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ABSTRACT
Sharing real-time aggregate statistics of private data has given much
benefit to the public to perform data mining for understanding im-
portant phenomena, such as Influenza outbreaks and traffic conges-
tion. However, releasing time-series data with standard differen-
tial privacy mechanism has limited utility due to high correlation
between data values. We propose FAST, an adaptive system to re-
lease real-time aggregate statistics under differential privacy with
improved utility. To minimize overall privacy cost, FAST adap-
tively samples long time-series according to detected data dynam-
ics. To improve the accuracy of data release per time stamp, filter-
ing is used to predict data values at non-sampling points and to es-
timate true values from noisy observations at sampling points. Our
experiments with three real data sets confirm that FAST improves
the accuracy of time-series release and has excellent performance
even under very small privacy cost.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data Mining; G.3 [PROBABILITY AND STATISTICS]: Time
series analysis

Keywords
Differential Privacy, Estimation, Sampling, Time Series

1. INTRODUCTION
Sharing real-time aggregate statistics of private data enables many

importatnt data mining applications. Consider examples below:
Disease Surveillance: A health care provider gathers data from
individual visitors. The collected data, e.g. daily number of In-
fluenza cases, is then shared with third parties, for instance, re-
searchers, in order to monitor and to detect seasonal epidemic
outbreaks at the earliest.
Traffic Monitoring: A GPS service provider gathers data from
individual users about their locations, speeds, mobility, etc. The
aggregated data, for instance, the number of users at each region
during each time period, can be mined for commercial interest,
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Figure 1: Aggregate Data Sharing Scenario

such as popular places, as well as public interest, such as con-
gestion patterns on the roads.
A common scenario of such applications can be summarized by

Figure 1, where a trusted server gathers data from a large number of
individual subscribers. The collected data may be then aggregated
and continuously shared with other un-trusted entities for various
purposes. The trusted server, i.e. publisher, is assumed to be bound
by contractual obligations to protect the user’s interests, therefore
it must ensure that releasing the data does not compromise the pri-
vacy of any individual who contributed data. The goal of our work
is to enable the publisher to share useful aggregate statistics over
individual users continuously (aggregate time series) while guaran-
teeing their privacy.

The current state-of-the-art paradigm for privacy-preserving data
publishing is differential privacy, which requires that the aggregate
statistics reported by a data publisher be perturbed by a randomized
algorithmA, so that the output ofA remains roughly the same even
if any single tuple in the input data is arbitrarily modified. Given
the output of A, an adversary will not be able to infer much about
any single tuple in the input, and thus privacy is protected.

Most existing works on differentially private data release deal
with one-time release of static data [4, 7, 13, 14, 15, 16]. In the
applications we consider, data values at successive timestamps are
highly correlated. A straightforward application of differential pri-
vacy mechanism which adds a Laplace noise to each aggregate
value at each time stamp can lead to a very high overall perturba-
tion error due to the composition theorem [11]. Few recent works
[3, 5, 12] studied the problem of releasing time series or contin-
ual statistics . Rastogi and Nath [12] proposed an algorithm which
perturbs k Discrete Fourier Transform (DFT) coefficients of the en-
tire time series and reconstructs a released version from the Inverse
DFT. Since the entire time-series is required to perform those op-
erations, it is not applicable to real-time applications. We included
this method in the empirical study for utility comparison. Dwork
et al. [5] proposed a differentially private continual counter over
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a binary stream with a bounded error at each time step. Chan et
al. [3] studied the same problem and concluded with a similar upper
bound. However, both works adopt an event-level privacy model,
with the perturbation mechanism designed to protect the presence
of an individual event, i.e. a user’s contribution to the data stream
at a single time point, rather than the presence or privacy of a user.

In this paper, we propose FAST, a novel approach with Filtering
and Adaptive Sampling for releasing Time series under differential
privacy. It uses sampling to query and perturb selected values in the
time series with the differential privacy mechanism, and simultane-
ously uses filtering to dynamically predict the non-sampled values
and correct the sampled values. To improve the accuracy of data re-
lease at each time stamp, we propose a state space model and use of
the Kalman filter [8].To minimize the overall privacy cost, hence,
the overall perturbation error, we propose an adaptive sampling al-
gorithm with PID control. We study the accuracy and robustness
of FAST with real world time-series data sets, which confirms that
FAST provides accurate results in real-time and stability despite
different data dynamics.

The rest of the paper is organized as follows: Section 2 provides
the problem formulation and the background for differential pri-
vacy. Section 3 presents an overview of our solution, as well as
the technical details of filtering and adaptive sampling. Section 4
presents a set of empirical results. Section 5 concludes the paper
and states possible directions for future work.

2. PRELIMINARIES

2.1 Problem Statement
Formally a time series is defined as follows:

Definition 1. [Aggregate Time Series] A univariate, discrete time
series X = {xk} is a set of values of a variable x observed at dis-
crete time k, with 0 ≤ k < T , where T is the length of the series.

In our example applications, X is an aggregate count series,
such as, the daily number of patients diagnosed of Influenza, or the
hourly count of drivers passing by a gas station. This assumption
will hold true for the rest of the paper.

We measure the quality of a released time series R = {rk} by
average relative error E:

E =
1

T

T−1∑
k=0

|rk − xk|/max{xk, δ} (1)

where δ is a user-specified constant (also referred to as sanitary
bound in [13]) to mitigate the effect of excessively small query re-
sults. Here we set δ = 1 throughout the entire time-series.

Clearly, the quality of a published series increases as each rk
approaches xk, the extreme case of which would have rk = xk
for each k. However, a privacy-preserving algorithm is likely to
perturb original data values in order to protect individual privacy.
Thus, a publishing mechanism that guarantees user privacy and
yields high utility is desired.

2.2 Differential Privacy
A mechanism is differentially private if its outcome is not sig-

nificantly affected by the removal or addition of a single user. An
adversary thus learns approximately the same information about
any individual user, irrespective of his/her presence or absence in
the original database.

Definition 2. [Differential Privacy [2]] A non-interactive privacy
mechanismA gives α-differential privacy if for any datasetD1 and
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Figure 2: FAST Framework
D2 differing on at most one record, and for any possible anonymized
dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (2)

where the probability is taken over the randomness of A.

The privacy parameter α, also called the privacy budget [11], spec-
ifies the degree of privacy offered. Intuitively, the lower value of
α implies stronger privacy guarantee and a higher value implies a
weaker guarantee while possibly achieving higher accuracy.
Laplace Mechanism. Dwork et al. [4] show that α-differential
privacy can be achieved by adding i.i.d. noise to each query result:

q̃(D) = q(D) + Ñ (3)

The magnitude of the noise added conforms to a Laplace distri-
bution with the probability density function p(x|λ) = 1

2λ
e−|x|/λ,

with λ = GS(q)/α, where GS(q) denotes the global sensitiv-
ity [4] of a query q which is defined as the maximum difference
between the query results from any two neighboring databases. In
our example, GS(count) = 1.
Composition. The composition properties of differential privacy
provide privacy guarantees for a sequence of computations.

THEOREM 1. [Sequential Composition [11]] Let Ai each pro-
vide αi-differential privacy. A sequence of Ai(D) over the dataset
D provides (

∑
i αi)-differential privacy.

Given the composition theorem, a baseline solution to sharing dif-
ferentially private time series can be derived: Laplace perturbation
is applied at every time stamp to guarantee α/T -differential pri-
vacy, where T is the length of entire series.

3. FAST
We propose FAST: a novel solution to sharing time-series data

with differential privacy. It allows for fully automated adaptation
to changing data dynamics and highly accurate time-series predic-
tion/estimation. Figure 2 shows the framework of FAST.

We outline the workflow of FAST below. For detailed algorithm,
we refer the readers to our full study [6].
• For each time stamp k, the adaptive sampling component de-

termines whether to sample/query the input time-series or not.
• If k is a sampling point, the data value at k is perturbed by the

Laplace mechanism to guarantee α0-differential privacy.
• The filtering component produces a prediction of data value

based on an internal state model at every time stamp. The predic-
tion, i.e. prior estimate, is released to output at a non-sampling
point, while a posterior estimate, i.e. correction of the noisy ob-
servation and prediction, is released at a sampling point.
• The error between the prior and the posterior is then fed through

the adaptive sampling component to adjust the sampling rate.
Once the user-specified privacy budget α is used up, the system
will stop sampling the input series.
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(1) Compute the Kalman gain:

(2) Update estimate with measurement:

(3) Update the error covariance:

Figure 3: Complete Picture of the Kalman Filter
THEOREM 2. FAST satisfies α-differential privacy.

PROOF. Suppose the maximum number of samples FAST allows
for a time series is M . By setting α0 = α/M , the above algorithm
satisfies α-differential privacy according to Theorem 1.

There are two types of error which we would like to balance in
our solution: perturbation error by Laplace perturbation mecha-
nism at sampling points and prediction error by the filtering predic-
tion procedure at non-sampling points. The more we sample, the
more perturbation error we introduce, while the prediction error
might be reduced due to more available feedback, and vice versa.
Our goal is to balance the trade-off between the two types of error
by adaptively adjusting the sampling rate.

3.1 Filtering
Each released data value is an estimate derived by the filtering

component in FAST. To improve the accuracy of each released
value, we established a state space model for time series data and
proposed to use the Kalman filter for estimation.

Process Model. Let xk denote the internal state (true value) of a
process at time stamp k. The states at consecutive time stamps can
be modeled by the following equations:

xk+1 = xk + ω (4)
p(ω) ∼ N(0, Q) (5)

This constant process model indicates that adjacent data values
from the original time-series should be consistent except for a white
Gaussian noise ω with variance Q .

Measurement Model. The noisy observation, which is perturbed
data from the Laplace mechanism, can be modeled by:

zk = xk + ν (6)

The measurement noise ν is a Laplace noise which follows p(ν) ∼
Lap(0, λ) where λ is determined by differential privacy mecha-
nism. In this paper, we approximate the Laplace noise with a white
Gaussian error with variance R and define the distribution of ν as

p(ν) ∼ N(0, R) (7)

We have also studied in [6] several more complex filtering tech-
niques, such as Masreliez filter [10] and particle filters [1], with
more precise modeling of the Laplace noise. The results showed
that the Kalman filter with the Gaussian measurement noise is suf-
ficient in utility and computationally efficient. For brevity, we only
present the Kalman filter model in this paper.

Prior and Posterior Estimates. If noisy observation is available at
every time stamp,the Kalman filter will repeat a pair of operations:
Prediction and Correction, for every k. Figure 3 gives a high-level
diagram of the two procedures specific to our state space model.

At time k, the apriori state estimate x̂−k is made based on the
process model in Equation (4) and is related to the aposteriori state

Adjusted sampling rate

Observed/predicted dynamics

Adaptive Sampling

Figure 4: Adaptive Sampling with Traffic Data
estimate of last step, while the aposteriori state estimate x̂k is based
on a linear combination of x̂−k and the noisy measurement zk :

x̂−k = x̂k−1 (8)

x̂k = x̂−k +Kk(zk − x̂−k ). (9)

The value Kk, called Kalman Gain, is adjusted with each mea-
surement in order to minimize the error variance Pk of the posterior
estimate x̂k. We refer interested readers to [6] for a complete set of
definitions and detailed derivation.

One advantage of the Kalman filter is that it maintains and up-
dates the best estimate of the internal state by properly weighing
and combining all available data (prior estimate and noisy observa-
tion) to form an educated guess. Another advantage is the compu-
tation efficiency which is crucial to real-time applications, as only
O(1) computations are required for each time stamp from Figure 3.

When combined with sampling in the overall solution, a noisy
observation, which is needed by the Correction step, may not be
available at every time stamp. Therefore, we propose to release the
prior estimate at non-sampling points instead. We will evaluate the
estimation accuracy in the experiment section.

3.2 Sampling
Since each noisy observation from Laplace mechanism comes

with a cost (privacy budget spent), we are motivated to sample data
values through the differential privacy interface only when needed
in our overall solution. Below we briefly introduce two sampling
strategies and detailed algorithms can be found in [6].
Fixed Rate Sampling. Given a pre-defined interval I , the fixed-
rate algorithm samples the time series periodically and releases the
posterior estimate per I timestamps. As for the time points between
two adjacent samples, a predicted value is released. Privacy budget
(αI)/T will be spent on each sample to guarantee α-differential
privacy according to Theorem 2.

The challenge of fixed-rate sampling is to define the interval I .
Increasing the sampling rate, i.e. when I is low, an extreme case
of which is to issue a query at each time step as in the baseline
solution, the overall perturbation error will grow with the number
of samples. On the other hand, when we decrease the sampling rate,
i.e. when I is high, the perturbation at each sampling point will
drop, but the published series will not reflect up-to-date data values,
resulting large prediction error. Apriori knowledge of the data is
required to find the optimal sampling rate in order to minimize the
average relative error. However, that is impractical for a real-time
publishing scenario.
Adaptive Sampling. With no apriori knowledge of the time series,
it is desirable to detect data dynamics and to adjust the sampling
rate on-the-fly. Figure 4 illustrates the idea of adaptive sampling.
We plot the original time-series, traffic count, as well as the number
of queries (samples) issued by the adaptive sampling mechanism
during each corresponding time unit. As is shown, the adaptive
sampling mechanism increases sampling rate between day 20 and
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day 100, when the traffic count exhibits significant fluctuations, and
decreases sampling rate beyond day 100, when there’s little varia-
tion among data values.

We implement adaptive sampling in FAST with feedback con-
trol. It is based on the model error between the posterior and the
prior estimates. At time step kn (0 ≤ kn < T ), where the sub-
script indicates the n-th sampling point (0 ≤ n < M ), we define
this error Ekn as follows:

Ekn = |x̂kn − x̂
−
kn
|/max{x̂kn , δ}. (10)

Note that no error is defined at a non-sampling point.
The model error measures how well the internal state model de-

scribes the current data dynamics, assuming x̂kn is close to the true
value. Since x̂−kn is given by a constant state model, we may infer
that data is going through rapid changes if the error Ekn increases
with time. In response, the controller in our system will detect the
error and increase the sampling rate accordingly.

FAST adopts a PID controller, the most common form of feed-
back control [9], to measure the performance of sampling over
time. We re-define the three PID components, Proportional, Inte-
gral, and Derivative, with the model error defined in Equation (10).
The full PID algorithm is thus

∆ = CpEkn +
Ci
Ti

n∑
j=n−Ti+1

Ekj + Cd
Ekn − Ekn−1

kn − kn−1
(11)

Control gains Cp, Ci, and Cd denote how much each of the pro-
portional, integral, and derivative counts for the final calibrated
PID error and Ti represents the integral time. The control gains are
constrained by:

Cp, Ci, Cd ≥ 0 (12)
Cp + Ci + Cd = 1 (13)

Given the PID error ∆, a new sampling interval I ′ can be deter-
mined:

I ′ = I + θ(1− e
∆−ξ
ξ ) (14)

where θ and ξ are pre-determined parameters. Intuitively, the sam-
pling interval increases as the ∆ error drops, and vice versa.

4. EXPERIMENT
We have implemented FAST in Java with JSC (Java Statistical

Classes1) for simulating the Laplace distribution. Our study has
been conducted with three real time-series data sets:
• Flu is the weekly surveillance data of Influenza-like illness pro-

vided by the Influenza Division of the Centers for Disease Con-
trol and Prevention2. We collected the weekly outpatient count
of the age group [5-24] from 2006 to 2010. This time-series con-
sists of 209 data points.
• Traffic is a daily traffic count data set for Seattle-area highway

traffic monitoring and control provided by the Intelligent Trans-
portation Systems Research Program at University of Washing-
ton3. We chose the traffic count at location I-5 143.62 south-
bound from April 2003 till October 2004. This time-series con-
sists of 540 data points.
• Unemployment is the monthly unemployment level of black or

African American women of age group [16-19] from ST. Louis
Federal Reserve Bank4. This data set contains observations from
January 1972 to October 2011 with 478 data points.

1http://www.jsc.nildram.co.uk
2http://www.cdc.gov/flu/
3http://www.its.washington.edu/
4http://research.stlouisfed.org/
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Figure 5: Estimation and Sampling Methods with Traffic Data Set
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Figure 6: Impact of Noise Parameters with Unemployment Data Set

The default parameter settings are as follows: the overall pri-
vacy budget α = 0.01, the estimation noise variances (Q,R) =
(0.001, 10), the control gains (Cp, Ci, Cd) = (0.9, 0.1, 0), and
the interval adaptation parameters (θ, ξ) = (10, 1000). We will
describe how to choose default values and show the impact of indi-
vidual parameters later in this section.

Accuracy of Filtering and Adaptive Sampling. We first evaluate
the accuracy of the Kalman filter estimation and adaptive sampling
against alternative methods. Figure 5 shows the results with traffic
data set, while the other data sets exhibit similar trends. We com-
pare the Kalman filter posterior estimation against linear regres-
sion (fitted with 2 data points) and the baseline Laplace perturba-
tion algorithm mentioned in Section 2. As seen in Figure 5(a), the
Kalman filter outperforms linear predictor as well as Laplace per-
turbation algorithm especially when given small privacy budgets(α =
0.0001, 0.001, 0.01). With large budget (α = 1), which we note
does not provide sufficient privacy protection, we observed no sub-
stantial advantage of using the Kalman filter, which can be ex-
plained by the nature of the aposteriori estimate defined by Equa-
tion (9): it only partially relies on the noisy measurement zk hence
does not fully reflect reduced perturbation error. As for sampling
strategies, we plot the utility comparison in Figure 5(b), with the
interval for fixed-rate sampling varying from 1 to 10. We found the
adaptive sampling strategy is comparable to the optimal fixed-rate
with no need of a priori knowledge. Thus we believe that adaptive
sampling can be adopted by a wider range of applications.

Effects of Kalman Filter Parameters. To understand the impact
of process noise variance Q and measurement noise variance R,
we vary their values independently and plot the estimation accu-
racy. The results with the unemployment data set are presented in
Figure 6, while the other data sets show similar trends. Given R
fixed, we observe that the accuracy of estimation drops as Q in-
creases; given Q, the accuracy rises as R increase. This can be
interpreted by the definition of the Kalman gain Kk in Figure 3:
Kk increases asQ does, resulting the aposteriori estimate favoring
the noisy observation. Similarly, when increasing R, the Kalman
gain decreases, resulting the aposteriori estimate favoring the state
prediction. Both results confirm that it’s beneficial to rely more on
the state prior than the noisy measurement when privacy budget is
small, which implies larger noise in observed values.
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(a) Flu data set (b) Traffic data set (c) Unemployment data set
Figure 7: Comparison against Alternative Methods with Three Data Sets

Effects of Control Parameters. We study the impact of control
gains and find that as long as their values are chosen according to
the common practice: proportional > integral > derivative,
the resulting relative error does not differ beside the randomness
introduced by the Laplace mechanism. Therefore we conclude that
there’s no extra “rule of thumb” than the common practice for tun-
ing the control gains in our system.

We also study the impact of Ti, ξ, and θ on the accuracy of the
released series. Varying the value of any of them does not result in
substantial change in relative error. They are considered not influ-
ential and thus can be set by users as needed. Detailed figures are
excluded for brevity.

FAST vs. Alternative Approaches. Figure 7 presents the perfor-
mance of FAST against the baseline Laplace mechanism (which
adds a Laplace noise to each aggregate value at each time stamp)
and the DFT [12] algorithm (mentioned in Section 1) with respect
to different scales of privacy budget. The number of DFT coef-
ficients to preserve is set to be 20, which is near optimal accord-
ing to [12]. Again, our adaptive approach shows superior perfor-
mance when the privacy budget α is limited. This confirms our
hypothesis that with accurate estimate by the Kalman filter, the
PID control mechanism can adjust the sampling rate as needed,
thus improving the overall utility of the published series. Note that
when α is high and approaching 1, the baseline Laplace pertur-
bation algorithm achieves smaller relative error because of the re-
duced perturbation error. Since the reconstruction error of the DFT
approach and the prediction error of our adaptive approach both
outweighs the perturbation error in this case, their released series
contain larger relative error. However, a privacy budget greater than
1 does not provide sufficient privacy protection any more. We find
that our adaptive approach outperforms the alternative methods un-
der strong privacy guarantee.

5. CONCLUSION
We have proposed FAST, an adaptive approach with filtering and

sampling for monitoring real-time aggregate under differential pri-
vacy. The key innovation is that our approach utilizes feedback
loops based on observed (perturbed) values to dynamically adjust
the prediction/estimation model as well as the sampling rate. To
minimize the overall privacy cost, FAST uses the PID controller to
adaptively sample long time-series according to detected data dy-
namics. As to improve the accuracy of data release per time stamp,
the Kalman filter is used to predict data values at non-sampling
points and to estimate true values from perturbed values at sam-
pling points. Our experiments with three real data sets show that it
is beneficial to incorporate feedback into both the estimation model
and the sampling process. The results confirmed that our adaptive
approach improves utility of time-series release and has excellent
performance even under very small privacy cost.

As for the future, we plan to expand our solution to enable moni-

toring of differentially private spatial-temporal statistics, for exam-
ple, real-time traffic conditions at all intersections of a city.
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