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Scenario 

• Disease Surveillance 

• E.g. daily count of flu 

cases in different 

regions 

• Traffic Monitoring 

• E.g. hourly count of 

vehicles at different 

intersections 

• Single time-series 

• Multi-dimensional 

time-series 



Single Time-Series: Problem Statement 

•



Utility 

k-1 k time 

• Point-wise: average relative error 

• Time-series: outbreak detection 

• Outbreak at time k: xk – xk-1 >= threshold 

• Specificity and sensitivity 

• Precision and recall: F1 metric 

R 

X 



Baseline: Laplace Perturbation Algorithm (LPA) 

Laplace Perturbation 
k time 

At each time point 

 xk 
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 rk 
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k time •  High sensitivity : O(T) 

•  High perturbation error: O(T) 



State-of-the-art: Discrete Fourier Transform 

[RN10] 

Laplace Perturbation 

Aggregate series X 

Released series R 

Discrete Fourier 

Transform 

Inverse DFT 

Retain only the first 

 l coefficients to  

reduce sensitivity 

•  Higher accuracy 

•  Offline or batch processing only 



FAST: Filtering and Adaptive Sampling for 

aggregate Time-series monitoring 

• Filtering – posterior estimate based on prediction and perturbed values 

• Adaptive sampling - reduce sensitivity 
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Filtering: State-Space Model 

•

Process noise 

Measurement noise 



Filtering: Posterior Estimation 

•



Filtering: Solutions 

•



Adaptive Sampling 
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•   Fixed sampling – difficult to select sampling rate a priori 

•   Adaptive sampling  - adjust sampling rate based on feedback from 

observed data dynamics 



Adaptive Sampling: PID Control 

•



Some results: average relative error 

• Flu dataset (CDC): weekly outpatient count of age group [5-24] from 

2006 – 2010 (209 data points) 

• Traffic dataset (U Washington): daily traffic count for Seattle-area 

highway at I-5 143.62 southbound from 2003 – 2004 (504 data points) 
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Some Results: F1 metric for outbreak detection 

traffic data set 



Multi-dimensional time-series: Problem 

statement 



Multi-dimensional time-series: challenges and 

solutions 

• Data has sparse and 

uniform regions 

• Data is dynamically 

changing 

Group similar 

cells 
 

Reorganize groups 



FAST with Partitioning 
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• Dynamic spatial partitioning: based on KD-Tree and quad-tree 



Some Results 

Synthetic traffic data by Brinkhoff 

moving objects generator 



Closing Remarks 

 

• Utility: time point wise relative error still high but can be 

useful for time-series driven applications such as outbreak 

detection 

• Key insight: feedback loops are useful to dynamically 

adjust sampling, aggregation, and estimation 

• Open question: how to allocate budget over time points? 
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