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Scenario

Disease Survelllance Trusted Server

* E.g. daily count of flu
cases in different
regions

Traffic Monitoring

* E.g. hourly count of
vehicles at different
Intersections

 Single time-series
 Multi-dimensional
time-series

Untrusted
Individual Users Third Party
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Single Time-Series: Problem Statement

* A univariate, discrete Time-Series X = {x}} 1s a set of values of
variable x observed at discrete time stamp k, where 0 < k < T
and T 1s the lifetime of the series.

- Given time series X and differential privacy budget a, release o-
differentially private series R with high utility.
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Utility

k-1 K time

* Point-wise: average relative error
» Time-series: outbreak detection
» Outbreak at time k: x, — x,_; >= threshold
 Specificity and sensitivity
* Precision and recall: F1 metric EMORY
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Baseline: Laplace Perturbation Algorithm (LPA)

Aggregate time-series X

At each time point
Xk
Laplace Perturbation

>~

time

e
Released time-series R
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 High sensitivity : O(T) K time

» High perturbation error: O(T)
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State-of-the-art: Discrete Fourier Transform
[RN10]

Aggregate series X

Y

Discrete Fourier

Transform

< Retain only the first
| coefficients to
Laplace Perturbation reduce sensitivity

Released series R

» Higher accuracy

« Offline or batch processing onl =
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FAST: Filtering and Adaptive Sampling for
aggregate Time-series monitoring
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' Sar/npling Filtering
Time-series point Lan) output
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sampling
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Adaptive < error
Sampling

 Filtering — posterior estimate based on prediction and perturbed values

« Adaptive sampling - reduce sensitivity EMORY
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Filtering: State-Space Model

* Process Model
Xk+1 = X + W

w~N(0,Q) Process noise
- Measurement Model
Zi = X + v
v~Lap(A) Measurement noise

- G1ven noisy measurement z;, how to estimate true state x; ?
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Filtering: Posterior Estimation

* Denote Zj, = {2, ..., Zx }
- Posterior estimate:

X = E(xp|Zy)
- Posterior distribution:

f (il Zy) = f Okl Zie—1) f (21l xk)

f(zlZy—-1)

- Challenge:

f(zi|Zs—1) and f (x4 |Zy—1) are difficult to carry out when f,, is
not Gaussian
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Filtering: Solutions

* Option 1: Approximate measurement noise with Gaussian
v~N(0O,R)

— the Kalman filter

- Option 2: Estimate posterior density by Monte-Carlo method
N

FerulTi) = ) mhé o — k)

i=1
where {x},m}}Y is a set of weighted samples/particles.

— particle filters
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Adaptive Sampling
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» Fixed sampling — difficult to select sampling rate a priori
» Adaptive sampling - adjust sampling rate based on feedback from

observed data dynamics
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Adaptive Sampling: PID Control

* PID error (A): compound of proportional, integral, and
derivative errors

- Measures how well the constant data model describe the current
trend

- Determines a new sampling interval:
A-¢
I'=1+6(1—e ¢ )
where 6 represents the magnitude of change and ¢ is the set point
for sampling process.
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Some results: average relative error
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(a) Flu data set (b) Traffic data set

* Flu dataset (CDC): weekly outpatient count of age group [5-24] from
2006 — 2010 (209 data points)

- Traffic dataset (U Washington): daily traffic count for Seattle-area
highway at I-5 143.62 southbound from 2003 — 2004 (504 data points)
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Some Results: F1 metric for outbreak detection
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Multi-dimensional time-series: Problem

statement
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Multi-dimensional time-series: challenges and
solutions
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FAST with Partitioning

multi-dimensional
Time-series

¥ partitions|

partitioning
keys
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« Dynamic spatial partitioning: based on KD-Tree and quad-tree
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Some Results
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Closing Remarks

« Utility: time point wise relative error still high but can be
useful for time-series driven applications such as outbreak
detection

« Key insight: feedback loops are useful to dynamically
adjust sampling, aggregation, and estimation

* Open guestion: how to allocate budget over time points?
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Thank you
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