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Real-Time Aggregate 
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• Disease Surveillance 

• E.g. daily count of flu 
cases at a hospital 

• Traffic Monitoring 

• E.g. hourly count of 
vehicles at a highway 
junction 

Goal:  

Strong Privacy, High Utility 



•

Differential Privacy [BLR08] 
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Privacy Budget 

Neighboring 

Databases: differ in 

exactly one entry 

Randomized Algorithm Any Measurable Set 

Function Sensitivity 

e.g. Δcount = 1 



Problem Statement 

•
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Challenges 

• High sensitivity - T 

• Low utility - Lap(T/α) 

• Real-time requirement 

 

• Existing methods: 

•  Baseline LPA 

• Applies Laplace perturbation at every time stamp 

• Low Utility 

•  State-of-the-art DFT 

• Performs Discrete Fourier Transform to the raw aggregate series  

• Reduced sensitivity, not applicable to real-time applications 
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• Sampling 

• Model-based Estimation 

• Feedback 



FAST: a real-time system with Filtering and Adaptive 

Sampling for monitoring aggregate Time-series 
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Filtering 

•
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Process noise 

Measurement noise 



Sampling 

• Fixed-Rate Sampling 

• Periodically sample the time-series 

• Difficult to determine optimal sampling interval a priori 

 

 

• Adaptive Sampling 

• Adjust the sampling rate/interval based on feedback 

• Implemented by PID control 

• Error to measure the performance of the sampling process 
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• Flu: CDC/flu, 209 data points 

• Traffic: UW/intelligent transportation systems research, 540 

data points 

• Unemployment: ST. Louis Federal Reserve Bank, 478 

Flu 

Evaluation: Data Sets 
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Traffic 



Utility vs. Privacy 
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Flu Traffic 

Unemployment 



Conclusion 

• Contributions: 

• Establish the state-space model for real-time aggregate under differential 

privacy 

• Adaptively sample the data series to reduce perturbation noise 

• Dynamically adjust the sampling rate and estimation based on feedback 

• Demonstrate the superior performance of FAST with real-world data sets 

• On-going Work: 

• Accurate posterior estimation  

• Extension to sharing spatio-temporal data sets 

• Questions? 

• Contact: liyue.fan@emory.edu  

• AIMS Group: www.mathcs.emory.edu/aims 
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