
Differentially Private Multi-Dimensional Time
Series Release for Traffic Monitoring

Liyue Fan, Li Xiong, and Vaidy Sunderam

Emory University
Atlanta GA 30322, USA

{lfan3,lxiong,vss}@mathcs.emory.edu

Abstract. Sharing real-time traffic data can be of great value to un-
derstanding many important phenomena, such as congestion patterns or
popular places. To this end, private user data must be aggregated and
shared continuously over time with data privacy guarantee. However, re-
leasing time series data with standard differential privacy mechanism
can lead to high perturbation error due to the correlation between time
stamps. In addition, data sparsity in the spatial domain imposes another
challenge to user privacy as well as utility. To address the challenges,
we propose a real-time framework that guarantees differential privacy for
individual users and releases accurate data for research purposes. We
present two estimation algorithms designed to utilize domain knowledge
in order to mitigate the effect of perturbation error. Evaluations with
simulated traffic data show our solutions outperform existing methods in
both utility and computation efficiency, enabling real-time data sharing
with strong privacy guarantee.

Keywords: Traffic Monitoring, Multi-Dimensional Time-Series, Differ-
ential Privacy

1 Introduction

Sharing real-time traffic data is essential to discovering useful and previously
unknown knowledge. As illustrated in Figure 1(a): a wireless service provider
gathers data from individual users about their locations, speeds, mobility, etc.
The aggregated data, e.g. the number of users present at certain locations during
a given time period, can be shared with third party researchers to be mined for
commercial interest, such as popular places, as well as public interests, such as
congestion trends. Figure 1(b) provides a snapshot of aggregated traffic data at
a single time stamp. As is shown, the two-dimensional space is partitioned by a
100 × 100 grid. For each cell in the 2D space, Figure 1(b) plots the number of
users within its extent at the given time stamp. Since the spatial distribution of
wireless users could change over time due to movement, such a snapshot is needed
at every time stamp in order to perform real-time data mining tasks. However,
the privacy of individual users may be affected if their private data is shared
with untrusted third parties. The goal of our work is to enable the server/data

2 Liyue Fan, Li Xiong, and Vaidy Sunderam

holder to share useful multi-location aggregates continuously (multi-dimensional
time series) while preserving individual privacy.

Trusted Server

ResearchersUsers

DP Multi-Dimensional
Time-Series

(a) Privacy-Preserving Data Sharing
0

20
40

60
80

100

0

20

40

60

80

100

0

5000

10000

(b) A Snapshot of 2D Time Series

Fig. 1. Traffic Data Monitoring

The current state-of-the-art paradigm for privacy-preserving data publishing
is differential privacy [1], denoted as “DP” in Figure 1(a). Differential privacy
requires that the aggregate statistics reported by a data publisher be perturbed
by a randomized algorithm A, so that the output of A remains roughly the same
even if any single tuple in the input data is arbitrarily modified. This ensures
that given the output of A, an adversary will not be able to infer much about
any single tuple in the input, and thus privacy is protected.

Despite the large number of methods on differentially private data publication
[4–6,10,11, 15–17], there does not currently exist an approach to sharing multi-
dimensional time series data. We summarize our challenges below:

– Due to the data correlation between time stamps, a straightforward appli-
cation of the standard differential privacy mechanism at every time stamp
leads to an overall perturbation error of Θ(T) by composition theorem [12],
where T is the length of the time series, which severely limits the utility of
the published data when T is large.

– Another challenge is data sparsity in the spatial domain. As shown in Fig-
ure 1(b), the majority of cells in the 2D space have very low to zero frequency.
In reality, the total number of cells can be very large with respect to the
total number of users. The data sparsity poses great challenge for privacy-
preserving techniques since the perturbation noise is likely to dominate the
released value in presence of a small set of users.

– Furthermore, the monitoring application requires that private, released data
is provided in real-time. Therefore, existing techniques that require time-
series transformation or prohibitive computation time are not applicable to
performing real-time tasks.

Differentially Private Multi-Dimensional Time Series Release 3

Our Contributions. In this paper, we propose a real-time framework and two
estimation algorithms to address the above challenges in multi-location traffic
monitoring with differential privacy. Domain knowledge, such as road network
and density, is utilized by our solutions to model the auto-correlation of in-
dividual cells over time as well as correlation between neighboring cells. The
temporal estimation algorithm establishes an internal time series model for each
individual cell and performs posterior estimation to improve the utility of shared
aggregate per time stamp. The spatial estimation algorithm builds a spatial in-
dexing structure based on Quadtree to group similar cells together and to reduce
the impact of data sparsity. Our solutions provide a strong privacy guarantee.
Both algorithms outperform baseline solution as well as state-of-the-art methods
in sharing time series or static multi-dimensional data, providing real-time data
release without compromising the utility of shared data.

The rest of the paper is organized as follows: Section 2 provides the problem
definition, preliminaries on differential privacy, and the baseline solution. Section
3 presents the technical details of our proposed solutions, i.e. temporal estimation
and spatial estimation. Section 4 presents a set of empirical results. Section 5
reviews previous works related to data sharing methods with differential privacy.
Section 6 concludes the paper and states possible directions for future work.

2 Problem Statement and Preliminaries

2.1 Problem

In the traffic monitoring application we consider, a set of objects are moving in a
two-dimensional space and a central server is collecting information about their
locations over time. We adopt a fine-grained 2D grid that partitions the space
G into w × w cells, where w is a constant number called resolution. We further
assume the expected collection time span is T and denote k as the discrete time
index where 0 ≤ k < T . For each cell c in G, we define the frequency series of c
as Xc= {xck| 0 ≤ k < T}, where xck represents the number of objects within its
extent at time stamp k. A multi-dimensional time series XG can be defined as
the set of frequency series of every cell c in G, i.e. XG = {Xc| c ∈ G}. A snapshot
of the spatio-temporal database XG

k is defined as the set of cell frequencies at
time k, i.e. XG

k = {xck| c ∈ G}. The same terms for the released data set RG can
be defined similarly.

Problem 1 Given a multi-dimensional time series XG where G = w×w cells,
for each snapshot XG

k , release in real-time a sanitized version RG
k such that the

overall release RG satisfies α-differential privacy, where α is a user-specified
privacy level.

Note that sharing RG will enable a variety of data mining tasks. Therefore
we use a generic utility metric, i.e. relative error, to measure the usefulness of
the released series for each cell c:

4 Liyue Fan, Li Xiong, and Vaidy Sunderam

Definition 1 (Utility Metric). The utility of a published series Rc = {rck}
can be measured by the average relative error, denoted as Ec, against the original
time-series Xc ={xck}.

Ec =
1

T

T−1∑
k=0

|rck − xck|
max{xck, δ}

(1)

where δ is a user-specified constant (also referred to as sanitary bound as in [14])
to mitigate the effect of excessively small query results, e.g. 0′s. Here we set
δ = 1 throughout the entire time-series for all cells.

2.2 Differential Privacy

The privacy guarantee provided by our solutions is differential privacy [1]. Sim-
ply put, a mechanism is differentially private if its outcome is not significantly
affected by the removal or addition of a single user. An adversary thus learns
approximately the same information about any individual user, irrespective of
his/her presence or absence in the original database.

Definition 2 (α-Differential Privacy [1]). A non-interactive privacy mech-
anism A gives α-differential privacy if for any dataset D1 and D2 differing on at
most one record, and for any possible anonymized dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (2)

where the probability is taken over the randomness of A.

The privacy parameter α, also called the privacy budget [12], specifies the de-
gree of privacy offered. Intuitively, a lower value of α implies stronger privacy
guarantee and a larger perturbation noise, and a higher value of α implies a
weaker guarantee while possibly achieving higher accuracy. We will examine the
privacy-utility tradeoff in the experiment section.

Laplace Mechanism. Dwork et al. [5] show that α-differential privacy can be
achieved by adding i.i.d. noise Ñ to each query result q(D):

q̃(D) = q(D) + Ñ (3)

p(Ñ = x) =
1

2λ
e−|x|/λ , λ = GS(q)/α (4)

The magnitude of Ñ conforms to a Laplace distribution in Equation (4) where
GS(q) represents the global sensitivity [5] of a query q. In the traffic monitoring
application, each aggregate value is a count query and GS(count) = 1. Later on
in this paper, we denote the Laplace distribution with 0 mean and λ scale as
Lap(0, λ).

Composition. The composition properties of differential privacy provide pri-
vacy guarantees for a sequence of computations, e.g. a sequence of count queries.

Theorem 1 (Sequential Composition [12]). LetAi each provide αi-differential
privacy. A sequence of Ai(D) over the dataset D provides (

∑
i αi)-differential

privacy.

Differentially Private Multi-Dimensional Time Series Release 5

Algorithm 1 Laplace Perturbation Algorithm(LPA)

Input: Raw data series XG, privacy budget α
Output: Released data series RG

1: for each cell c ∈ G do
2: for each time stamp k do
3: rck ← perturb xck by Lap(0, T

α
);

2.3 Baseline Solution

A baseline solution to sharing differentially private multi-dimensional time se-
ries is to apply the standard Laplace perturbation at each time stamp to every
frequency series. For any c, if every released aggregate satisfies α/T -differential
privacy, by Theorem 1 the released frequency series guarantees α-differential pri-
vacy. We summarize the baseline algorithm in Algorithm 1 and Line 3 represents
the Laplace mechanism to guarantee α/T -differential privacy for each released
aggregate. Empirical studies of the LPA algorithm against our proposed solu-
tions are included in Section 4.

3 Proposed Solutions

Laplace
Perturbation

Estimation

Modeling/AggregationRaw Series Differentially Private
Series

Fig. 2. Differentially Private Traffic Monitoring Framework

In this section, we present our proposed solutions for privacy-preserving traf-
fic monitoring. Figure 2 provides a high-level overview of the system frame-
work. At every time stamp, the input multi-dimensional data is perturbed by
the Laplace Perturbation mechanism to guarantee differential privacy. Then the
perturbed data can be post-processed by the Estimation module to produce a
more accurate, released version. Domain knowledge, such as road network and
population density, is utilized by Modeling/Aggregation, which in return inter-
acts with the perturbation component as well as the estimation method in use.
Below we describe in detail two separate estimation algorithms: one is to per-
form time-wise estimation for each individual cell, while the other is to perform
spatial aggregation and estimation over the entire 2D space.

6 Liyue Fan, Li Xiong, and Vaidy Sunderam

3.1 Temporal Estimation

For each cell c in space G, we can apply our recently proposed filtering-based
posterior estimation technique [9] to the cell frequency series Xc. The key idea is
to utilize an internal time series model for the frequency series and to estimate
the true aggregate values based on the Laplace perturbed values. The additional
innovation in this paper is that we model different types of cells according to the
domain knowledge on the road networks. Below we briefly show how to model
the cell frequency series and refer interested readers to our work [9] for further
implementation details.

Note that the internal model of cell frequencies depends on many factors,
such as location, overall population, road network, etc. Here we simply classify
each cell as sparse or dense based on road network connections and assume the
same internal model for cells within each category. For each cell c, its frequency
series Xc can be represented by the following process model:

xck+1 = xck + ωc , p(ωc) ∼ N(0, Qc) (5)

which states that the count values of consecutive time stamps should be con-
sistent except for a white, Gaussian noise ωc. In particular, ωc is called the
process noise and it follows a normal distribution. Qc value indicates the level
of variation between adjacent time stamps. Intuitively, sparse cells exhibit little
variation since very few objects travel within them, therefore we should specify
a small Qc value for such cells. On the other hand, higher Qc should be assigned
for dense cells since they are visited more frequently in reality.

The noisy observation, which is obtained from the Laplace Perturbation
mechanism, can be modeled as follows:

zck = xck + ν , ν ∼ Lap(0, 1/α0) (6)

where ν, called the measurement noise, corresponds to the Laplace noise and
is independent of c. The differential privacy budget for each traffic count is
α0 = α/T , since the overall privacy budget α is uniformly allocated to each time
stamp.

For posterior estimation purpose, it is sufficient and computationally attrac-
tive to approximate ν by a white Gaussian error according to [9]:

ν ∼ N(0, R) . (7)

Therefore here we adopt the above Gaussian approximation for every cell and
use the Kalman filter based filtering technique [9] for posterior estimation.

The outline of the temporal estimation algorithm is presented in Algorithm 2.
For every time stamp k and each cell c, we derive a predicted frequency with
the Predict procedure. Upon receiving the noisy observation, we can derive a
posterior estimate with the Correct procedure, by linear combination of predic-
tion and observation. The derivation of posterior estimate as well as Predict and
Correct steps can be found in [9] and therefore omitted here for brevity.

Differentially Private Multi-Dimensional Time Series Release 7

Algorithm 2 Temporal Estimation Algorithm

Input: Raw data series XG, privacy budget α
Output: Released data series RG

1: for each timestamp k do
2: for each cell c ∈ G do
3: prior ← c.Predict(k) ;
4: zck ← perturb xck by Lap(0, T

α
);

5: posterior ← c.Correct(k, prior, zck);
6: rck ← posterior;

The advantage of temporal estimation approach is that it utilizes the internal
time series model and the observations to form an educated guess, which is shown
in [9] to greatly improve the accuracy of released data per time stamp. As for
complexity, we can see that the computation time requirement is O(w2) for
every time stamp where w is the spatial resolution, since only O(1) operations
are performed for each cell.

3.2 Spatial Estimation

When every cell is perturbed individually, data sparsity imposes great utility
challenge, i.e. high relative error due to perturbation. We thus are motivated to
group similar cells to overcome the data sparsity issue. Considering the spatial
correlation among cells, it is very likely that neighboring cells are connected by
the same roads therefore are more similar to each other. To utilize this heuristic,
we propose to aggregate similar cells into partitions according to spatial vicinity
and perform estimation within each partition assuming uniformly distributed
objects within the partitions.

We propose a top-down space partitioning approach based on Quadtree due
to several considerations. One advantage of Quadtree is its efficiency: it recur-
sively partitions a 2D space into 4 quadrants disregard the actual object distri-
bution in the space. Another advantage of Quadtree is that it doesn’t incur any
extra privacy cost due to its independence from data. In contrast, the kdTree
structure proposed by Cormode et al [4] does require extra privacy budget spent
on finding the “private median”. Since the privacy budget for each time stamp is
very limited, we believe that Quadtree is more suitable in the multi-dimensional
time series scenario.

We outline the spatial aggregation algorithm based on Quadtree in Algo-
rithm 3. Line 5 checks every node/partition for the splitting condition. Line 6
splits a partition into four equal quadrants. The node.homogeneous() method re-
turns true if all the cells within the partition belong to the same category. Again,
each cell is pre-classified as sparse or dense based on domain knowledge. We stop
splitting a partition if it is homogeneous. Otherwise, as long as the predefined
depth threshold d is not violated, we further split the partition in the hope of
reducing the class impurity in each child partition. The value of d represents

8 Liyue Fan, Li Xiong, and Vaidy Sunderam

Algorithm 3 QuadTreeAgg Algorithm

Input: 2D grid G, depth threshold d
Output: QuadTree index structure QT

1: QT.root← G;
2: queue.add(QT.root) ;
3: while ! queue.empty() do
4: node← queue.remove() ;
5: if ! node.homogeneous() and node.depth < d
6: node.split() ;
7: queue.add(node.children) ;

Algorithm 4 Spatial Estimation Algorithm

Input: Raw data series XG, depth threshold d, privacy budget α
Output: Released data series RG

1: QT ← QuadTreeAgg(G, d); # initialize the quadtree index
2: for each timestamp k do
3: for each partition p ∈ QT do
4: pk ←

∑
c∈p x

c
k ;

5: p̃k ← perturb pk by Lap(0, T
α

);
6: rck ← p̃k/p.size(), c ∈ p ;

the aggregation level. Setting d = 0 implies that all cells are aggregated in one
partition. Since the uniform assumption within the partition does not hold, high
estimation error will be incurred. On the other hand, a higher value of d implies
that many partitions will be further split to produce homogeneous regions so
as to reduce estimation error. However, due to data sparsity, very few moving
objects will fall into each partition when it is small. Therefore, the perturbation
error will dominate the released data in that case. Clearly the optimal d value
depends on the spatial distribution of cells. We will examine the impact of d in
the experiment section.

Once the Quadtree index structure of the space G is established, we assume
uniform data distribution within each partition and estimate each cell frequency
with average partition frequency. The spatial estimate algorithm is described in
Algorithm 4. For each time stamp k, a partition count is aggregated from cells
for every partition (Line 4). It is then perturbed by the Laplace mechanism to
guarantee differential privacy (Line 5) and the average noisy count is used to
estimate the frequency of each cell within the partition (Line 6). The intuition is
that the cells within each partition have similar density. Therefore by uniformly
distributing the noisy partition count to each cell, we reduce the magnitude of
perturbation error applied to each cell without compromising the accuracy.

One advantage of the spatial estimation algorithm is that it relies on simple
and practical assumptions. The complexity is also O(w2) for each time stamp

Differentially Private Multi-Dimensional Time Series Release 9

since every cell is visited O(1) times. Although it takes extra time to build
the spatial index for initialization, we see it as a one-time cost which can be
done off-line. The runtime of the spatial estimation is reduced because only one
perturbation noise is needed for every partition at every k (Line 5). In contrast,
both the baseline LPA algorithm and the temporal estimation algorithm will
generate one perturbation noise for each cell at every k. We will study their
runtime performance in the next section.

4 Evaluation

We implemented the proposed algorithms as well as alternative methods in Java
with JSC1 for simulating the statistical distributions. All experiments were con-
ducted using a 2.90GHz Intel Core i7 PC with 8GB RAM.

(a) Map of Oldenburg (b) Partitions by Quadtree

Fig. 3. Overview of Data Set

Data Set. We generated synthetic traffic data with the Brinkhoff generator [2].
The input of the generator is the road map of Oldenburg in Germany2 (Fig-
ure 3(a)),which contains 6,105 nodes and 7,035 edges, and the output is a set
of moving objects on the road network. We created the data set with 100 dis-
crete timestamps, with 500,000 objects at the beginning and 25,000 new ob-
jects introduced at every time stamp. The starting positions and destinations of
the moving objects are selected randomly by the generator (see [2] for detailed
network-based techniques). Once an object reaches its destination, it disappears
from the map. At the server side, we use a 2D grid with 1024 × 1024 cells to

1 http://www.jsc.nildram.co.uk
2 http://iapg.jade-hs.de/personen/brinkhoff/generator/

10 Liyue Fan, Li Xiong, and Vaidy Sunderam

record the locations of the moving objects, with each cell representing approxi-
mately 20× 20 square meters’ range in reality. We assign each cell a class label,
i.e. sparse or dense, based on the presence of roads within its extent. Roughly
95% cells are labeled sparse, indicating only the rest 5% have been visited by
the moving objects. Figure 3(b) visualizes the partition result achieved by the
Quadtree-based algorithm with the depth threshold d = 8. It can be seen that
spares regions around map edge are contained in larger partitions and densely
connected regions in map center are further split into smaller partitions. We will
evaluate the set of sparse cells and the set of dense cells separately since they
exhibit very different dynamics over time.

Comparison. We compare our proposed solutions against the state-of-the-art
methods which are summarized below:

– DFT is the Fourier Perturbation Algorithm recently proposed by Rastogi
and Nath [13] for sharing single time series. It first performs the Discrete
Fourier Transform on an input time series and retains only the first l DFT
coefficients. Those coefficients are then perturbed by the Laplace mechanism
to guarantee differential privacy. Finally, the Inverse Discrete Fourier Trans-
form is performed on the perturbed coefficients to produce a released series.
The number of coefficients to preserve, i.e. l, is a user-specified parameter. In
our empirical study, we set l = 20 according to their recommendation [13].

– kd-hybrid is proposed by Cormode et al [4] as their best method to achieve
differentially private space decomposition with static data. Without the help
of a grid, kd-hybrid builds a mixture index over the 2D data space that be-
gins with kd-tree and switches to quad-tree at a certain level. They slightly
modified the kd-tree algorithm, changing the fanout rate to 4 in order to re-
duce the privacy budget consumption. According to their studies, kd-hybrid
is most reliable among several representative differentially private space par-
titioning methods. They reported the optimal parameter setting empirically
with the height set to 8 and the switch level set to 4.

Since the DFT algorithm can be only performed with the complete series, it is
not compatible to real-time applications. However, we include it in our evalua-
tion since it serves as a good, off-line reference for utility. As for the kd-hybrid
algorithm, there are two limitations. One is its high privacy cost since the al-
gorithm iteratively spends budget on finding “private medians” for every data
snapshot. The other limitation is its high computation cost: application of the
kd-hybrid method requires constructing the index structure at every time stamp.
Experiments with the author’s provided implementation take hours for each it-
eration, since the domain size and the number of objects in our data set are
extremely large. We conclude that the kd-hybrid method is too expensive for the
continuous, real-time applications and therefore do not include the results in the
remaining section.

Differentially Private Multi-Dimensional Time Series Release 11

Table 1. Parameter Settings

Symbol Description Default Value

α Total Privacy Budget 1

w Resolution for Each Dimension 1024

T Length of Multidimensional Time Series 100

Qsparse Process Noise for Sparse Cells 10−2

Qdense Process Noise for Dense Cells 103

R Gaussian Measurement Noise 106

d Depth Threshold for Quadtree 8

4.1 Parameter Impacts

The default parameter setting, unless otherwise noted, is summarized in Table 1.
Note that Qsparse and Qdense, which correspond to Qc in Equation (5) for sparse
and dense cells, can be chosen by domain users and our default setting may not
be optimal. As for R from Equation (7), we set its value according to our previous
studies [8], which shows that the optimally R is proportional to T 2/α2.

0 2 4 6 8 10
0%

100%

200%

300%

400%

500%

d

re
la

tiv
e

er
ro

r

Sparse
Dense

(a) Utility vs. Depth Threshold

0 2 4 6 8 10
0

200

400

600

800

1000

d

ov
er

he
ad

 in
 m

s

Quadtree

(b) Overhead vs. Depth Threshold

Fig. 4. Impact of Depth Threshold on Quadtree-based Spatial Estimation

We study the impact of the depth threshold d used in Algorithm 3 in terms
of utility as defined in Equation (1) and runtime. Intuitively, the larger value d
takes, the finer partitions the algorithm results in, especially along the border of
sparse and dense regions. However, it also incurs a higher overhead to construct
the index as we can expect. Figure 4(a) plots separately the utility of released
series for sparse cells and dense cells when varying the depth threshold d. For
each class of cells, we plot the median relative error to avoid the extremely
small or large values. As we increase the threshold value, the error for sparse
cells gradually drops to 0 between d = 0 and d = 4 and remains stable when d
value is further increased. This is due to the fact that majority sparse cells are
located together (on map edge) and will not take too many splits to be separate

12 Liyue Fan, Li Xiong, and Vaidy Sunderam

from dense cells (in map center). Increasing the d value can help separating
those sparse cells on the boarder line. However, the utility of majority sparse
cells is not affected since those on the boarder line only count for a very small
percentage. On the other hand, dense cells require more splits to achieve optimal
separation (d = 8). When further split (d > 8), the perturbation noise greatly
impacts their utility due to data sparsity. Figure 4(b) shows the overhead for
constructing the aggregation index when varying the d value. It takes at most
0.9 second and we note that it is a one-time cost. As we expect, a higher depth
threshold requires more construction time (from d = 0 to d = 6). However,
when d > 6 the overhead does not grow since there are only very few partitions
that do not meet the homogeneous requirement at depth 6. As can be seen in
Figure 3(b), the densely connected areas in the map are split into finer partitions
compared to less populous areas on the map edge.

10
−3

10
−2

10
−1

10
0

10
−4

10
−2

10
0

10
2

10
4

10
6

α

re
la

tiv
e

er
ro

r

Kalman
Quadtree
DFT
LPA

(a) Utility vs. Privacy with Sparse Cells

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

α

re
la

tiv
e

er
ro

r

Kalman
Quadtree
DFT
LPA

(b) Utility vs. Privacy with Dense Cells

Fig. 5. Utility of Individual Cells: Comparison of All Methods

4.2 Utility Performance

Utility vs. Privacy. Here we examine the trade-off between utility and pri-
vacy. Our proposed solutions, i.e. Kalman and Quadtree, are compared against
the baseline LPA and state-of-the-art DFT algorithm, in terms of utility of in-
dividual cells. Figure 5(a) and Figure 5(b) plot the utility of sparse cells and
dense cells respectively when varying the overall privacy budget, i.e. α value,
from [10−3, 100]. As we can see, the baseline LPA algorithm results in highest
relative error in both figures. The DFT algorithm results in high relative error
with sparse cells even with high privacy cost (α = 1), due to the perturbation
and reconstruction error. Our solutions Kalman and Quadtree outperform both
LPA and DFT especially with sparse cells, as Quadtree only results in 10% er-
ror and Kalman produces 0% error when α = 1. As for the dense cells, both
Kalman and Quadtree slightly outperforms DFT, which is supposed to be opti-
mal. When α = 1, DFT results in 83% error due to lack of smoothness in the

Differentially Private Multi-Dimensional Time Series Release 13

original frequency series, while our solutions provide comparable utility to DFT
and real-time data release. Figure 6(a) and Figure 6(b) provide a closer look at
the utility curves within a more practical range of privacy budget α ∈ [0.1, 1].
DFT and LPA are not plotted in one or both figures because the errors they
result in are prohibitive. For sparse cells, Kalman provides optimal performance
even under small privacy budget (α = 0.1), thanks to the accurate modeling.
Quadtree is able to approach 0% error as α value increases. For dense cells,
we observe that Quadtree provides the best utility in the same privacy bud-
get range. We conclude that both our proposed solutions outperforms existing
methods, allowing for real-time data sharing without compromising the utility.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

re
la

tiv
e

er
ro

r

Kalman
Quadtree

(a) Utility vs. Privacy with Sparse Cells

0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

α

re
la

tiv
e

er
ro

r

Kalman
Quadtree
DFT

(b) Utility vs. Privacy with Dense Cells

Fig. 6. Closer Look at α ∈ [0.1, 1]

Utility of Range Queries. Here we evaluate our solutions with range queries,
where each query is a square window that covers a neighborhood of m×m cells.
For each m value, we randomly generate 100 queries of size m×m, evaluate each
method with the same set of queries, and plot the average relative error. Note
that when m = 1, each set query consists of one cell only and therefore the set
query error is equivalent to individual cell error. Our findings are summarized in
Figure 7. Our temporal estimation algorithm based on the Kalman filter clearly
outperforms Quadtree and LPA with smaller query windows (m ≤ 100). For all
three methods, the relative error shows a growing trend to different extent as the
query set size increases, mainly due to the data sparsity in the space. When m =
500, we observe that the error of Kalman keeps accumulating while Quadtree

and LPA show reduced relative error. We believe that it is because Kalman does
not explicitly utilize the spatial correlation between cells. When querying the
entire space (m = 1024), both Quadtree and LPA provide good utility because
the Laplace noise added to each cell is from a zero-mean distribution and the sum
of a large set of such noises is likely to be small. Overall, Quadtree outperforms
LPA by making sound estimation within close-to-uniform partitions.

14 Liyue Fan, Li Xiong, and Vaidy Sunderam

10
0

10
1

10
2

10
3

10
−2

10
0

10
2

10
4

10
6

m

re
la

tiv
e

er
ro

r

Quadtree
LPA
Kalman

Fig. 7. Utility of Range Queries

Kalman LPA Quadtree
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

in
 m

s

Overhead
Runtime

Fig. 8. Runtime Performance

4.3 Runtime Performance

Lastly we compare the runtime performance of our solutions against the baseline
since computation time is critical to real-time applications. We measure and plot
the runtime for releasing the two-dimensional aggregates for 100 timestamps in
order to mitigate random disturbance from the operating system. The results
are summarized in Figure 8. As we can see, all three methods take less than 35
seconds to release 100 snapshots of 1024 × 1024 cell frequencies with differen-
tial privacy guarantee. Note that the state-of-the-art kd-hybrid takes hours to
release/evaluate one time stamp. Compared to LPA, our solution Kalman takes
roughly 2 more seconds in total to perform prediction and correction at every
time stamp. Quadtree turns out to be the most time efficient, even though it
has a small overhead in building the spatial index. This is because less pertur-
bation is performed by Quadtree, as at every time stamp we only generate one
perturbation noise for each partition rather than for each cell as in LPA.

5 Related Works

Here we briefly review the most relevant, recent works on differential privacy and
time-series data sharing. Dwork et al. [5] established the guideline to guarantee
differential privacy for individual aggregate queries by calibrating the Laplacian
noise to the global sensitivity of each query. Since then, various mechanisms
have been proposed to enhance the accuracy of differentially private data release.
Blum et al. [1] proved the possibility of non-interactive data release satisfying
differential privacy for queries with polynomial VC-dimension, such as predicate
queries. Dwork et al. [7] further proposed more efficient algorithms to release
private sanitization of a data set with hardness results obtained.

Several recent works [4, 10, 11, 15–17] study the counting queries on multi-
dimensional data, also referred to as histograms or contingency tables, where
the multi-dimensional data can be indexed by a tree structure and each level
in the tree is an increasingly fine-grained summary/count. Cormode et al [4]

Differentially Private Multi-Dimensional Time Series Release 15

propose the class of “private spatial decompositions” and conclude that the
hybrid structure kd-hybrid provides an accurate yet efficient solution compared
to alternatives. When applied to highly self-correlated time-series data, all the
above methods, designed to perturb static data, become problematic because of
highly compound Laplace perturbation error.

Rastogi and Nath [13] proposed a Discrete Fourier Transform (DFT) based al-
gorithm which implements differential privacy by perturbing the discrete Fourier
coefficients. However, this algorithm cannot provide real-time private release in
a streaming environment. The recent works [3] [6] on continuous data streams
defined the event-level privacy to protect an event, i.e. one user’s presence at a
particular time point, rather than the presence of a user. Our previous work [9]
studies the problem of sharing single time-series with user-level differential pri-
vacy and we proposed an algorithm with filtering and adaptive sampling to
improve the utility of the shared series.

6 Conclusion

We have proposed a real-time framework and two estimation algorithms to ad-
dress the challenges of differentially private multi-dimensional time series release
with application in traffic monitoring. The temporal estimation algorithm estab-
lishes a single time-series model for each cell in the space and performs posterior
estimation to improve the utility of each released aggregate. The spatial estima-
tion algorithm builds a spatial index by Quadtree and group similar cells together
to overcome data sparsity. Domain knowledge is exploited by both estimation
methods and is shown beneficial. We observe that the temporal estimation algo-
rithm is highly accurate especially with sparse cells but requires modeling and
slightly more running time. On the other hand, the spatial estimation algorithm
relies on practical assumptions, demands less computation time, and provides
better utility for dense cells and larger range queries. Compared to alternative
methods, our solutions outperform the baseline LPA algorithm as well as state-
of-the-art methods in both utility and computation efficiency. Future work may
include in-depth study of complex spatial-temporal correlation between locations
and timestamps.

7 Acknowledgments

This research is supported by NSF under grant CNS-1117763 and AFOSR under
grant FA9550-12-1-0240.

References

1. Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In Proceedings of the 40th annual ACM symposium
on Theory of computing, pages 609–618, New York, 2008. ACM.

16 Liyue Fan, Li Xiong, and Vaidy Sunderam

2. Thomas Brinkhoff. A framework for generating network-based moving objects.
Geoinformatica, 6(2):153–180, June 2002.

3. T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release
of statistics. In Proceedings of the 37th international colloquium conference on
Automata, languages and programming: Part II, pages 405–417, Heidelberg, 2010.
Springer-Verlag.

4. Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting
Yu. Differentially private spatial decompositions. In Proceedings of the 2012 IEEE
28th International Conference on Data Engineering, pages 20–31, Washington, DC,
2012. IEEE Computer Society.

5. Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In In Proceedings of the 3rd Theory of
Cryptography Conference, pages 265–284, Heidelberg, 2006. Springer-Verlag.

6. Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In Proceedings of the 42nd ACM symposium
on Theory of computing, pages 715–724, New York, 2010. ACM.

7. Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan.
On the complexity of differentially private data release: efficient algorithms and
hardness results. pages 381–390, New York, 2009. ACM.

8. Liyue Fan and Li Xiong. Adaptively sharing time-series with differential privacy.
CoRR, abs/1202.3461, 2012.

9. Liyue Fan and Li Xiong. Real-time aggregate monitoring with differential pri-
vacy. In Proceedings of the 21st ACM international conference on Information and
knowledge management, pages 2169–2173, New York, 2012. ACM.

10. Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accu-
racy of differentially private histograms through consistency. Proc. VLDB Endow.,
3(1-2):1021–1032, 2010.

11. Chao Li and Gerome Miklau. An adaptive mechanism for accurate query answering
under differential privacy. Proc. VLDB Endow., 5(6):514–525, 2012.

12. Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. volume 53, pages 89–97, New York, 2010. ACM.

13. Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages 735–746, New
York, 2010. ACM.

14. Xiaokui Xiao, Gabriel Bender, Michael Hay, and Johannes Gehrke. ireduct: dif-
ferential privacy with reduced relative errors. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 229–240, New
York, 2011. ACM.

15. Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via
wavelet transforms. IEEE Trans. on Knowl. and Data Eng., 23(8):1200–1214,
2011.

16. Yonghui Xiao, Li Xiong, and Chun Yuan. Differentially private data release through
multidimensional partitioning. In Proceedings of the 7th VLDB conference on Se-
cure data management, SDM’10, pages 150–168, Heidelberg, 2010. Springer-Verlag.

17. Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Ge Yu. Differentially private
histogram publication. In Proceedings of the 2012 IEEE 28th International Confer-
ence on Data Engineering, pages 32–43, Washington, DC, 2012. IEEE Computer
Society.

