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ABSTRACT

Sharing aggregate statistics of private data can be of getae
when data mining can be performed in real-time to undersiand
portant phenomena such as influenza outbreaks or trafficeseng
tion. However, to this date there have been no tools for selea
ing real-time aggregated data with differential privacgtrang and
provable privacy guarantee. We propose FAST, a real-tinse sy
tem that allows differentially private aggregate sharimgl dme-
series analytics. FAST employs a set of novel, adaptiveesfies

to improve the utility of shared/released data while gutging
the user-specified level of differential privacy. We willrdenstrate
the challenges and our solutions in the context of prepaaeaigets
as well as live participation data dynamically collectecoaig the
SIGMOD’13 attendees.

Categories and Subject Descriptors

H.2.8 DATABASE MANAGEMENT ]: Database Applications—
Data Mining G.3 [PROBABILITY AND STATISTICS ]: Time
series analysis
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1. INTRODUCTION

Sharing real-time aggregate statistics of private datblesanany
data mining applications, such as participatory sensihgré data
surveillancel[6]. Consider use-cases below:

e Disease SurveillanceA health care provider gathers data from
individual visitors. The collected data, e.g. daily numbéin-
fluenza cases, is then shared with third parties, e.g. sea;
in order to monitor and detect seasonal epidemic outbreaks.

e Traffic Monitoring : A GPS service provider gathers data from
individual users about their locations, speeds, mobiity, The
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Figure 1: Aggregate Data Sharing Scenario
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e Conference Attendance Tracking An hourly count of confer-
ence attendees can be aggregated and mined for interesting a
tendance patterns. Monitoring the shared data, confeneaice
ticipants can also be advised in real-time on the accomrimdat
availabilities and possible traffic congestion around thefer-
ence venue.

A common scenario of such applications can be summarized by
Figure[1, where a trusted server gathers data from a large num
ber of individual subscribers. The source of data may vamynfr
web searches, mobile devices such as phone and GPS, to social
networks. The collected data is then aggregated and canishy
shared with other un-trusted parties and researchersriousagur-
poses. The trusted server, i.e. publisher, by contrachlajaiions
must ensure that releasing the data does not compromiseithe p
vacy of any individual who contributed data. The goal of oarky
is to enable the publisher to share useful aggregate atatisin-
tinuously (aggregate time series) while guaranteeingapyiv

The current state-of-the-art paradigm for privacy-preiserdata
publishing is differential privacy 2], which requires tithe aggre-

aggregated data, e.g. the number of users at each region dur9ate statistics reported by a data publisher be perturbea ray-

ing each time unit, can be mined for commercial interesthsuc
as popular places, as well as public interest, such as cioiges
patterns on the roads.
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domized algorithm4, so that the output ofl remains roughly the
same even if any single tuple in the input data is arbitraribydi-
fied. Given the output of4, an adversary will not be able to infer
much about any single tuple in the input, and thus privacyrds p
tected.

There are many challenges in sharing aggregate time sees u
differential privacy. The first one comes from high corrigatof
data values at successive timestamps. Applying the stduliféer-
ential privacy mechanism which adds a Laplace naise [3]¢adiv
aggregate at each time stamp can lead to a very high overalrpe
bation error. The utility of shared/released data is gyeatpacted
in this case. The second challenge is in separating noise tiie
signal. In other words, given a perturbed value, can we daiv
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Figure 2: FAST Framework

good estimate close to the true value? Due to the Laplacimmena
of the perturbation noise, there is no analytic form of theteoor
distribution. We will have to examine sub-optimal solusoand
approximations to derive posterior estimation. The thirdlienge
is to compute and release the estimates in real-time, wkich-i
quired by all the applications mentioned previously. Mefhthat
require entire data series, such as the Discrete Fourieisfiman
based algorithni [10], are not applicable to real-time agpions.

In this demo, we present FAST, a real-time system wiliefng
and_Adaptive_&mpling for differentially private ime-series mon-
itoring. We implement and extend our recent wark [5] and gnes
several contributions. Firstly, FAST provides an adapfieane-
work to release real-time aggregate statistics underrdiftél pri-
vacy. It samples long time-series according to detecteldiatam-
ics and uses filtering to predict data values at non-samplaigts
and to estimate true values from noisy observations at sagpl
points. The key innovation is that FAST utilizes feedbaap® to
dynamically adjust the filtering model as well as the sangptate.
Secondly, FAST incorporates a set of novel algorithms tasho
from, such as a full range of filtering options and samplinghme
ods. Thirdly, we will demonstrate the system in the contéxire-
pared data sets along with live data dynamically collectechfa
SIGMOD’13 conference participation survey.

2. SYSTEM OVERVIEW

In this section, we present FAST framework and its key compo-

nents as well as algorithms. As seen in Figure 2 , the inpuat idat
a stream of raw aggregates, collected from individual yseith
one value at a discrete timestamp. If sampled by FAST, theeagg
gate will be perturbed with a calibrated noise by pegturbation
component to strictly enforce the user-specified level Gerkn-
tial privacy. Thefiltering component utilizes an internal data model
to provide prediction at non-sampling points and correctbthe
noisy/perturbed observation at sampling points. Therfittaging
estimation error will be fed through theamplingcomponent to
adaptively adjust the sampling rate. FAST also providesaay-e
to-use interface which guides the users through their raong
tasks. Below we describe each component with technicailsleta

2.1 Perturbation

Theperturbationcomponent in FAST acts as a differentially pri-
vate interface similar to PINQ_[9] for any sampled value frtm
aggregate series, such that the released series satifizsrdial
privacy. Leta denote the user-specified overall level of privacy,
also called privacy budget, ard denote the total number of sam-
ples allowed by FAST for a given series or application. A lowe

value of« implies stronger privacy guarantee and a higher noise.

The perturbationcomponent distributes/M budget to each sam-
pled aggregate (i.ecoun); according to the Composition Theo-

h Correct

Predict
(1) Compute the Kalman gain:
(1) Project the state ahead: Ky = Pg (P + R)™
j; =&k (2) Update estimate with measurement:
(2) Project the error covariance ahead: & = f; + Ki (2 — i;)
P, =PF1+0Q (3) Update the error covariance:
P, = (1 - Ky)P,

N

Figure 3: lllustration of the Kalman Filter [5]

rems [9], the entire released series satisfigdifferential privacy.
More formally, given a raw aggregats, at time stampt and the
privacy budgetn/M, an«/M-differentially private valuez;, can
be obtained by adding a Laplace noisto the raw aggregate|[3]:

2k = Tk + U, p(v) ~ Lap(0, M /a). 1)

We refer to Equation (1) as the measurement model.aad the
measurement noise. The perturbed valyes then received as a
noisy observation in the filtering module.

2.2 Filtering

Thefiltering module in FAST generates estimates of monitored
aggregates in order to improve the quality of released datéipe
stamp. In our context, “filtering” refers to determining hasterior
distribution ofzy, given all measurements’s up tok, thus provid-
ing an optimal posterior estimate. Two operatigm&dictionand
correction will be recursively applied during the monitoring pe-
riod. Thepredictionstep generates a prediction of the data value at
each time stamp based on previous release and an intercalsgro
model, which provides the temporal correlation betweeaaa)t
aggregate values. In our current system, the time series(dat
counts) is described by a linear model as follows:

wherew is a white Gaussian noise, also called the process noise.
We refer to Equation (2) as the process model which is used by
both filters provided by FAST. Theorrection step combines the
noisy observation, when available, with the prediction ¢neyate

a posterior estimate. The correction mechanism variegdicgpto

the filtering method chosen.

FAST provides two filtering options: the Kalman filtér [7] and
particle filter [1]. The Kalman filter is applicable to linepro-
cess model in Equation (2) and it requires Gaussian measuatem
noise. Therefore, we approximatein Equation (1) by a white
Gaussian noise with variande Thus, the measurement model for
the Kalman filter is adapted to:

2k = Tk + U, p(v) ~ N(0, R). 3

In FAST, once users provide the length of input data &nd the
overall privacy budgetd), the variance of the approximate Gaus-
sian noise, i.e.R value, can be computed automatically given the
result of our recent study [4]. The advantage of the Kalmaerfil
is that we can easily obtain a minimum variance posteriomesée
and the computation cost for each time ste@{g). Figure[3 gives
a high-level diagram of the two recursive procedures of thkrién
filter. Note thatz,” denotes prediction, i.e. the prior estimate, while
I denotes correction, i.e. the posterior estimate.

The other filtering option, particle filter, is a widely reeed ap-
proach to non-Gaussian tracking problem. When particler fit
chosen, Equation (1) is adopted for the measurement model an
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Figure 4: lllustration of Adaptive Sampling
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retains the Laplace distribution. In nature, particle fiilea se-
quential Monte Carlo algorithm and it uses weighted samfgles
ticles) to estimate the distribution 6f, at every time stamp, which
may not have an analytic representation. Therefore, withffi s
ciently large number of particles, denoted/ds the particle filter
approaches Bayesian optimal estimate at the cost of cotiputa
time, O(N). In FAST, the default value aV is recommended to
the user, i.e.N = 1000, to achieve a trade-off between accuracy
and computational efficiency. We refer to our previous Wé}{g]
for complete studies about the two filtering methods.

FAST also includes the default option without filtering winic
directly releases the Laplace perturbed values zi.&, at all time
points. We denote the default option as LPA in the demoristrat

2.3 Sampling

In order to reduce the overall perturbation error introdLibg
differential privacy mechanism, FAST samples the inpuesaather
than perturb every data value. The sampling methods impltade
in FAST include fixed-rate sampling and adaptive sampling.

The fixed-rate sampling method periodically samples tha dat
series perlp time stamps.To denotes the sampling interval and
can be determined by the user. If not specifi€gljs set to10 in
FAST by default. The challenge of fixed-rate sampling is td ftre
optimal sampling interva& priori, which is impractical for most
real-time applications.

The adaptive sampling methods in FAST utilize the idea afifee
back control and adjust the sampling rate according to tedetata
dynamics on-the-fly. The feedback is defined as the errordsstw
predictionandcorrectionfrom the filtering component, measuring
how well the internal process model describes the curreiat dia
namics. A small error results in a decrease in the samplitegarad
vice versa. FAST adopts PIP(oportional Integral, andDeriva-
tive) control, the most common form of feedback control, and im-
plementsP, PI, andPID controllers for users’ choice. THalD
control gains , if not specified by the user, will take on défaal-
ues as in our previous workl[5]. Figuré 4 illustrates the idéa
adaptive sampling. We refer readers to our work [5] for dééins
and the detailed®I D algorithm.

3. SYSTEM DEMONSTRATION

FAST is implemented in JAVA with J$tFor simulating Laplace
distribution. Our denfbincludes two types of use cases from Sec-
tion 1: (1) Live participation data collected from SIGMOD’13 at-
tendees in real-time mode; (2) Prepared, complete datandsigch
mode. The utility metric is the relative error between diiatially
private released values and original aggregates.

Yhttp: /7 www. | ScC. ni [ dram co. uk
2available aht t p: / / www. mat hcs. enory. edu/ ai ms/ FAST

3.1 Data sets

SIGMOD’13 Participation Data (Live). In this demonstration,
we will engage the SIGMOD’13 attendees to take a confereace p
ticipation survey and release differentially private Hgurount of
positive responses. We will post our survey question “Ara gb
the conference right now?” through secure third party pgltiool
Poll Everywher and participants are invited to respond via email,
text message, or even through social network sites. Thdyhags
gregates gathered by the polling tool can then be used asdapa
in this live demonstration.

In case of technical difficulties or insufficient survey peEpa-
tion, we will also provide a simulated data set that resemtile
count of conference attendees over time in order to perfémen t
real-time demonstration.

Prepared Data Sets.We plan to demonstrate FAST with 3 real-

world data sets as used in our recent work [5]:

e Fl uis the weekly surveillance data of Influenza-like illness-pr
vided by the Influenza Division of the Centers for Disease-Con
trol and Preventidh We collected the weekly outpatient count
of the age group [5-24] from 2006 to 2010. This time-serigs co
sists of 209 data points.

e Traf fi c is a daily traffic count data set for Seattle-area high-
way traffic monitoring and control provided by the Intellige
Transportation Systems Research Program at Universityashw/
ingtorll. We chose the traffic count at location 1-5 143.62 south-
bound from April 2003 till October 2004. This time-serieeo
sists of 540 data points.

e Unenpl oynent is the monthly unemployment level of African
American women of age group [16-19] from ST. Louis Federal
Reserve Barfk This data set contains observations from January
1972 to October 2011 with 478 data points.

As an alternative, we also generated 3 synthetic data sets fo
demonstration usingi near ,| ogi sti c,andsi nusoi dal mod-
els, all of which contain 1000 data points. The details altbat
three models can be found in our recent studly [4].

3.2 Basic Functionalities

FAST is an easy-to-use system which guides users through the
monitoring tasks. FAST interface allows users to enteredifiit
parameters, to choose methods according to their needs and
amine intermediate as well as final results.

We will start the demonstration by introducing the main inte
face of FAST. From there, users have two options for systeatemo
real-time release and batch release. The real-time modgesna
the user to obtain a private released value immediately aftew,
raw aggregate is available, while the batch mode takes éigpar
data series as input and produces a released series. Afet-se
ing the system mode, we will guide the audience through the se
tings of each FAST module. The audience will have an oppdytun
to specify values for some parameters such as the overedlqyri
guarantee, i.e«, and the variance for the process noise, ¢ein
Equation (2), while the rest parameters can be automaticath-
puted or set to default values. In real-time mode, multipt#ances
with different parameter settings and options can be rumeatsame
time. In batch mode, multiple sampling methods and filtetewh-
niques are provided for comparison and the utility resulilt tve
summarized in the end. For instance, the audience couldt seld

Shtt p: /7 wwwv. pol [ ever ywher e. conl
4http: /7 ww. cdc. gov/ Tl u/
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Figure 5: Released Series vs. Original Series
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Figure 6: Comparisons with Linear Data Set

compare the performance of the Kalman filter, particle filsard
the default LPA algorithm for the filtering component.

3.3 Real-Time

After the settings have been made, users will be able to exper
ence the real-time sharing feature of FAST. We will show évaty
time when a new, raw, aggregate value is available, a diffeiy
private estimate can be generated in real time. At the enteof t
monitoring application, summaries of utility and compigattime,
privacy cost incurred and the number of samples, originalels
as released data series etc., will be provided to the usergffo
erence. Figurg]5 provides a visualization example of thgirail

form in [10], denoted as DFT. In short, the DFT algorithm &an
forms the original series with Discrete Fourier Transfoparturbs
the coefficients with Laplace noises, reconstructs andisekethe
inversed series. However, it is only applicable in batch endelg-
ure[6(b) illustrates a comparison between FAST algoritht®s-PI D
andPF+PI D), DFT, and LPA, with various values. The audience
can observe that FAST achieves lower relative errors tha@ndrf
DFT in most settings, providing higher utility without conamis-
ing privacy.

4. CONCLUSION

We have proposed FAST, a tool for monitoring real-time aggre
gates under differential privacy with filtering and adaptisam-
pling. The key innovation is that FAST utilizes feedbackgdeo
based on observed (perturbed) values to dynamically atttjedil-
tering model as well as the sampling rate. Our empiricalistud
across multiple data sets confirm the effectiveness andirerier
performance of FAST algorithms with respect to the statéhef
art methods. The real-time feature and accurate releasigpdby
FAST will facilitate data holders to continuously sharevpte ag-
gregate, thus enabling important data monitoring appéinat such
as disease surveillance and traffic monitoring. Future wialy in-
clude utility analysis in order to advise users on the silpabf
privacy budget and data model parameters, as well as an atitom
tuning feature for controller parameters in adaptive sargpl
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