom filter using h hash functions to k-bit vector
 - **Perturb**: apply Randomized Response to the bits in a Bloom filter (2-step approach)
 - **Aggregate**: Combine all user reports and observe how often each bit is set

- **Communication reduced to m bits**
Client Input Perturbation

• Step 1: Compression: use h hash functions to hash input string to k-bit vector (Bloom Filter)

Finance.com

Bloom Filter B
Permanent RR

• Step 2: Permanent randomized response $B \rightarrow B'$
 • Flip each bit with probability $f/2$
 • B' is memorized and will be used for all future reports
Instantaneous RR

• Step 4: Instantaneous randomized response $B' \rightarrow S$
 • Flip bit value 1 with probability 1-r
 • Flip bit value 0 with probability 1-p

Why randomize two times?
- Chrome collects information each day
- Want perturbed values to look different on different days to avoid linking
Server Report Decoding

- Step 5: estimates bit frequency from reports $\tilde{f}(D)$
 - Take minimum estimate out of the k bits
- Step 6: estimate frequency of candidate strings with regression from $\tilde{f}(D)$

[Fanti et al. arXiv’16] no need of candidate strings
Privacy Analysis

• Recall RR for a single bit
 • RR satisfies ε-DP if reporting flipped value with probability $1 - p$, where $\frac{1}{1+e^{\varepsilon}} \leq p \leq \frac{e^{\varepsilon}}{1+e^{\varepsilon}}$

• Exercise: if Permanent RR flips each bit in the k-bit bloom filter with probability $1-p$, which parameter affects the final privacy?
 1. # of hash functions: h
 2. bit vector size: k
 3. Both 1 and 2
 4. None of the above
Privacy Analysis

• Answer: # of hash functions: h
 • Remove a client’s input, the maximum changes to the true bit frequency is h.
 • Permanent RR satisfies $(h\varepsilon)$-DP

• Change a client’s input, 0->1, 1->0, permanent RR satisfies $(2h\varepsilon)$-DP
RAPPOR Demo
http://google.github.io/rappor/examples/report.html

Simulation Input

- Number of clients: 100,000
- Total values reported / obfuscated: 700,000
- Unique values reported / obfuscated: 50

RAPPOR Parameters

- k: Size of Bloom filter in bits, 16
- h: Hash functions in Bloom filter, 2
- m: Number of Cohorts, 64
- p: Probability p, 0.5
- q: Probability q, 0.75
- f: Probability f, 0.5
The RAPPOR approach is implemented in the Chrome browser.

- Collects data from opt-in users, tens of millions per day
- Open source implementation available

Tracks settings in the browser, e.g. home page, search engine:
- Many users unexpectedly change home page → possible malware

Typical configuration:
- 128 bit Bloom filter, 2 hash functions, privacy parameter ~0.5
- Needs about 10K reports to identify a value with confidence
Outline

• Local differential privacy definition and mechanisms
• Google: RAPPOR
• Apple: learning with LDP
Apple: Learning with Privacy at Scale

- Similar problem to RAPPOR: count frequencies of many items
 - For simplicity, assume that each user holds a single item
 - To reduce burden of collection, can size of summary be reduced?

- Instead of Bloom Filter, make use of sketches
 - Similar idea, but better suited to capturing frequencies

Adapted from: Privacy at Scale: Local Differential Privacy in Practice

Learning with Privacy at Scale, Apple Machine Learning Journal, Vol 1, Issue 8, December 2017

• Similar problem to RAPPOR: count frequencies of many items
 • For simplicity, assume that each user holds a single item
 • To reduce burden of collection, can size of summary be reduced?

• Instead of Bloom Filter, make use of sketches
 • Similar idea, but better suited to capturing frequencies
Count-Mean Sketch (CMS)

- Client side
 - Encode: randomly samples a hash function j from a set of candidate hash functions, and encode the item into a 1-hot vector of size m
 - Perturb: Random Response on each bit
 - Send the perturbed vector and the selected hash function index j to server

- Privacy: 2ε-LDP
- Communication: m bits
 - Can also use multiple hash functions and send multiple vectors for better utility

Adapted from: Privacy at Scale: Local Differential Privacy in Practice
Count-Mean Sketch (CMS)

- Server side aggregation
 - Construct a sketch matrix M by aggregating the perturbed vectors
 - k rows – one for each hash function
 - m columns - size of the perturbed vector
 - Adds the perturbed count for row j given hash index j from the device
 - Estimate frequency for each row j and compute mean of the estimate

- Utility
 - Variance inversely proportional to m and k

Adapted from: Privacy at Scale: Local Differential Privacy in Practice
Hadamard Count Mean Sketch (HCMS)

• Goal: reduce client communication without sacrificing utility by transmitting 1 bit
• Intuition: spread information from the 1-hot sparse vector to a dense vector so we can sample 1 bit to keep the signal
• Idea: use Hadamard transform (a discrete Fourier transform)
 • The user can sample one entry in the transformed vector
 • No danger of missing the important information – it’s everywhere!
• Aggregator can invert the transform to get the sketch back

\[
\begin{bmatrix}
H^* & H^*
\end{bmatrix} = \begin{bmatrix}
-1 & 1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & 1
\end{bmatrix}.
\]
Hadamard Count Mean Sketch (HCMS)

- Client side
 - Encode: randomly sample a hash function \(j \), and encode the item into a 1-hot vector \(\mathbf{v} \)
 - Hadamard transform: \(\mathbf{v}' = H_m \mathbf{v} \)
 - Sampling 1 bit \(l \) from \(\mathbf{v}' \)
 - Perturb the bit and send hash function index \(j \), sampled bit index \(l \), and perturbed bit

Randomly select hash index (3)
Randomly select column (2)

Flip with DP

Encrypted channel
Hadamard Count Mean Sketch (HCMS)

- Server side aggregation
 - Construct a sketch matrix M
 - k rows – one for each hash function
 - columns based on the sampled bit index
 - Transform M back using inverse Hadamard matrix
 - Estimate frequency for each row and compute mean

User device $\rightarrow (3, 2, x^{(n)})$

Debias $\rightarrow y^{(n)}$

Sketch matrix M

$\begin{pmatrix}
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{pmatrix}$

Transform MH

1 120 231 \ldots 98 \ldots 72 \ldots 271 \ldots
2 823 82 \ldots 879 \ldots 314 \ldots 21 \ldots
3 68 81 \ldots 254 \ldots 64 \ldots 681 \ldots
\vdots
k 124 434 \ldots 345 \ldots 543 \ldots 444 \ldots

Count(example.com) = Average(231 21 254 \ldots 543)
Apple’s Differential Privacy in Practice

• CMS settings: $m=1024$, $k=65,356$, $\varepsilon=4$ (dictionary of 2600 emojis)

• Apple uses their system to collect data from iOS and OS X users
 • Popular emojis: (heart) (laugh) (smile) (crying) (sadface)
 • “New” words: bruh, hun, bae, tryna, despacito, mayweather
 • Which websites to mute, which to autoplay audio on!

Adapted from: Privacy at Scale: Local Differential Privacy in Practice
Microsoft telemetry data collection

• Microsoft want to collect data on app usage
 • How much time was spent on a particular app today?
 • Allows finding patterns over time

• Makes use of multiple subroutines:
 • 1BitMean to collect numeric data
 • dBtFlip to collect (sparse) histogram data
 • Memoization and output perturbation to allow repeated probing

• Has been implemented in Windows since 2017
MS Telemetry Collection in Practice

• Deployed in Windows 10 Fall Creators Update (October 2017)
 • Collects number of seconds users spend in different apps
 • Parameters: $\epsilon = 1$ and $\gamma = 0.2$
 • Collection period: every 6 hours

• Collects data on all app usage, not just one at a time
 • Can analyze based on the fact that total time spent is limited
 • Gives overall guarantee of $\epsilon = 1.672$ for a round of collection