
Privacy Preserving Distributed DBSCAN
Clustering∗

Jinfei Liu1, Li Xiong1, Jun Luo2, and Joshua Zhexue Huang2

1 Department of Mathematics & Computer Science, Emory University, 30322, USA
2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,

518055, China
jinfei.liu@emory.edu, lxiong@mathcs.emory.edu, jun.luo@siat.ac.cn and

zx.huang@siat.ac.cn

Abstract. DBSCAN is a well-known density-based clustering algorithm
which offers advantages for finding clusters of arbitrary shapes compared
to partitioning and hierarchical clustering methods. However, there are
few papers studying the DBSCAN algorithm under the privacy preserv-
ing distributed data mining model, in which the data is distributed be-
tween two or more parties, and the parties cooperate to obtain the clus-
tering results without revealing the data at the individual parties. In
this paper, we address the problem of two-party privacy preserving DB-
SCAN clustering. We first propose two protocols for privacy preserving
DBSCAN clustering over horizontally and vertically partitioned data re-
spectively and then extend them to arbitrarily partitioned data. We also
provide performance analysis and privacy proof of our solution.

Key words:Privacy Preserving; DBSCAN; Clustering; Secure Multi-
Party Computation; Distributed Data

1 Introduction

Consider a scenario in which each hospital has its own database of medical
records. If the data from different hospitals can be shared, we can mine the
data and extract more meaningful results than just using partial data indepen-
dently. However, since medical records are subject to privacy and confidentiality
constraints, how to extract the knowledge from the integrated data set without
revealing one party’s data to other parties is the theme of privacy preserving
distributed data mining. Privacy preserving data mining, first introduced by
Agrawal et al. [2] (using perturbation techniques) and Lindell et al. [16] (using
Secure Multiparty Computation (SMC)) techniques), allows different parties to
cooperate in the extraction of knowledge without any of the cooperating parties
having to reveal their individual data items. In this paper, for the convenience of
analysis, we only focus on the two-party privacy preserving data mining (PPDM)

∗ A preliminary version of this paper appeared in the Proceedings of the 2012 Joint

EDBT/ICDT Workshops [17].

algorithm. However, the two-party algorithm can be extended to multi-party
cases.

DBSCAN (Density Based Spatial Clustering of Applications with Noise) [8] is
a well-known density-based clustering algorithm which offers several advantages
compared to partitioning and hierarchical clustering methods. First, DBSCAN
does not require one to specify the number of clusters in the data a priori, as
opposed to k-means clustering algorithm. Second, DBSCAN is better at finding
arbitrarily shaped clusters and can even find a cluster completely surrounded
by a different cluster. Finally, DBSCAN has a notion of noise or outliers and
requires just two parameters (Eps and Minpts in this paper) and is mostly
insensitive to the ordering of the points in the database. Conclusively, it is of
practical importance to design distributed protocols DBSCAN based clustering
in a distributed environment with sensitive data.

Kumar et al. [14] proposed protocols for the privacy preserving distributed
DBSCAN clustering. However, the privacy proofs of their protocols do not
strictly follow the definition of privacy in the semi-honest model [10]. More im-
portantly, it poses significant privacy risks of identifying individual records from
other party. Considering a scenario as shown in Figure 1. Bob has three records
B1, B2, B3 and knows one of Alice’s record A is in their neighborhood. So Bob
knows that A is in the intersection of his three records’ neighborhood (the gray
area in Figure 1). It could happen that the intersection area is so small that Bob
could determine the location of the point A that is not far away from its true
location.

Alice

Bob

B1

B2

B3

A

Fig. 1. Bob could decide that A is in the small gray region.

In this paper, we present privacy preserving algorithms for DBSCAN clus-
tering for horizontally, vertically and arbitrarily partitioned data distributed
between two parties. The main contributions of our paper are:

1. We design a Multiplication Protocol (Subsection 4.1) based on Pailler’s Ad-
ditive Homomorphic cryptosystem [17].

2. We present a set of privacy preserving distributed DBSCAN clustering proto-
cols utilizing the above multiplication protocol over horizontally (Subsection
4.2), vertically (Subsection 4.3), and arbitrarily (Subsection 4.4) partitioned

data [17]. Compared to the existing work [8], the only information disclosed
in our protocols is that Bob only knows there is a record owned by Al-
ice in B1, B2, B3’s neighborhood respectively. However, Bob does not know
whether those three records are the same or not. Therefore, Bob can not
determine whether there is a record owned by Alice in the small gray region.

3. We further present a new protocol with enhanced privacy than the above
protocols (Section 5). Compared to the protocols in the preliminary version
[17] which reveal the number of points from the other party in the neighbor-
hood of a point when deciding whether the point is a core point, we address
this disclosure in this new protocol.

4. We present formal performance and privacy analysis and demonstrate that
our protocols are efficient in terms of communication and achieve adequate
privacy.

The rest of the paper is organized as follows. We review some related work
in Section 2. Section 3 introduces some background that will be used in this
paper. The preliminary algorithms for computing privacy preserving distributed
DBSCAN clustering are given in Section 4. Section 5 presents the new enhanced
protocols addressing the disclosure problem in the previous protocols. Section 6
concludes the paper with directions for future work.

2 Related Work

Privacy preserving data mining, first introduced by Agrawal et al. [2] and Lindell
et al. [16], could be roughly classified into two major categories: data mining
on modified or perturbed data [2] [9] [1] [15] and cooperative data mining on
distributed private data [16] [22] [13]. The initial idea of the former is to modify
or perturb the data to mask private information but in such a way that the
perturbed data can be still mined. The key is how to modify the data and how
to recover the data mining result from the modified (“un-private”) data.

The privacy preserving distributed data mining problem in the latter cate-
gory is typically formulated as a secure multi-party computation problem [10].
Yao’s general protocol for secure circuit evaluation [26] can be used to solve
any two-party privacy preserving distributed data mining problem in theory.
However, since data mining problems usually involve millions or billions of data
items, the communication cost of this protocol renders it impractical for these
purposes. This is a good motivation to the search for problem specific protocols
that are efficient in terms of communication complexity. Therefore, as Goldreich
points out in [10], we do not recommend using the solutions derived by these
general results in practice; special solutions should be developed for special cases
or data mining algorithms for efficiency reasons. In many cases, including our
solution described in this paper, the more efficient solutions still make use of a
general solution such as Yao’s, but only to carry out a much smaller portion of
the computation. The rest of the computation uses other methods to ensure the
privacy of the data. One such complementary approach uses randomization tech-

niques [7]. Although such solutions tend to be more efficient than cryptographic
solutions, they are generally less private or less accurate.

DBSCAN [8] is a well-known density-based clustering algorithm for discover-
ing clusters in large spatial databases with noise. It is significantly more effective
in discovering clusters of arbitrary shape than the partitioning methods such as
the well known k-means [19] and CLARANS [18] algorithm as well as hierarchi-
cal methods. Similar clustering algorithms based on density are OPTICS [4] and
DENCLUE [11]. While there are many privacy preserving K-means algorithms
[12] [23] [5], there is little literature considering the problem of privacy preserv-
ing distributed density-based clustering. A. Amirbekyan et al. [3] and W. Xu et
al. [24] only discussed the vertically partitioned data case. So far [14] is the only
both horizontally and vertically partitioned data work we are aware of but it did
not provide adequate privacy as we discussed above.

3 Preliminaries

In this section, we briefly review the DBSCAN clustering algorithm, and describe
the concept of horizontally, vertically and arbitrarily partitioned data. Some
definitions borrowed from cryptology, and two protocols that will be used in this
paper are also given.

3.1 DBSCAN Algorithm

We briefly review the DBSCAN algorithm. Details are described in [8]. DBSCAN
is a density-based algorithm which can detect arbitrary shaped clusters. The key
idea is that for each point of a cluster, the neighborhood of which within a given
radius (Eps) has to contain at least a minimum number (MinPts) of points, i.e.
the density in the neighborhood has to exceed some threshold. Therefore, the
critical step in this algorithm is to decide whether the distance between two
points is less than or equal to Eps. It is an easy task if two points are owned
by one party. Otherwise, we need to develop a private protocol to compute the
distance between two points that are owned by two parties.

We illustrate several definitions in DBSCAN algorithm [8] that will be used
in the next Section.

Definition 1. (density-reachable) A point p is density-reachable from a point
q w.r.t. Eps and MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p
such that pi+1 is directly density-reachable from pi.

Definition 2. (density-connected) A point p is density-connected to a point
q w.r.t. Eps and MinPts if there is a point o such that both p and q are density-
reachable from o w.r.t. Eps and MinPts.

Definition 3. (cluster) Let D be a database of points. A cluster C w.r.t. Eps
and MinPts is a non-empty subset of D satisfying the following conditions:

d1

attr1
... attrm

...

dl

dl+1

...

dn

attr2

...

...

...

...

...

...

...

d1,1 d1,2 d1,m

...

dl,1 dl,2 dl,m

dl+1,1 dl+1,2 dl+1,m

dn,1 dn,2 dn,m

Data owned by Alice

Data owned by Bob

Fig. 2. Horizontally partitioned data.

1. ∀ point p, q: if p ∈ C and q is density-reachable from p w.r.t. Eps and MinPts,
then q ∈ C. (Maximality)

2. ∀ point p,q ∈ C: p is density-connected to q w.r.t. Eps and MinPts. (Con-
nectivity)

Definition 4. (noise) Let C1, ..., Ck be the clusters of the database D w.r.t.
parameters Eps and MinPts. Then we define the noise as the set of points in
the database D not belonging to any cluster Ci , i.e. noise =p ∈ D | ∀i : p /∈ Ci.

3.2 Partitioned Data

In the two-party distributed data setting, two parties (call them Alice and Bob)
hold data forming a (virtual) database consisting of their joint data. More specif-
ically, the virtual database D = {d1, d2, ..., dn} consists of n records. Each record
di has m values for m attributes (di,1, di,2, ..., di,m).

There are three formats for partitioned data:

– Horizontally Partitioned Data: each party owns a subset of records with
full attributes (see Figure 2).

– Vertically Partitioned Data: each party owns all records with partial
attributes (see Figure 3).

– Arbitrarily Partitioned Data [12]: mixture of horizontally and vertically
partitioned data (see Figure 4).

3.3 Privacy Properties

Our desired outcome is that clusters are computed on Alice and Bob’s joint
data. Alice should learn the cluster number (or the NOISE record) for each data
record that she owns completely, and Bob should learn the cluster number (or
the NOISE record) for each data record that he owns completely. For records
that are split between Alice and Bob, they should both learn the cluster number.

In an ideal world, Alice and Bob would have access to a trusted third party
who could perform the necessary calculations. Alice and Bob would securely send

d1

d2

...

dn

attr1
... attrl attrl+1

... attrm

d1,1

d2,1

...

dn,1

...

...

...

...

...

...

...

d1,l

d2,l

dn,l

d1,l+1

dn,l+1

d2,l+1

d1,m

d2,m

dn,m

Data owned by Alice Data owned by Bob

Fig. 3. Vertically partitioned data.

=d1

d2

attr1 attr2 attr3 attr1 attr2

d1

d2

+ d1

d2

attr3

Data owned by Alice Data owned by Bob

attr4 attr4

d2,1 d2,2 d2,3 d2,4 d2,1 d2,2 d2,3 d2,4

d1,1 d1,2 d1,3 d1,4 d1,1 d1,2 d1,3 d1,4

Fig. 4. Arbitrarily partitioned data =vertically partitioned data + horizontally
partitioned data.

their data to this trusted party, which would then compute the cluster to which
each object is assigned using the appropriate clustering algorithm, and send the
desired information to the party that owns the object. However, trusted third
parties are hard to find in the real world, and even then, such trust may be
misplaced. In this work, we do not rely on a third party. Instead, we provide
protocols by which Alice and Bob can carry out the functionality that would be
provided by the trusted third party without actually requiring such third party
or requiring the parties to send their data to each other.

3.4 Two-party Computation

A two-party protocol problem [10] is casted by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer
to such a process as a functionality and denote it as f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y), the
output pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings.
The first party (with input x) wishes to obtain f1(x, y) and the second party
(with input y) wishes to obtain f2(x, y). We often denote such a functionality
by (x, y) 7→ (f1(x, y), f2(x, y)).

3.5 Semi-honest Model

In any multi-party computation setting, a malicious adversary can always alter
its input. In the data mining setting, this fact can be very damaging since the

adversary can define its input to be the empty database. Then the output ob-
tained is the result of the algorithm on the other party’s database alone. For this
work we assume that the adversary is semi-honest [10] (also known as passive).
That is, it correctly follows the protocol specification, yet attempts to learn ad-
ditional information by analyzing the transcript of messages received during the
execution. We remark that although the semi-honest adversarial model is weaker
than the malicious model (where a party may arbitrarily deviate from the pro-
tocol specification), it is often a realistic one. This is because deviating from a
specified program which may be buried in a complex application is a non-trivial
task. Further, the parties cooperate with each other because they wish to mine
the integrated data for their mutual benefit.

3.6 Definition of Privacy in the Semi-honest Model

Intuitively, a protocol is private if whatever can be computed by a party partici-
pating in the protocol can be computed based on its input and output only. This
is formalized according to the simulation paradigm. Loosely speaking, we require
that a party’s view in a protocol execution be simulative given only its input
and output. This then implies that the parties learn nothing from the protocol
execution itself, as desired.

We begin with the following notations:
• Let f = (f1, f2) be a probabilistic, polynomial-time functionality and let∏
be a two-party protocol for computing f .
• The view of the first (resp., second) party during an execution of

∏
on

(x, y), denoted by view
∏
1 (x, y)(resp., view

∏
2 (x, y)), is (x, r1,m1

1, ..., m
1
t) (resp.,

(y, r2,m2
1, ..., m

2
t)) where r1 (resp., r2) represents the outcome of the first (resp.,

second) party’s internal coin tosses, and m1
i (resp., m2

i) represents the ith mes-
sage it has received.

• The output of the first (resp., second) party during an execution of
∏

on
(x, y) is denoted by output

∏
1 (x, y) (resp., output

∏
2 (x, y)), and is implicit in the

party’s view of the execution.

Definition 5. Privacy with Respect to Semi-Honest Behavior
For a functionality f , we say that

∏
privately computes f if there exist

probabilistic polynomial time algorithms, denoted by S1 and S2, such that

{(S1(x, f1(x, y)), f2(x, y))}x,y∈{0,1}∗
c≡{(view

∏
1 (x, y), output

∏
2 (x, y))}x,y∈{0,1}∗ ,

(1)
{(f1(x, y), S2(y, f2(x, y)))}x,y∈{0,1}∗

c≡ {(output
∏
1 (x, y), view

∏
2 (x, y))}x,y∈{0,1}∗ ,

(2)
where

c≡ denotes computational indistinguishability.

Equations 1 and 2 state that the view of a party can be simulated by a prob-
abilistic polynomial-time algorithm given access to the party’s input and output
only. We emphasize that the adversary here is semi-honest and therefore the
view is exactly according to the protocol definition. See [10] for a full discussion.

Theorem 1. (Composition Theorem for the semi-honest model, two parties)
[6]: Suppose that g is privately reducible to f and that there exists a protocol for
privately computing f . Then there exists a protocol for privately computing g.

3.7 Paillier’s Additive Homomorphic Properties

We briefly describe the Paillier’s additive homomorphic cryptosystem [20] and
its homomorphic properties which will be used in our protocols.

Key generation
• Choose two large prime numbers p and q randomly and independently of each
other such that gcd(pq, (p− 1)(q − 1)) = 1.
• Compute n = pq and λ = lcm(p− 1, q − 1).
• Select random integer g where g ∈ Z∗n2 .
• Ensure n divides the order of g by checking the existence of the following
modular multiplicative inverse: µ = (L(gλ mod n2))−1 mod n, where function L
is defined as L(u) = u−1

n .
• The public encryption key is (n, g) and private decryption key is (λ, u).

Encryption
• Let m be a plaintext to be encrypted where m ∈ Zn.
• Select random r where r ∈ Z∗n.
• Compute ciphertext as: c = gmrn mod n2.

Decryption
• Ciphertext c ∈ Z∗n2 .
• Compute plaintext: m = L(cλ mod n2)µ mod n.

Homomorphic properties
• Homomorphic addition of plaintexts:

D(E(m1, r1)E(m2, r2) mod n2) = (m1 + m2) mod n

• Homomorphic multiplication of plaintexts:

D(E(m1, r1)m2 mod n2) = m1m2 mod n

3.8 Yao’s Millionaires’ Problem Protocol (YMPP)

We also briefly describe the Yao’s Millionaires’ Problem Protocol (YMPP) which
will be used in our protocol. Alice has i millions and Bob has j millions, where
1 < i, j < n′ and n′ is the limit value of i, j. Yao’s millionaires’ problem [25]
decides whether i < j, such that this is also the only thing they know in the
end. The protocol is described in Algorithm 1.

4 Privacy Preserving Distributed DBSCAN Clustering

In this section, we first introduce our Multiplication Protocol, then extend the
single party DBSCAN algorithm of [8] to privacy preserving distributed DB-
SCAN clustering on horizontally, vertically and arbitrarily partitioned data,
respectively. We also provide analysis of the communication complexity and
privacy proofs of our protocols.

Algorithm 1 Yao’s Millionaires’ Problem Protocol
Input:Alice inputs i, Bob inputs j.
Output:Alice and Bob know whether i < j and cannot get any more information
about the wealth of the other party.
1: Bob picks a random N -bits integer, and computes privately the value of

Ea(x); call the result k.
2: Bob sends Alice the number k − j + 1;
3: Alice computes privately the values of yu = Da(k− j +u) for u = 1, 2, ..., n′.
4: Alice generates a random prime p of N/2 bits, and computes the values

zu = yu(mod p) for all u; if all zu differ by at least 2 in the mod p sense,
stop; otherwise generates another random prime and repeat the process until
all zu differ by at least 2; let p, zu denote this final set of numbers;

5: Alice sends the prime p and the following n′ numbers to B : z1, z2, ..., zi

followed by zi+1, zi+1+1, ..., zn′+1; the above numbers should be interpreted
in the mod p sense.

6: Bob looks at the j-th number (not counting p) sent from Alice, and decides
that i ≥ j if it is equal to x mod p, and i < j otherwise.

7: Bob tells Alice what the conclusion is.

4.1 Multiplication Protocol

Multiplication Problem can be described as: Alice inputs private number x and
Bob inputs private number y, Alice (but not Bob) is to get the result u = xy+v,
where v is a random number known only to Bob. Alice should not be able to
derive the value of y from u and the execution of the protocol. Similarly Bob
should not be able to get the result of xy or the value of x.

Multiplication Problem is a special case of scalar products problems, but the
known scalar products protocols are not fit for the Multiplication Problem. In
our method, Paillier’s additive homomorphic encryption schemes [20] are used
to solve the Multiplication Problem. First, Alice generates a key pair. Then,
both Alice and Bob transform their inputs to positive integers. After that, Alice
sends the disguised data and the public key to Bob, Bob repeats multiplying the
disguised data and adds a random number to disguise it, then returns it to Alice.
Finally, Alice can use the private key to decode the value and get the desired
result (details are given in Algorithm 2).

Correctness Proof
u′ = (EA(x, r))y × EA(v, r)

Based on the Pallier’s homomorphic properties,

u = DA(u′) = DA((EA(x, r)y × EA(v, r)) = xy + v

Lemma 1. Multiplication Protocol is secure.

Algorithm 2 Multiplication protocol
Input:Alice inputs x, Bob inputs y.
Output:Alice gets u = xy + v where v is a random number known to Bob
only.
1: Alice generates a pair keys (EA, DA) in homomorphic encryption schemes.
2: Alice and Bob collaborate to select a random r ∈ Z∗n.
3: Alice sends EA(x, r), EA and r to Bob.
4: Bob generates a random v.
5: Bob computes u′ = (EA(x, r))y × EA(v, r).
6: Bob sends u′ to Alice.
7: Alice computes u = DA(u′).

Proof. We start by presenting a simulator for the Alice’s view. In the protocol,
the only information Alice received from Bob is the u′ in Step 6. Alice can
simulate the y and v by y′ and v′ generated from a single random number
with uniform random distribution. That is, on Alice’s view, the simulated view
(EA(x, r))y′ × EA(v′, r) is computationally indistinguishable from the u′ that
Alice had received in Step 6.

We now turn to the Bob’s view. Bob receives an encryption key EA and a
encrypted value EA(x). Bob can simulate the encryption key by generating a
single random number from a uniform random distribution and the encrypted
value can also be simulated simply by generating a random from an uniform
distribution.

The simulator for both runs in linear time, which meets the requirement of
a polynomial time simulation.

4.2 Privacy Preserving Distributed DBSCAN Clustering over
Horizontally Partitioned Data

Distance protocol for horizontally partitioned data. We first present a
distance protocol (HDP) for evaluating the distance between two horizontally
split records. Consider the horizontally partitioned data as shown in Figure 2.
Let dy (l + 1 ≤ y ≤ n) denote one record of Bob and dx (1 ≤ x ≤ l) de-
note one record of Alice. The purpose of this protocol is to let Alice know
whether dist(dx, dy) is smaller than Eps, without obtaining any knowledge about
Bob’s dy,1, dy,2, ..., dy,m and Bob could not obtain any knowledge about Al-
ice’s dx,1, dx,2, ..., dx,m. We can evaluate whether dist(dx, dy)2 < Eps2, so that
dist(dx, dy) < Eps can be obtained.

(dist(dx, dy))2 = (dy,1 − dx,1)2 + (dy,2 − dx,2)2 + ... + (dy,m − dx,m)2

=

Owned by Alice︷ ︸︸ ︷
d2

x,1 + d2
x,2 + ... + d2

x,m +
Owned by Alice and Bob︷ ︸︸ ︷

d2
y,1 + d2

y,2 + ... + d2
y,m − 2(dx,1dy,1 + ... + dx,mdy,m)

For the part owned by Alice and Bob,

d2
y,1 + d2

y,2 + ... + d2
y,m − 2(dx,1dy,1 + ... + dx,mdy,m)

Alice generates m random numbers r1, r2, ..., rm such that

r1 + r2 + ... + rm = 0

then
(d2

y,1 + d2
y,2 + ... + d2

y,m)− 2{dx,1dy,1 + ... + dx,mdy,m}
= (d2

y,1 + d2
y,2 + ... + d2

y,m)− 2{dx,1dy,1 + r1 + ... + dx,mdy,m + rm}
Alice and Bob use the Multiplication Protocol to let Bob get dx,1dy,1 + r1 + ...+
dx,mdy,m + rm. Then Alice and Bob use the Protocol YMPP to decide whether
dist(dx, dy)2 ≤ Eps2.

Lemma 2. Protocol HDP is secure.

Proof. Besides the Protocol YMPP, the only communication is that Alice sends
r1, r2, ..., rm to Bob. In Bob’s view, he could simulate the r′1, r

′
2, ..., r

′
m by gen-

erating m random numbers from a uniform random distribution. The simulator
runs in linear time, which meets the requirement for a polynomial time simula-
tion.

Algorithm 3 DBSCAN(SetOfPointsOfAlice, SetOfPointsOfBob, Eps, MinPts)
1: Party Alice DOES:
2: //SetOfPointsOfAlice is UNCLASSIFIED
3: ClusterId:=nextId(NOISE);
4: For i FROM 1 TO SetOfPointsOfAlice.size DO
5: Point:=SetOfPointsOfAlice.get(i);
6: IF Point.ClusterId=UNCLASSIFIED THEN
7: IF ExpandCluster(SetOfPointsOfAlice, SetOfPointsOfBob, PointOfAlice,

PointOfBob, ClusterId, Eps, MinPts) THEN
8: ClusterId:=nextId(ClsuterId);
9: END IF;

10: END IF;
11: END FOR;
12: END;
13: Party B DOES: repeats step 1 to 12 by replacing Alice for Bob and Bob for Alice.

DBSCAN Algorithm for Horizontally Partitioned Data The details of
the DBSCAN algorithm for horizontally partitioned data are given in Algorithm
3. SetOfPointsOfAlice is either the completed database of Alice’s or a discov-
ered cluster from a previous run of Alice. Eps and MinPts are the global density

parameters. A call of SetOfPointsOfAlice. regionQuery (PointOfAlice, Eps)
returns the Eps-Neighborhood of PointOfAlice in SetOfPointsOfAlice as a
list of points. The function SetOfPointsOfAlice. get(i) returns the i-th element
of SetOfPointsOfAlice. The most important function used by DBSCAN is Ex-
pandCluster which is presented in Algorithm 4. SetOfPointsOfBobPermutation
is SetOfPointsOfBob. But in each iteration, the points’ order is permutated
randomly. Therefore, Alice only knows there is a point of Bob (but does not
know which point of Bob) in neighborhood of one of her points. In this way, the
situation in Figure 1 can be avoided. What should be noted is that in Steps 3
and 13, only Alice knows whether the point in SetOfPointsOfBobPermutation
is seed. Otherwise, Bob could decide Alice in a small intersection region as we
argued in Figure 1. Explain above again by replacing Alice for Bob and Bob for
Alice.

Algorithm 4 ExpandCluster(SetOfPointsOfAlice, SetOfPointsOfBob, PointO-
fAlice, PointOfBob, ClusterId, Eps, MinPts) : Boolean
1: Party Alice DOES:
2: seedsA:=SetOfPointsOfAlice.regionQuery(PointOfAlice,Eps);
3: seedsB :=SetOfPointsOfBobPermutation.regionQuery(PointOfAlice,Eps);//Alice and Bob coop-

eratively use Protocol HDP
4: IF seedsA.size+seedsB .size<MinPts THEN
5: SetOfPointsofAlice.changeClusterId(PointOfAlice,NOISE);
6: RETURN False;
7: ELSE
8: SetOfPointsOfAlice.changeClusterIds(seedsA,ClusterId);
9: seedsA.delete(PointOfAlice);
10: WHILE seedsA 6= Empty DO
11: currentP:=seedsA.first();
12: resultA:=SetOfPointsOfAlice.regionQuery(currentP,Eps);
13: resultB :=SetOfPointsOfBobPermutation.regionQuery(currentP,Eps);//Alice and Bob co-

operatively use Protocol HDP
14: IF resultA.size+resultB .size≥MinPts THEN
15: FOR i FROM 1 TO resultA.size DO
16: resultAP:=resultA.get(i);
17: IF resultAP.ClusterId IN {UNCLASSIFIED,NOISE} THEN
18: IF resultAP.ClusterId=UNCLASSIFIED THEN
19: seedsA.append(resultAP);
20: END IF;
21: SetOfPointsOfAlice.changeClusterId(resultAP,ClusterId);
22: END IF; //UNCLASSIFIED or NOISE
23: END FOR;
24: END IF; //result.size≥MinPts
25: seedsA.delete(currentP);
26: END WHILE; //seedsA 6= Empty
27: RETURN True;
28: END IF;
29: END; //ExpandCluster
30: Party B DOES: repeats step 1 to 29 by replacing Alice for Bob and Bob for Alice.

Communication Complexity and Privacy For each record di (1 ≤ i ≤ n),
it has m components. Assume that each component is represented by c1 bits.
Communication is involved when the two parties are engaged in the Multi-
plication Protocol to judge the core point. The communication complexity of

each Multiplication Protocol is O(c1). Assume that each number in Proto-
col YMPP is represented by c2 bits. Hence, it requires a communication of
O(c1ml(n − l) + c2n

′l(n − l)) bits to execute the algorithm, where n′ = |u|
and l is the number of records owned by one party.

Theorem 2. Algorithm 3 privately computes the privacy preserving distributed
DBSCAN clustering over horizontally partitioned data assuming semi-honest,
revealing the number of points from the other party in the neighborhood of this
point.

Proof. Step 3 and Step 13 are the only two steps of Algorithm 4 requiring com-
munication. As Lemma 2 has been proved that protocol HDP is private, by
applying the composition theorem (Theorem 1), we can conclude that the pri-
vacy preserving distributed DBSCAN clustering over horizontally partitioned
data is private.

4.3 Privacy Preserving Distributed DBSCAN Clustering over
Vertically Partitioned Data

Distance protocol for vertically partitioned data. We first present a dis-
tance protocol (VDP) for evaluating the distance between two vertically split
records. Consider the vertically partitioned data as shown in Figure 3. Let dy de-
note one record and dy,1, dy,2, ..., dy,l are owned by Alice while dy,l+1, dy,l+2, ..., dy,m

are owned by Bob. Let dx (x 6= y) denote another record and dx,1, dx,2, ..., dx,l

owned by Alice while dx,l+1, dx,l+2, ..., dx,m are owned by Bob. The purpose of
this protocol is to let Alice and Bob know whether dist(dx, dy) smaller than
Eps. At the same time, Alice (Bob) knows nothing about Bob’s (Alice’s) data,
respectively. In order to determine

(dist(dx, dy))2 =

Owned by Alice︷ ︸︸ ︷
(dx,1 − dy,1)2 + ... + (dx,l − dy,l)2 +
Owned by Bob︷ ︸︸ ︷

(dx,l+1 − dy,l+1)2 + ... + (dx,m − dy,m)2≤ Eps2

Bob obtained

Eps2 − {(dx,l+1 − dy,l+1)2 + ... + (dx,m − dy,m)2}
then use Protocol YMPP, Alice and Bob could decide whether dist(dx, dy) ≤
Eps.

DBSCAN Algorithm for Vertically Partitioned Data The details of the
DBSCAN algorithm for vertically partitioned data are given in Algorithm 5.
SetOfPoints is either the completed database or a discovered cluster from a
previous run. Eps and MinPts are the global density parameters. A call of
SetOfPoints.regionQuery(Point, Eps) returns the Eps-Neighborhood of Point
in SetOfPoints as a list of points. The function SetOfPoints.get(i) returns the
i-th element of SetOfPoints. The most important function used by DBSCAN
is ExpandCluster which is presented in Algorithm 6.

Algorithm 5 DBSCAN(SetOfPoints, Eps, MinPts)
1: //SetOfPoints is UNCLASSIFIED
2: ClusterId:=nextId(NOISE);
3: For i FROM 1 TO SetOfPoints.size DO
4: Point:=SetOfPoints.get(i);
5: IF Point.ClusterId=UNCLASSIFIED THEN
6: IF ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts) THEN
7: ClusterId:=nextId(ClsuterId);
8: END IF
9: END IF

10: END FOR
11: END

Communication Complexity and Privacy For each record di, it has m
components. Communication is involved when the two parties are engaged in the
Protocol YMPP to judge the core point. Assume that each number in Protocol
YMPP is represented by c2 bits. The communication complexity of each YMPP
is O(c2n

′) where n′ = |u| and there are O(n2) times of executing YMPP if we
implement DBSCAN without spatial index. Hence, it requires a communication
of O(c2n

′n2) bits totally.

Theorem 3. Algorithm 5 privately computes the privacy preserving distributed
DBSCAN clustering over horizontally partitioned data assuming semi-honest,
revealing the number of points in the neighborhood of this point.

Proof. The key privacy of the algorithm 6 is the comparison of dist(dx, dy) with
Eps. This is guaranteed by Protocol YMPP. By applying the composition theo-
rem (Theorem 1), we can conclude that the privacy preserving distributed DB-
SCAN clustering over vertically partitioned data is secure. The only information
revealed is the output which must be known by Alice and Bob.

4.4 Privacy Preserving Distributed DBSCAN Clustering Algorithm
over Arbitrarily Partitioned Data

In arbitrarily partitioned data, there is not necessarily a simple pattern of how
data are shared between the parties. For each record di (1 ≤ i ≤ n), Alice
knows the values for a subset of the attributes, and Bob knows the values for
the remaining attributes. That is, each di is partitioned into disjointed subsets
Alicedi

and Bobdi
so that Alice knows Alicedi

and Bob knows Bobdi
. Although

extremely patchworked data is infrequent in practice, the generality of this model
can make it better suited to practical settings in which data may be mostly, but
not completely, vertically or horizontally partitioned.

As discussed in subsection 3.1, the key of DBSCAN is to judge dist{di, dj} ≤
Eps for two records dx, dy owned by Alice and Bob, respectively. For example,

Algorithm 6 ExpandCluster(SetOfPoints, Point, ClusterId, Eps, MinPts) :
Boolean
1: seeds:=SetOfPoint.regionQuery(Point,Eps); //Alice and Bob cooperatively use Protocol VDP.
2: IF seeds.size<MinPts THEN //no core points
3: SetOfPoints.changeClusterId(Point,NOISE);
4: RETURN False;
5: ELSE
6: SetOfPoints.changeClusterIds(seeds,ClusterId);
7: seeds.delete(Point);
8: WHILE seeds 6= Empty DO
9: currentP:=seeds.first();
10: result:=SetOfPoints.regionQuery(currentP,Eps); //Alice and Bob cooperatively use Protocol

VDP.
11: IF result.size≥MinPts THEN
12: FOR i FROM 1 TO result.size DO
13: resultP:=result.get(i);
14: IF resultP.ClusterId IN {UNCLASSIFIED, NOISE} THEN
15: IF resultP.ClusterId=UNCLASSIFIED THEN
16: seeds.append(resultP);
17: END IF;
18: SetOfPoints.changeClusterId(resultP, ClusterId);
19: END IF; //UNCLASSIFIED or NOISE
20: END FOR;
21: END IF; //result.size≥MinPts
22: seeds.delete(currentP);
23: END WHILE; //seeds 6= Empty
24: RETURN True;
25: END IF;
26: END; //ExpandCluster

in Figure 4, the problem is to let Alice and Bob cooperate to decide

V ertically partitioned︷ ︸︸ ︷
(A2,1 −A1,1)2 + (B2,2 −B1,2)2 +

Horizontally partitioned︷ ︸︸ ︷
(B2,3 −A1,3)2 + (B2,4 −A1,4)2≤ Eps2

For the vertically partitioned data, (A2,1−A1,1)2 = Alicev is owned by Alice
and (B2,2 − B1,2)2 = Bobv is owned by Bob. For the horizontally partitioned
data, we could process them using the Protocol HDP. That is, the horizontally
partitioned data could be divided into data owned by Alice (Aliceh) and data
owned by Bob (Bobh). Then Alice and Bob use Protocol HDP to let Bob get
(B2,3−A1,3)2+(B2,4−A1,4)2 = Bobh. Along with Bobv, Bob knows Bobh+Bobv.
Since Alice knows Alicev, Alice and Bob could decide dist{di, dj} ≤ Eps by using
Protocol YMPP.

Since the arbitrarily partitioned data could be decomposed into horizontally
and vertically partitioned data, with Theorem 1, the algorithm for the arbitrarily
partitioned data is the combination of algorithms for horizontally and vertically
partitioned data. Hence, we do not repeat the algorithm here.

5 Enhanced Protocol of Privacy Preserving DBSCAN
Clustering over Horizontally Partitioned Data

In this section, we present an enhanced protocol with improved privacy for
the protocol in Subsection 4.2. As it is stated in Theorem 2, the privacy pre-
serving distributed DBSCAN clustering algorithm over horizontally partitioned

data reveals the number of points in the neighborhood of a point. This en-
hanced protocol only reveals whether the number of the other party’s points in
his/her point’s neighborhood is greater than Minpts minus ||his/her points in
this point’s neighborhood||.

If Alice wants to decide whether the point is a core point, she only needs to
know the distance between kth smallest Dist2{A,Bi}’s Bi and A is less than
or equal to Eps, where k equals to MinPts minus ||her points in this point’s
neighborhood||. Hence, this problem is decomposed into two sub-problems. One
is how to compare the distances securely. The other one is how to find the kth

order statistic.
For how to compare the distances securely, assume Alice has one point A

and Bob has n points B1, B2, ..., Bn. The distance between Alice A and Bob
Bi, 1 ≤ i ≤ n is:

Dist2{A,Bi} = (A1 −Bi1)2 + (A2 −Bi2)2 + ... + (Am −Bim)2

= (A2
1+A2

2+...+A2
m)−(2A1Bi1+2A2Bi2+...+2AmBim)+(B2

i1+B2
i2+...+B2

im)
= (A2

1+A2
2+...+A2

m,−2A1,−2A2, ...,−2Am, 1)·(1, Bi1, Bi2, ..., Bim, B2
i1+B2

i2+...+B2
im)

Then use the Multiplication Protocol,

u1 = Dist2{A,B1}+ v1

u2 = Dist2{A,B2}+ v2

· · · · · ·
un = Dist2{A,Bn}+ vn

Alice knows u1, u2, ..., un and Bob knows v1, v2, ..., vn. Alice and Bob could use
the Protocol YMPP to decide whether Dist{A,Bi} is greater than Dist{A,Bj}
as follows, where 1 ≤ i 6= j ≤ n.

Dist{A,Bi} −Dist{A,Bj} = (v1 − u1)− (v2 − u2) = (v1 − v2)− (u1 − u2)

Alice and Bob could use the Protocol YMPP to decide whether (v1−v2)− (u1−
u2) is greater than 0, i.e., whether Dist{A,Bi} is greater than Dist{A,Bj}.

Then this problem turns to how to find the kth smallest Dist{A,Bi}, 1 ≤
i ≤ n in an array. We illustrate two different algorithms. The first algorithm
is appropriate when the k is small. The algorithm scans the Dist{A,Bi}, 1 ≤
i ≤ n, the first iteration finds the smallest Dist{A,Bi}, 1 ≤ i ≤ n, then
deletes the Dist{A,Bsmallest} and iteratively to find the smallest in the rest
of Dist{A,Bi}, i 6= smallest. So the iteration continues until finding the kth

smallest number. The time complexity is O(kn), which is a good time com-
plexity for a small k. Though k is often very small, we here also illustrate an
algorithm appropriate when the k is greater, quick sorted based algorithm [21].
The worst time complexity is just like that of quick sort Θ(n2). The balanced
time complexity is O(n + n/2 + n/4 + ... + 1) = O(n).

When Alice knows the kth smallest Dist2{A,Bi}’s Bi. Alice and Bob could
use the Protocol YMPP to decide whether Dist{A,Bi} is smaller than or equal
to Eps. If the Dist{A,Bi} ≤ Eps, then the point A is a core point. The entire
protocols are as follows (Algorithm 7):

Algorithm 7 DBSCAN(SetOfPointsOfAlice, SetOfPointsOfBob, Eps, MinPts)
1: Party Alice DOES:
2: //SetOfPointsOfAlice is UNCLASSIFIED
3: ClusterId:=nextId(NOISE);
4: For i FROM 1 TO SetOfPointsOfAlice.size DO
5: Point:=SetOfPointsOfAlice.get(i);
6: IF Point.ClusterId=UNCLASSIFIED THEN
7: IF EnhancedExpandCluster(SetOfPointsOfAlice, PointOfAlice, ClusterId, Eps,

MinPts) THEN
8: ClusterId:=nextId(ClsuterId);
9: END IF;

10: END IF;
11: END FOR;
12: END;
13: Party B DOES: repeats step 1 to 12 by replacing Alice for Bob and Bob for Alice.

5.1 Communication Complexity and Privacy

For each record di(1 ≤ i ≤ n), it has m components. Assume that each compo-
nent is represented by c1 bits. Communication is involved when the two parties
engage in the Multiplication Protocol to finish Alice and Bob’s secret sharing
Dist{A,Bi}. The communication complexity of each Multiplication Protocol is
O(c1). Assume that each number in Protocol YMPP is represented by c2 bits.
In order to find the kth smallest distance and compare whether the distance is
greater than Eps, we need O(l(n− l)c2n

′) bits to execute, where n′ = |u| and l
is the number of records owned by one party. Hence, the entire protocol requires
O(c1ml(n− l) + c2n

′l(n− l)) to execute.

Theorem 4. Algorithm 7 privately computes the privacy preserving distributed
DBSCAN clustering over horizontally partitioned data assuming semi-honest re-
vealing whether the number of other party’s points in his/her point’s neighborhood
is greater than Minpts minus ||his/her points in this point’s neighborhood||.

Proof. Step 2 and Step 10 are the only two steps of Algorithm 8 requiring com-
munication. As Protocol YMPP and Multiplication Protocol have been proved
private, by applying the composition theorem (Theorem 1), we can conclude
that the updated privacy preserving distributed DBSCAN clustering over hori-
zontally partitioned data is private.

6 Conclusion and Future Work

In this paper, we provide efficient privacy preserving algorithms for DBSCAN
clustering over the setting of horizontally, vertically and arbitrarily partitioned
data, respectively. In the future, it will be interesting to see whether we can ex-
tend our method to other privacy preserving distributed data mining algorithms.

Algorithm 8 EnhancedExpandCluster(SetOfPointsOfAlice, SetOfPointsOf-
Bob, PointOfAlice, PointOfBob, ClusterId, Eps, MinPts) : Boolean
1: Party Alice DOES:
2: IF PointOfAlice is not a core point THEN//Use Updated Protocol.
3: SetOfPointsofAlice.changeClusterId(PointOfAlice,NOISE);
4: RETURN False;
5: ELSE
6: SetOfPointsOfAlice.changeClusterIds(seedsA,ClusterId);
7: seedsA.delete(PointOfAlice);
8: WHILE seedsA 6= Empty DO
9: currentP:=seedsA.first();
10: IF currentP is a core point THEN //Use Updated Protocol.
11: FOR i FROM 1 TO resultA.size DO
12: resultAP:=resultA.get(i);
13: IF resultAP.ClusterId IN {UNCLASSIFIED,NOISE} THEN
14: IF resultAP.ClusterId=UNCLASSIFIED THEN
15: seedsA.append(resultAP);
16: END IF;
17: SetOfPointsOfAlice.changeClusterId(resultAP,ClusterId);
18: END IF; //UNCLASSIFIED or NOISE
19: END FOR;
20: END IF; //result.size≥MinPts
21: seedsA.delete(currentP);
22: END WHILE; //seedsA 6= Empty
23: RETURN True;
24: END IF;
25: END; //ExpandCluster
26: Party B DOES: repeats step 1 to 29 by replacing Alice for Bob and Bob for Alice.

7 Acknowledgments

This research has been partially supported by the AFOSR under grant FA9550-
12-1-0240 and NSF of China under project 11271351.

References

1. C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserving data
mining. In EDBT, pages 183–199, 2004.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD Confer-
ence, pages 439–450, 2000.

3. A. Amirbekyan and V. Estivill-Castro. Privacy preserving dbscan for vertically
partitioned data. In ISI, pages 141–153, 2006.

4. M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points
to identify the clustering structure. In SIGMOD Conference, pages 49–60, 1999.

5. P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In ACM Confer-
ence on Computer and Communications Security, pages 486–497, 2007.

6. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party
computation. In STOC, pages 639–648, 1996.

7. W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving
data mining. In KDD, pages 505–510, 2003.

8. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, pages 226–231,
1996.

9. A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving
mining of association rules. In KDD, pages 217–228, 2002.

10. O. Goldreich. Foundations of cryptography: Basic applications, volume 2. Cam-
bridge Univ Pr, 2004.

11. A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multi-
media databases with noise. In KDD, pages 58–65, 1998.

12. G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data. In KDD, pages 593–599, 2005.

13. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of asso-
ciation rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng.,
16(9):1026–1037, 2004.

14. K. A. Kumar and C. P. Rangan. Privacy preserving dbscan algorithm for clustering.
In ADMA, pages 57–68, 2007.

15. K.-P. Lin and M.-S. Chen. Privacy-preserving outsourcing support vector machines
with random transformation. In KDD, pages 363–372, 2010.

16. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002.

17. J. Liu, J. Luo, J. Z. Huang, and L. Xiong. Privacy preserving distributed dbscan
clustering. In EDBT/ICDT Workshops, pages 177–185, 2012.

18. R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In VLDB, pages 144–155, 1994.

19. R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of
lloyd-type methods for the k-means problem. In FOCS, pages 165–176, 2006.

20. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, pages 223–238, 1999.

21. H. Thomas, E. Charles, and L. Ronald. Introduce to Algorithms. MIT press, 2001.
22. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically

partitioned data. In KDD, pages 639–644, 2002.
23. J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically

partitioned data. In KDD, pages 206–215, 2003.
24. W. Xu, L. Huang, Y. Luo, Y. Yao, and W. Jing. Protocols for privacy-preserving

dbscan clustering. Int. J. Secur., Appl, 1(1):45–56, 2007.
25. A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS,

pages 160–164, 1982.
26. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS,

pages 162–167, 1986.

