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ABSTRACT
Sharing aggregate statistics of private data can be of greatvalue
when data mining can be performed in real-time to understandim-
portant phenomena such as influenza outbreaks or traffic conges-
tion. However, to this date there have been no tools for releas-
ing real-time aggregated data with differential privacy, astrong and
provable privacy guarantee. We propose FAST, a real-time sys-
tem that allows differentially private aggregate sharing and time-
series analytics. FAST employs a set of novel, adaptive strategies
to improve the utility of shared/released data while guaranteeing
the user-specified level of differential privacy. We will demonstrate
the challenges and our solutions in the context of prepared data sets
as well as live participation data dynamically collected among the
SIGMOD’13 attendees.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT ]: Database Applications—
Data Mining; G.3 [PROBABILITY AND STATISTICS ]: Time
series analysis

Keywords
Differential Privacy, Estimation, Sampling, Time Series

1. INTRODUCTION
Sharing real-time aggregate statistics of private data enables many

data mining applications, such as participatory sensing [8] and data
surveillance [6]. Consider use-cases below:
• Disease Surveillance: A health care provider gathers data from

individual visitors. The collected data, e.g. daily numberof In-
fluenza cases, is then shared with third parties, e.g. researchers,
in order to monitor and detect seasonal epidemic outbreaks.

• Traffic Monitoring : A GPS service provider gathers data from
individual users about their locations, speeds, mobility,etc. The
aggregated data, e.g. the number of users at each region dur-
ing each time unit, can be mined for commercial interest, such
as popular places, as well as public interest, such as congestion
patterns on the roads.
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Figure 1: Aggregate Data Sharing Scenario

• Conference Attendance Tracking: An hourly count of confer-
ence attendees can be aggregated and mined for interesting at-
tendance patterns. Monitoring the shared data, conferencepar-
ticipants can also be advised in real-time on the accommodation
availabilities and possible traffic congestion around the confer-
ence venue.
A common scenario of such applications can be summarized by

Figure 1, where a trusted server gathers data from a large num-
ber of individual subscribers. The source of data may vary from
web searches, mobile devices such as phone and GPS, to social
networks. The collected data is then aggregated and continuously
shared with other un-trusted parties and researchers for various pur-
poses. The trusted server, i.e. publisher, by contractual obligations
must ensure that releasing the data does not compromise the pri-
vacy of any individual who contributed data. The goal of our work
is to enable the publisher to share useful aggregate statistics con-
tinuously (aggregate time series) while guaranteeing privacy.

The current state-of-the-art paradigm for privacy-preserving data
publishing is differential privacy [2], which requires that the aggre-
gate statistics reported by a data publisher be perturbed bya ran-
domized algorithmA, so that the output ofA remains roughly the
same even if any single tuple in the input data is arbitrarilymodi-
fied. Given the output ofA, an adversary will not be able to infer
much about any single tuple in the input, and thus privacy is pro-
tected.

There are many challenges in sharing aggregate time series under
differential privacy. The first one comes from high correlation of
data values at successive timestamps. Applying the standard differ-
ential privacy mechanism which adds a Laplace noise [3] to the raw
aggregate at each time stamp can lead to a very high overall pertur-
bation error. The utility of shared/released data is greatly impacted
in this case. The second challenge is in separating noise from the
signal. In other words, given a perturbed value, can we derive a



Figure 2: FAST Framework

good estimate close to the true value? Due to the Laplacian nature
of the perturbation noise, there is no analytic form of the posterior
distribution. We will have to examine sub-optimal solutions and
approximations to derive posterior estimation. The third challenge
is to compute and release the estimates in real-time, which is re-
quired by all the applications mentioned previously. Methods that
require entire data series, such as the Discrete Fourier Transform
based algorithm [10], are not applicable to real-time applications.

In this demo, we present FAST, a real-time system with Filtering
and Adaptive Sampling for differentially private Time-series mon-
itoring. We implement and extend our recent work [5] and present
several contributions. Firstly, FAST provides an adaptiveframe-
work to release real-time aggregate statistics under differential pri-
vacy. It samples long time-series according to detected data dynam-
ics and uses filtering to predict data values at non-samplingpoints
and to estimate true values from noisy observations at sampling
points. The key innovation is that FAST utilizes feedback loops to
dynamically adjust the filtering model as well as the sampling rate.
Secondly, FAST incorporates a set of novel algorithms to choose
from, such as a full range of filtering options and sampling meth-
ods. Thirdly, we will demonstrate the system in the context of pre-
pared data sets along with live data dynamically collected from a
SIGMOD’13 conference participation survey.

2. SYSTEM OVERVIEW
In this section, we present FAST framework and its key compo-

nents as well as algorithms. As seen in Figure 2 , the input data is
a stream of raw aggregates, collected from individual users, with
one value at a discrete timestamp. If sampled by FAST, the aggre-
gate will be perturbed with a calibrated noise by theperturbation
component to strictly enforce the user-specified level of differen-
tial privacy. Thefiltering component utilizes an internal data model
to provide prediction at non-sampling points and correction of the
noisy/perturbed observation at sampling points. Then thefiltering
estimation error will be fed through thesamplingcomponent to
adaptively adjust the sampling rate. FAST also provides an easy-
to-use interface which guides the users through their monitoring
tasks. Below we describe each component with technical details.

2.1 Perturbation
Theperturbationcomponent in FAST acts as a differentially pri-

vate interface similar to PINQ [9] for any sampled value fromthe
aggregate series, such that the released series satisfies differential
privacy. Letα denote the user-specified overall level of privacy,
also called privacy budget, andM denote the total number of sam-
ples allowed by FAST for a given series or application. A lower
value ofα implies stronger privacy guarantee and a higher noise.
Theperturbationcomponent distributesα/M budget to each sam-
pled aggregate (i.e.count); according to the Composition Theo-

Predict

(1) Project the state ahead:

(2) Project the error covariance ahead:

Correct

(1) Compute the Kalman gain:

(2) Update estimate with measurement:

(3) Update the error covariance:

Figure 3: Illustration of the Kalman Filter [5]

rems [9], the entire released series satisfiesα-differential privacy.
More formally, given a raw aggregatexk at time stampk and the
privacy budgetα/M , anα/M -differentially private valuezk can
be obtained by adding a Laplace noiseν to the raw aggregate [3]:

zk = xk + ν, p(ν) ∼ Lap(0,M/α). (1)

We refer to Equation (1) as the measurement model andν as the
measurement noise. The perturbed valuezk is then received as a
noisy observation in the filtering module.

2.2 Filtering
Thefiltering module in FAST generates estimates of monitored

aggregates in order to improve the quality of released data per time
stamp. In our context, “filtering” refers to determining theposterior
distribution ofxk, given all measurementszk’s up tok, thus provid-
ing an optimal posterior estimate. Two operations,predictionand
correction, will be recursively applied during the monitoring pe-
riod. Thepredictionstep generates a prediction of the data value at
each time stamp based on previous release and an internal process
model, which provides the temporal correlation between adjacent
aggregate values. In our current system, the time series data (i.e.
counts) is described by a linear model as follows:

xk+1 = xk + ω, p(ω) ∼ N(0, Q) (2)

whereω is a white Gaussian noise, also called the process noise.
We refer to Equation (2) as the process model which is used by
both filters provided by FAST. Thecorrection step combines the
noisy observation, when available, with the prediction to generate
a posterior estimate. The correction mechanism varies according to
the filtering method chosen.

FAST provides two filtering options: the Kalman filter [7] and
particle filter [1]. The Kalman filter is applicable to linearpro-
cess model in Equation (2) and it requires Gaussian measurement
noise. Therefore, we approximateν in Equation (1) by a white
Gaussian noise with varianceR. Thus, the measurement model for
the Kalman filter is adapted to:

zk = xk + ν, p(ν) ∼ N(0, R). (3)

In FAST, once users provide the length of input data (T ) and the
overall privacy budget (α), the variance of the approximate Gaus-
sian noise, i.e.R value, can be computed automatically given the
result of our recent study [4]. The advantage of the Kalman filter
is that we can easily obtain a minimum variance posterior estimate
and the computation cost for each time step isO(1). Figure 3 gives
a high-level diagram of the two recursive procedures of the Kalman
filter. Note that̂x−

k
denotes prediction, i.e. the prior estimate, while

x̂k denotes correction, i.e. the posterior estimate.
The other filtering option, particle filter, is a widely received ap-

proach to non-Gaussian tracking problem. When particle filter is
chosen, Equation (1) is adopted for the measurement model and ν
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Figure 4: Illustration of Adaptive Sampling

retains the Laplace distribution. In nature, particle filter is a se-
quential Monte Carlo algorithm and it uses weighted samples(par-
ticles) to estimate the distribution ofx̂k at every time stamp, which
may not have an analytic representation. Therefore, with a suffi-
ciently large number of particles, denoted asN , the particle filter
approaches Bayesian optimal estimate at the cost of computation
time,O(N). In FAST, the default value ofN is recommended to
the user, i.e.N = 1000, to achieve a trade-off between accuracy
and computational efficiency. We refer to our previous work[4][5]
for complete studies about the two filtering methods.

FAST also includes the default option without filtering which
directly releases the Laplace perturbed values, i.e.zk ’s, at all time
points. We denote the default option as LPA in the demonstration.

2.3 Sampling
In order to reduce the overall perturbation error introduced by

differential privacy mechanism, FAST samples the input series rather
than perturb every data value. The sampling methods implemented
in FAST include fixed-rate sampling and adaptive sampling.

The fixed-rate sampling method periodically samples the data
series perT0 time stamps.T0 denotes the sampling interval and
can be determined by the user. If not specified,T0 is set to10 in
FAST by default. The challenge of fixed-rate sampling is to find the
optimal sampling intervala priori, which is impractical for most
real-time applications.

The adaptive sampling methods in FAST utilize the idea of feed-
back control and adjust the sampling rate according to detected data
dynamics on-the-fly. The feedback is defined as the error between
predictionandcorrectionfrom the filtering component, measuring
how well the internal process model describes the current data dy-
namics. A small error results in a decrease in the sampling rate and
vice versa. FAST adopts PID (Proportional, Integral, andDeriva-
tive) control, the most common form of feedback control, and im-
plementsP , PI , andPID controllers for users’ choice. ThePID
control gains , if not specified by the user, will take on default val-
ues as in our previous work [5]. Figure 4 illustrates the ideaof
adaptive sampling. We refer readers to our work [5] for definitions
and the detailedPID algorithm.

3. SYSTEM DEMONSTRATION
FAST is implemented in JAVA with JSC1 for simulating Laplace

distribution. Our demo2 includes two types of use cases from Sec-
tion 1: (1) Live participation data collected from SIGMOD’13 at-
tendees in real-time mode; (2) Prepared, complete data setsin batch
mode. The utility metric is the relative error between differentially
private released values and original aggregates.

1http://www.jsc.nildram.co.uk
2available athttp://www.mathcs.emory.edu/aims/FAST

3.1 Data sets
SIGMOD’13 Participation Data (Live). In this demonstration,
we will engage the SIGMOD’13 attendees to take a conference par-
ticipation survey and release differentially private hourly count of
positive responses. We will post our survey question “Are you at
the conference right now?” through secure third party polling tool
Poll Everywhere3 and participants are invited to respond via email,
text message, or even through social network sites. The hourly ag-
gregates gathered by the polling tool can then be used as input data
in this live demonstration.

In case of technical difficulties or insufficient survey participa-
tion, we will also provide a simulated data set that resembles the
count of conference attendees over time in order to perform the
real-time demonstration.

Prepared Data Sets.We plan to demonstrate FAST with 3 real-
world data sets as used in our recent work [5]:
• Flu is the weekly surveillance data of Influenza-like illness pro-

vided by the Influenza Division of the Centers for Disease Con-
trol and Prevention4. We collected the weekly outpatient count
of the age group [5-24] from 2006 to 2010. This time-series con-
sists of 209 data points.

• Traffic is a daily traffic count data set for Seattle-area high-
way traffic monitoring and control provided by the Intelligent
Transportation Systems Research Program at University of Wash-
ington5. We chose the traffic count at location I-5 143.62 south-
bound from April 2003 till October 2004. This time-series con-
sists of 540 data points.

• Unemployment is the monthly unemployment level of African
American women of age group [16-19] from ST. Louis Federal
Reserve Bank6. This data set contains observations from January
1972 to October 2011 with 478 data points.

As an alternative, we also generated 3 synthetic data sets for
demonstration usinglinear,logistic, andsinusoidalmod-
els, all of which contain 1000 data points. The details aboutthe
three models can be found in our recent study [4].

3.2 Basic Functionalities
FAST is an easy-to-use system which guides users through their

monitoring tasks. FAST interface allows users to enter different
parameters, to choose methods according to their needs, andto ex-
amine intermediate as well as final results.

We will start the demonstration by introducing the main inter-
face of FAST. From there, users have two options for system mode:
real-time release and batch release. The real-time mode enables
the user to obtain a private released value immediately after a new,
raw aggregate is available, while the batch mode takes a (partial)
data series as input and produces a released series. After select-
ing the system mode, we will guide the audience through the set-
tings of each FAST module. The audience will have an opportunity
to specify values for some parameters such as the overall privacy
guarantee, i.e.α, and the variance for the process noise, i.e.Q in
Equation (2), while the rest parameters can be automatically com-
puted or set to default values. In real-time mode, multiple instances
with different parameter settings and options can be run at the same
time. In batch mode, multiple sampling methods and filteringtech-
niques are provided for comparison and the utility results will be
summarized in the end. For instance, the audience could select and

3http://www.polleverywhere.com/
4http://www.cdc.gov/flu/
5http://www.its.washington.edu/
6http://research.stlouisfed.org/

http://www.jsc.nildram.co.uk
http://www.mathcs.emory.edu/aims/FAST
http://www.polleverywhere.com/
http://www.cdc.gov/flu/
http://www.its.washington.edu/
http://research.stlouisfed.org/
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Figure 6: Comparisons with Linear Data Set

compare the performance of the Kalman filter, particle filter, and
the default LPA algorithm for the filtering component.

3.3 Real-Time
After the settings have been made, users will be able to experi-

ence the real-time sharing feature of FAST. We will show thatevery
time when a new, raw, aggregate value is available, a differentially
private estimate can be generated in real time. At the end of the
monitoring application, summaries of utility and computation time,
privacy cost incurred and the number of samples, original aswell
as released data series etc., will be provided to the users for ref-
erence. Figure 5 provides a visualization example of the original
linear data, the released series by FAST, and that of the default
LPA algorithm. With the same privacy guarantee, FAST released
series retains much higher accuracy (i.e. data value, trend) than the
LPA released series.

Furthermore, we can also demonstrate FAST in debug mode so
that interested audience can look under-the-hood to see howfilter-
ing and sampling are done per time stamp. The audience could
further explore the original data series, intermediate results such as
the current prediction, accumulated privacy cost, and the next sam-
pling point, in addition to the set of results provided at theend of a
task.

3.4 Batch
With prepared datasets, the audience can specify differentpa-

rameter settings, examine utility results, and perform more analy-
sis and interesting studies. Figure 6 gives two examples of such
studies conducted withlinear data. Users can combine filter-
ing options, i.e. the Kalman filter or particle filter, with fixed rate
sampling or adaptive sampling, and compare the utility results. As
is shown in Figure 6(a), the performance of fixed-rate sampling
method heavily depends on the pre-defined sampling interval; on
the other hand, the adaptive sampling method with feedback control
(denoted as PID) is comparable to the optimal fixed-rate sampling
performance, withoutapriori knowledge.

To compare with the state-of-the-art, FAST also implementsthe
differentially private algorithm based on Discrete Fourier Trans-

form in [10], denoted as DFT. In short, the DFT algorithm trans-
forms the original series with Discrete Fourier Transform,perturbs
the coefficients with Laplace noises, reconstructs and releases the
inversed series. However, it is only applicable in batch mode. Fig-
ure 6(b) illustrates a comparison between FAST algorithms (KF+PID
andPF+PID), DFT, and LPA, with variousα values. The audience
can observe that FAST achieves lower relative errors than LPA and
DFT in most settings, providing higher utility without compromis-
ing privacy.

4. CONCLUSION
We have proposed FAST, a tool for monitoring real-time aggre-

gates under differential privacy with filtering and adaptive sam-
pling. The key innovation is that FAST utilizes feedback loops
based on observed (perturbed) values to dynamically adjustthe fil-
tering model as well as the sampling rate. Our empirical studies
across multiple data sets confirm the effectiveness and the superior
performance of FAST algorithms with respect to the state-of-the-
art methods. The real-time feature and accurate release provided by
FAST will facilitate data holders to continuously share private ag-
gregate, thus enabling important data monitoring applications, such
as disease surveillance and traffic monitoring. Future workmay in-
clude utility analysis in order to advise users on the selection of
privacy budget and data model parameters, as well as an automatic
tuning feature for controller parameters in adaptive sampling.
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