
Secure Multiparty Aggregation with Differential Privacy:
A Comparative Study

Slawomir Goryczka
Emory University

sgorycz@emory.edu

Li Xiong
Emory University

lxiong@emory.edu

Vaidy Sunderam
Emory University

vss@emory.edu

ABSTRACT
This paper considers the problem of secure data aggrega-
tion in a distributed setting while preserving differential pri-
vacy for the aggregated data. In particular, we focus on the
secure sum aggregation. Security is guaranteed by secure
multiparty computation protocols using well known secu-
rity schemes: Shamir’s secret sharing, perturbation-based,
and various encryption schemes. Differential privacy of the
final result is achieved by distributed Laplace perturbation
mechanism (DLPA). Partial random noise is generated by all
participants, which draw random variables from Gamma or
Gaussian distributions, such that the aggregated noise fol-
lows Laplace distribution to satisfy differential privacy. We
also introduce a new efficient distributed noise generation
scheme with partial noise drawn from Laplace distributions.
We compare the protocols with different privacy mecha-

nisms and security schemes in terms of their complexity and
security characteristics. More importantly, we implemented
all protocols, and present an experimental comparison on
their performance and scalability in a real distributed envi-
ronment.

1. INTRODUCTION
Participatory sensing and data surveillance [6,22] are grad-

ually integrated into an inseparable part of our society. In
many applications, a data aggregator may wish to collect
personal data from multiple individuals to study patterns
or statistics over a population. Data privacy and security
issues arise frequently and increasingly in such data surveil-
lance systems [1, 27, 33, 41]. An important challenge is how
to protect the privacy of the data subjects, especially when
the data aggregator is untrusted or not present.

Example Applications. Many applications exist in a vari-
ety of domains, such as smart metering, sensor aggregation,
traffic control, and crowd monitoring. We consider a follow-
ing motivating scenario of intelligence data collection.
As recent events demonstrate, numerous situations ex-

ist, where intelligence gathering is performed in crowd set-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13 Workshops, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

Figure 1: An example scenario: a town square di-
vided into 3 zones monitored by data contributors
(colored dots).

tings both non-deliberately by the general public and by
principals, who are anonymously embedded in the crowds.
A canonical example is an uprising in a major city under
hostile governmental control – the general public uses smart
devices to report on various field data (third party surveil-
lance [27]). There may also be agents among the crowd,
reporting similar data using similar media (e.g. Twitter)
to avoid identification. Figure 1 illustrates the scenario
where a city square is monitored by three data contributors
(colored dots).

In order to aggregate information that contains personal
data without involving a trusted aggregator, two important
constraints must be fulfilled: 1) privacy of individuals or
data subjects whose data are being collected, and 2) security
of data contributors who need to protect their data from
other contributors as well as the untrusted aggregator.

Differential privacy is the state-of-the-art privacy notion
[16,17,28] that gives a strong and provable privacy guaran-
tee for aggregated data. It requires that the output of an
aggregation or computation should not change significantly,
even if a data subject had opted out of the data collection.
Therefore, this assures an individual that any privacy breach
will not unveil participation of its record in the data collec-
tion. Such strong privacy guarantee is achieved only if we
assume that user data are independent, i.e. deleting one
record of data is equivalent to hiding evidence of its partici-
pation in the aggregated data, and further no deterministic
statistics about the participating records have been previ-
ously released [28].

A common way of achieving differential privacy is to per-
turb the aggregated statistics. When a trusted aggregator
(TA) is available, it collects the data, aggregates them, and
adds calibrated noise to the result. However, in many sce-
narios, the TA is not available (e.g. in the intelligence col-
lection scenario). Even for scenarios with the TA, relying on
the centralized entity makes it a single point of failure for
the entire data collection. It is justified to always assume
lack of the TA.
For such decentralized scenarios, all participating data

contributors need to perform aggregations and perturba-
tions among themselves, while ensuring that no sensitive
information is disclosed. In the simplest and the most naive
approach, each data contributor perturbs its own data to
guarantee their differential privacy. However, this will re-
sult in an aggregated noise that significantly exceeds the
required amount to ensure differential privacy for the ag-
gregated result. In addition, data reported by contributors
may still disclose sensitive information to the untrusted ag-
gregator. This problem is typically formulated as a secure
multiparty computation problem (SMC), in which parties
wish to jointly compute a function of their private data in-
puts [2, 8, 9, 30, 36, 37]. Solutions for such problem are SMC
protocols, which securely implement distributed computa-
tions. A protocol is secure if the parties learn only its final
result and nothing else. SMC protocols that return differ-
entially private results, which is achieved by privacy mech-
anisms, guarantee that privacy of data subjects and data
contributors is protected at all time.

Contributions. In this paper, we review and present a
comparative study of existing solutions for the problem of
secure data aggregation with differential privacy. In par-
ticular, we focus on the secure sum aggregation. Among
all secure computation schemes, we evaluate three represen-
tative groups: secret sharing [7, 39], homomorphic encryp-
tion [2, 26, 35, 40], and perturbation-based [11]. They rep-
resent different approaches of ensuring security: splitting
data into shares (secret sharing), encrypting data (homo-
morphic encryption), and perturbing data with significant
noise (perturbation-based). Among homomorphic encryp-
tion schemes we evaluate three of them, which are named
after their authors: Paillier, Ács, and Shi.
To ensure differential privacy in a distributed setting with-

out any trusted aggregator, we evaluate existing distributed
perturbation mechanisms, which are named after distribu-
tions of partial noise: Gamma [2] and Gauss [37]. We also
propose a new efficient mechanism that draws partial noise
from Laplace distributions.
We compare complexities and security characteristics of

protocols implemented in different schemes and using dif-
ferent privacy mechanisms. More importantly, we imple-
mented all protocols, and present a comprehensive experi-
mental comparison of their performance and scalability in
a real distributed environment. Based on the results, we
discuss most effective solutions in various settings.

2. RELATED WORK
Secure Multiparty Computation Protocols. Secure
multiparty computations (SMC) has been defined by Yao,
who presented a solution to the Millionaires’ Problem, where
two millionaires want to find out, who is richer without dis-
closing their actual wealth [44]. Security of multiparty com-

putations has been formally defined in [25]. General SMC
protocols, which can perform any computations, are compu-
tationally expensive. However, many specialized protocols
have been developed for complex tasks, e.g., in data min-
ing [11, 25, 30]. Among them are: a secure sum protocol, a
secure union protocol, and a secure scalar product [11]. For
computing sum, we use efficient techniques based on thresh-
old homomorphic functions [12] and random shares [42].

Threshold variant of the Paillier cryptosystem has been
introduced by Damg̊ard et al. [13], and used to implement
an electronic voting system. Hazay et al. presented a thresh-
old Paillier encryption scheme for two-party setting, and a
protocol for generating an RSA composite [26].

Pedersen et al. compared encryption-based and secret
sharing schemes used in privacy preserving data mining [36].
They presented schemes from both groups, but their com-
parison does not include performance evaluations, and lacks
the latest security schemes and privacy mechanisms.

Differential Privacy. Dwork et al. have developed dis-
tributed algorithms for random number generations, which
shares are drawn from binomial and Poisson distributions
[18]. Noise drawn from the binomial distribution (as an ap-
proximation of the Gaussian) or the Poisson distribution (as
an approximation of the exponential) was used to perturb
results of queries run against distributed databases. Per-
turbed results are δ-approximate α-indistinguishable for the
former noise, and α-indistinguishable in the latter. How-
ever, generating noise requires from nodes exchanging many
messages.

Secure Multiparty Computations with Differential
Privacy. Several works studied SMC protocols while pre-
serving differential privacy for the final results. Ács et al.
applied privacy-preserving and secure data aggregation to
the smart metering system [2]. Their scheme uses differen-
tial privacy model and a homomorphic properties of a mod-
ulo addition-based encryption scheme to ensure privacy of
results and security of computations. Differential privacy
is achieved by adding Laplace distributed noise to results.
Noise is generated distributively, such that each meter gener-
ates one share of it, i.e., the difference between two Gamma
distributed random variables. Below we name such mecha-
nism Gamma DLPA, and evaluate it.

In a similar scenario individual users collect, and aggre-
gate time-series data. PASTE is the system that securely
aggregates such data while ensuring differential privacy of
results [37]. Differential privacy is achieved by perturb-
ing the most significant coefficients of the Discrete Fourier
Transform of the query answers. Coefficients are perturbed
by a Distributed Perturbation Laplace Algorithm (DLPA),
which generates noise, by adding partial noise drawn by all
contributors in a distributed way. To securely aggregate
computed values, and generate noise, PASTE utilizes the
threshold Paillier cryptosystem, which is additively homo-
morphic, i.e., allows to compute the encrypted sum of values
encrypted using the same public key. Partial noise generated
by each participant is a vector of four Gaussian random vari-
ables, which are used to securely calculate the final noise.
We name such mechanism Gauss DLPA, and evaluate it.

Shi et al. also utilized a homomorphic encryption scheme,
and minimized communication by generating an encryption
key from the current round number and the originally estab-
lished key [40]. Their privacy mechanism is distributed, but
ensures approximate differential privacy with noise drawn

from the symmetric geometric distribution [24].

3. SYSTEM SETTING AND MODELS
In this section, we describe our problem setup and adver-

sary model, formally present security and privacy models,
and discuss reliability and performance requirements.

3.1 System Setting
We consider a dynamic set of data contributors or nodes

(colored dots in Figure 1). They participate, and con-
tribute their own data (self surveillance) or other data (third
party surveillance) in a surveillance system. In our running
example, nodes collect data from their areas independently,
and aggregate them. We use data subjects to refer to the
individuals represented in the collected data, which are the
same as data contributors in the self surveillance case. We
assume there is an untrusted application or an application
run by an untrusted party for analysis and modeling (e.g.
disease outbreak detection or intelligence analysis).
In a centralized model with a trusted aggregator (TA), the

TA (e.g. CDC offices in the syndromic surveillance scenario)
collects the data, aggregates them, performs appropriate
data perturbation, and outputs perturbed aggregates with
privacy guarantee, which can be in turn used for modeling
and predictive studies. In such setting, both security and
privacy can be achieved easily, but for the price of making
the TA a single point of failure for the entire system.
In a decentralized setting without a TA (e.g. in the in-

telligence collection scenario), the data contributors need to
perform aggregations and perturbations among themselves
through secure multiparty computation protocols, and sub-
mit the aggregated result to the untrusted aggregator or the
application directly. Such settings are reliable, but are also
more complex to design, and run. In this paper we analyt-
ically and experimentally compare existing distributed sys-
tems, and introduce new ones that achieve the same level of
privacy and security with reliability.

3.2 Adversary Model
We assume that end users are curious, but not intrusive.

Their main goal is to infer sensitive information about data
subjects using final results, and any publicly known data.
We further assume that data contributors are semi-honest,

i.e., they follow a protocol correctly, but may passively ob-
serve, and use any intermediate results to infer sensitive in-
formation of other data contributors or data subjects. In
addition, a group of contributors may collude to increase
their chances of successful attack.

3.3 Privacy Model
Privacy of data subjects is protected, if we can guaran-

tee that data recipient will not learn anything about them
including their participation in the data collection. Tradi-
tional approaches such as removing identifying attributes,
generalizing, or perturbing individual attribute values, are
susceptible to various attacks [21]. In our study we use
the state-of-the-art differential privacy as our privacy model,
which gives a strong and provable privacy guarantee [16,17,
28]. Differential privacy requires that the result of an ag-
gregation or computation should not change significantly, if
any single data subject had opted out of the data collection.
Therefore, this assures an individual that its participation
in the data collection can be guessed only with negligible

probability regardless a priori knowledge of an attacker. In-
formally, an attacker that knows all but one record, and the
result of computations, shall not be able to find out, if the
remaining record participates in the collection. Formally,
differential privacy is defined as follows.

Definition 3.1 (α-Differential Privacy [15,18,28])

A randomized mechanism A satisfies α-differential privacy
if for any neighboring databases D1 and D2, where D1 can be
obtained from D2 by either adding or removing one record,
and any possible output set S,

Pr[A(D1) ∈ S] ≤ eα · Pr[A(D2) ∈ S]

A common mechanism to achieve α-differential privacy
is Laplace perturbation (LPA) [16]. LPA ensures that re-
sults of an aggregated query Q are α-differentially private,
by returning Q(D)+N in place of the original result Q(D).
N is a random noise drawn from the Laplace distribution
Lap(∆Q/α) with a probability density function Pr(N =

x) = α
2∆Q

e−|x|α/∆Q , where ∆Q is global sensitivity of Q.

Definition 3.2 (Global Sensitivity [19])

The sensitivity of any aggregate function Q : D → Rd,
is equal to ∆Q = maxD1,D2 ||AQ(D1) − AQ(D2)||1 for all
D1, D2 differing in at most one record.

Note that global sensitivity does not depend on dataset, but
only on query Q. Therefore, knowing its value is not helpful
to breach privacy.

3.4 Security Model
The main security goal in distributed systems is to ensure

that the data recipients or participating data contributors
learn only the final result, and nothing else about the pri-
vate data provided by other data contributors. Relying only
on privacy mechanisms is not enough to meet our security
goals. If we apply privacy mechanisms to ensure security,
the final results will have very limited utility. At the same
time satisfying only security requirements does not protect
privacy of data subjects. Therefore, both security schemas
and privacy mechanisms are necessary in our system.

We use the formal security notion to present the secure
multiparty computation (SMC) protocols [25, 30, 44]. In an
SMC protocol, parties jointly compute a function of their
private data inputs. The protocol is secure if the parties
learn only the result of the function and nothing else.

Definition 3.3 (Secure computation [25])

Let f be a function of n variables, and Π be an n-party proto-
col for computing f . The view of the ith party during an ex-
ecution of Π on X = (x1, . . . , xn) is denoted viewΠ

i (X), and
for a group of parties with indices I ⊆ [n], we let XI = {xi ∈
X : i ∈ I} and viewΠ

I (X) = (I,viewΠ
i1(X), . . . ,viewΠ

it(X)).
We say that Π securely computes f if there exists a proba-
bilistic polynomial-time algorithm, denoted S, such that for
every I, it holds that

{S(I,XI , f(X))} ≡ {viewΠ
I (X),outputΠ(X)}

where outputΠ(X) denotes the output sequence of all par-
ties during the execution represented in viewΠ

I (X).

Informally, an SMC protocol is secure, if all parties learn
only what can be computed from its results, i.e., simulated

by S. Note that security of f does not guarantee privacy
of f(X), i.e., f(X) may still disclose sensitive information.
However, applying privacy mechanisms to computations of
f preserves privacy of f(X).

3.5 Additional Requirements
Besides the security and privacy requirements, we briefly

discuss a few additional requirement and design goals for the
applications we consider.
In real life scenarios, computation and communication re-

sources are often limited. For example, participants that
collect data may have only cell phones with minimal com-
putation power. A very important limitation of many mobile
devices is their battery life. This makes the power consump-
tion for running a protocol an important evaluation metric.
Power consumption is frequently correlated with computa-
tion and communication complexities, which we evaluate in
this paper.
In addition, data contributors can be faulty or off-line.

Ensuring secure and privacy preserving distributed compu-
tations with limited resources and in faulty environment is
an additional challenge. We analyze fault tolerance of all
presented security schemes.
Finally, communication channels among nodes may be

heterogenous, and direct communication between any two
nodes may not be always possible and trusted. Thus, se-
curing these channels is an important requirement for a few
presented solutions.

4. SECURE COMPUTATION SCHEMES
In this section we describe, and analytically compare sev-

eral different secure computation schemes, which are used
to implement secure aggregation protocols. Experimental
comparisons are presented in Section 6.

4.1 Homomorphic Encryption
An encryption scheme is homomorphic if it allows com-

putations to be carried out on ciphertext. Formally, for a
given homomorphic encryption function E with respect to
a function f , the encrypted result of f can be obtained by
computing a function g over encrypted values of x1, . . . , xn,
i.e.,

E(f(x1, . . . , xn)) ≡ g(E(x1), . . . , E(xn)) (1)

In a distributed settings each party encrypts its data, and
sends them to a single party, which computes the function
g on them. Fully homomorphic schemes allow secure mul-
tiparty computation of any function f . The price for such
flexibility in choosing f is high complexity [23,43]. However,
a few partially homomorphic schemes are efficient enough to
achieve our security and performance goals, e.g., multiplica-
tively homomorphic ElGamal [20] and RSA [38] schemes.
Examples of additively homomorphic schemes are: Pail-
lier [35], Ács [2], and Shi [40].

Paillier Scheme. The Paillier scheme is a probabilistic
public-key encryption scheme [13, 26, 35], which works as
follows. A node i encrypts its private value xi using the en-
cryption function E and the public key. Then, all encrypted
values are collected by a single node, which computes the en-
crypted sum, i.e., g(E(x1), . . . , E(xn)). The sum is broad-
casted, and partially decrypted by each node. One node
collects all partially decrypted sums, and reveals the result.

The original protocol has been enhanced to a threshold
scheme, in which shares of a private key are distributed, and
any t out of n shares are sufficient to decrypt the ciphertext.
Details of key generation, encryption, and decryption algo-
rithms can be found in [13,26].

Generation of public and private keys is a crucial task to
ensure security of this scheme, because a party that has the
private key is able to decrypt all ciphertexts. The public
key and shares of the private key are generated by an entity
that is not involved in computation, e.g., an administrator, a
trusted data collector. Such an entity generates, distributes,
and drops shares of the private key, which is part of the setup
process. The distributed private key can be also generated
by running a separate SMC protocol [14, 34], e.g., Diffie-
Hellman key exchange protocol [2].

Ács Scheme. The Ács scheme is a modulo addition-based
encryption scheme [2], i.e., addition is the encryption func-
tion. Encryption keys are generated in pairs by two nodes,
such that their sum is equal to 0, e.g., by running Diffie-
Hellman key exchange protocol. Each node has l encryption
keys, and their inversions are held by l other nodes. Since
in the final result all encryption keys are aggregated, they
cancel out themselves, and explicit decryption is not neces-
sary. Establishing l keys for each node is inefficient, if done
for each aggregation round. Unfortunately, reusing the same
key leads to potential security breaches.

Shi Scheme. In the Shi scheme removing perturbation is
not necessary as well [40]. Similar as in the Ács scheme,
initial encryption keys are established in the setup phase.
Although all nodes need to participate to decrypt the re-
sult, they do not need to communicate in order to establish
encryption keys for a new run. For each run, an encryption
key is computed from the initially established key using a
one-way function, i.e., inverting it is computationally im-
possible. This approach minimizes communication among
nodes, but requires additional computational power.

4.2 Secret Sharing
Secret sharing schemes split a secret into multiple shares

such that at least t shares are required to reconstruct the
secret. Additionally, any set of fewer than t shares disclose
nothing about the secret. The value of t also defines the
minimal number of colluding nodes necessary to breach the
security of computations. Shares are distributed among par-
ticipants, and each node receives a few (usually one) shares.

We consider the Shamir secret sharing scheme, which has
been proposed in [39]. In this scheme shares from different
secrets can be summed up into shares of their sum, which can
be then reconstructed. Other arithmetic and set operations
are also possible, and implemented [7].

Shamir Scheme. The protocol works as follows. Each
node i generates n shares of its local secret value xi, by ran-
domly generating coefficients of a polynomial wi of order t,
such that wi(0) = xi. For a set of selected and publicly
known points z1, . . . , zn shares of xi are generated using the
polynomial such that xi,j = wi(zj) for j = 1, . . . , n. Then,
shares are distributed among nodes, such that xi,j is sent to
node j. After exchanging all shares, node j computes a share
at zj , i.e., sums up received shares

∑
i xi,j . Finally, one node

collects at least t shares of the sum, interpolates a polyno-
mial

∑
i wi, and computes the sum

∑
i xi =

∑
i wi(0).

Note that originally, Shamir scheme was introduced for

integer numbers. Adapting the scheme to floating point
numbers requires implementing different arithmetic opera-
tion protocols [10], or encoding floating point numbers as
integers, e.g., by multiplying them by the same power of 10.
Ensuring security of communication channels is crucial for

the secret sharing scheme. Such security can be provided by
encrypting communication channels, e.g., by using a Secure
Sockets Layer (SSL). Since each participant sends at least
t shares to others, the amount of communication for such
schemes is relatively high.
Assuming that all communication channels are secure,

Shamir scheme is information-theoretically secure, i.e., is se-
cure against computationally unbounded attackers [4]. It is
also immune to collusion of up to t parties. However, since
efficient implementation of secure communication channels
is done using encryption, the scheme is, in fact, computa-
tionally secure, i.e., using current computer technology an
attacker is not able to break it. SEPIA is an example frame-
work that implements secure arithmetic operations on shares
generated by the Shamir scheme [7].

4.3 Perturbation-Based Protocols
Perturbation-based protocols are an efficient alternative

for encryption-based protocols. They usually require certain
topology of node connections. For example, in a secure sum
protocol, nodes are connected in a ring [11]. The main idea
behind these protocols is to perturb input data by adding
some random noise, such that they become meaningless for
an attacker, and then perform computations on the noisy
data. This approach obfuscates all intermediate results, but
is vulnerable to colluding nodes. In addition, it has low level
of fault tolerance. Fault of any node requires rerunning the
protocol by remaining active nodes.
As an example of perturbation-based protocols, we con-

sider the secure sum protocol [11]. In this protocol all nodes
are connected in a ring. Each node generates random noise,
which is added to its private input. The starting node sends
its perturbed value to its successor, which adds its own per-
turbed value, and passes it further. At the end of the first
phase, the starting node gets the sum of perturbed values
from all nodes. In the second phase, each node removes its
noise from the perturbed sum, which, at the end, reveals the
final sum.
Unfortunately, if two neighbors of a node collude, then

they can easily compute the perturbation, and the partic-
ipated value of that node. Many enhancements have been
introduced to this security scheme to increase its collusion
resistance, e.g., shuffling node positions in the ring, and di-
viding computations into multiple rounds.

4.4 Comparison
To compare analytically different types of protocols we

present their complexity and security characteristics. Ex-
perimental performance comparisons are in Section 6.
A summary of the comparison is presented in Table 1.

Among homomorphic encryptions Paillier and Shi schemes
incur high computation overheads due to their encryption
operations and length of keys. Therefore, these schemes
may be suitable for scenarios where participating nodes have
some computation power, and will scale well due to their
linear communication complexity. The minimal amount of
communication is generated by Shi scheme. In addition, this
scheme is immune to (n−2) colluding nodes, but will not be

Scheme Communi-
cation
complexity

Fault
tolerance

Max.
collusion
(max. n− 2)

Paillier 5n up to (n − t) t − 1

Ásc (2 + t)n up to n t − 1

Shi 2n 0 n − 2

Shamir 3(n − 1)2 up to (n − t) t − 1

Perturbation-
based

3n 0 1

Table 1: Comparison of SMC schemes for n nodes.

able to recover final results, if any node faults. In the Ács
scheme the level of protection against colluding nodes can be
set up as needed. Although, the scheme is fault tolerant, all
encryption keys need to be regenerated in the beginning of
each round, which causes exchanging tn additional messages.
Among encryption schemes, there is no clear winner, but the
Ács scheme could be used in majority of settings.

Shamir secret sharing scheme does not require significant
computational resources, and its fault tolerance level de-
pends on t. However, the high communication complexity
is a major drawback that limits efficiency and scalability of
the scheme for scenarios with a large number of nodes. Ad-
ditionally, all communication channels need to be secured.

Perturbation-based protocols depend on specific compu-
tations, and require participation of all nodes. Thus, their
fault tolerance level is 0. In the presence of colluding nodes,
schemes do not ensure sufficient security, which is their ma-
jor limitation. However, they are suitable for settings, where
nodes are not likely to fault, and have limited resources.

5. DISTRIBUTED DIFFERENTIAL PRIVA-
CY MECHANISMS

The most common way of achieving differential privacy of
aggregated data is by using Laplace mechanism, which per-
turbs the result with noise drawn from Laplace distribution
L. Since the trusted aggregator is not present in our scenar-
ios, and not a single node should know the overall noise, it
needs to be generated in a distributed manner.

Distributed Perturbation Algorithms. In distributed
perturbation Laplace algorithms (DLPA), each node gener-
ates partial noise, such that the aggregated noise follows the
Laplace distribution, which is enough to guarantee differen-
tial privacy. Due to infinite divisibility of Laplace distribu-
tion [29], a random variable with such distribution can be
computed by summing up n other random variables. We
utilize this property, and define a few algorithms named af-
ter distributions that are used to draw partial noise, i.e.,
Gamma, Gauss, and Laplace. Gamma and Gauss have been
already introduced [2,37], while Laplace is introduced in this
paper as an alternative for them. We describe, and compare
all three DLPA mechanisms below. We denote L(θ, s) as a
random variable with the Laplace probability distribution
having the mean equal to θ, and the scale equal to s.

5.1 Gamma
Gamma DLPA mechanism utilizes infinite divisibility of

Laplace distribution, and generates partial noises by draw-
ing random variables from the gamma distribution [2]. For-
mally, a Laplace distributed random variable can be simu-

lated by the sum of n random variables as follows,

L(θ, s) = θ

n
+

n∑
i=1

(Gi −G′
i) (2)

Gi and G′
i are gamma distributed random variables with

densities following the formula (x > 0),

pdf(Gi) = pdf(G′
i) =

(1/s)1/n

Γ(1/n)
x1/n−1e−x/s (3)

Γ is the gamma function, such that Γ(α) =
∫∞
0

xα−1e−xdx.
Note that generating a random variable with gamma dis-

tribution requires drawing at least 2 random variables [3].
Assuming that all values of α are equally probable, the aver-
age number of generated uniformly distributed random num-
bers is equal to 2.54.

5.2 Gauss
A random variable with Laplace distribution can be also

simulated by 4 random variables drawn from the normal
distribution N (0, s/2) with variance (s/2) [29] as follows,

L(0, s) = N (0, s/2)2 +N (0, s/2)2

−N (0, s/2)2 −N (0, s/2)2 (4)

Since infinite divisibility of the normal distribution is sta-
ble, drawing a single random variable is simulated by the
sum of n Gaussian random variables as follows,

N (0, s/2) =
n∑

i=1

N
(
0,

s

2n

)
(5)

The above formulas can be implemented in distributed set-
tings, but secure computation of squares of random variables
is a challenge. An SMC protocol implementing such compu-
tations has been introduced in [37], and uses homomorphic
encryption, but has high complexity.
Generating a random variable from the Gaussian distribu-

tion requires, on average, drawing from uniform distribution
only one random variable [5]. Additional approaches, which
are more efficient on average but slow in the worst-case sce-
nario, have been introduced in [31,32].

5.3 Laplace
Infinite divisibility of the Laplace distribution is also sta-

ble [29]. Thus, drawing a random variable with Laplace dis-
tribution (with mean equal to zero) can be simulated using
other random variables drawn from the same distribution,
as defined by the following formula,

L(0, s) =
√

Bn−1

n∑
i=1

L(0, s) (6)

Bn−1 is a random variable drawn from beta distribution
with parameters 1 and (n − 1), i.e., with the probability
density function following the formula (n− 1)(1− x)n−2 for
x ∈ (0, 1). Note that Bn−1 is a single random variable for all
n shares, which is generated and distributed by one node.
Drawing a single random variable from the Laplace dis-

tribution requires running a random number generator only
once. For each uniformly distributed random variable U
taken from the range (−0.5, 0.5), the following variable will
follow the Laplace distribution,

L(θ, s) = θ − sgn(U) · s · ln(1− 2|U |) (7)

Similarly, drawing a random variable Bn−1 requires gener-
ating only one uniformly distributed random variable.

5.4 Comparison
All DLPA mechanisms guarantee the same level of dif-

ferential privacy. However, drawing partial noise for each
method has different computation cost.

To compare the complexities, we consider the number of
random variables that each node generates for each method.
For the Laplace mechanism, each node generates a single
random variable, and one node generates 2 random vari-
ables, i.e., 1 + 1/n random variables per node, which makes
it the most efficient mechanism. The implementation of
gamma random number generator has an indeterministic
number of steps, and requires generating at least 2 (on av-
erage 2.54) uniformly distributed random numbers [3]. The
Gauss mechanism requires each node to generate 4 different
random variables from the normal distribution. In order to
draw a random variable from the normal distribution, it is
sufficient to draw a single uniformly distributed number by
methods such as the Ziggurat method [32].

6. EXPERIMENTS
In this section, we present a set of experimental evalua-

tions of the various protocols. Since the security and privacy
levels of the protocols have been formally analyzed above,
we mainly focus on their performance. The questions we
attempt to answer are: 1) How do the different distributed
noise generation schemes compare with each other in terms
of efficiency? 2) How do the different secure computation
protocols perform in various settings, and how do they scale
and compare with each other in terms of computation and
communication cost?

6.1 Experiment Setup
All experiments have been run using JVM 1.6. We evalu-

ated local computations including partial noise generation,
and data preparation on three different platforms: 1) a clus-
ter of 64 HP Z210 nodes with 2 quad-core CPUs, 8 GB of
RAM each, running Linux Ubuntu system, 2) a laptop with
Intel Core 2 Duo T5500 and 2 GB of memory running Win-
dows XP, and 3) a shared server Sun Microsystems SunFire
V880, with 8 CPUs and 16 GB of memory running SunOS
5.10. All protocols are evaluated in a distributed environ-
ment using the cluster of nodes, which are connected by the
100Mbit network. All reported results are averaged from
1000 runs.

Our main software framework is built on top of SEPIA [7],
which uses Shamir’s secret sharing scheme for secure dis-
tributed computations implemented in Java. We have ex-
tended SEPIA with other secure computation schemes and
distributed noise generation mechanisms to achieve differ-
ential privacy of the final results. We chose implementa-
tion of the Paillier scheme from the UTD Paillier Threshold
Encryption Toolbox1. Additionally, we use an HPC library
Colt2 for random number generation. All remaining schemes
and mechanisms have been implemented by authors. De-
fault values of experiment parameters are listed in the Ta-
ble 2.

1http://www.utdallas.edu/~mxk093120/paillier
2http://acs.lbl.gov/software/colt

http://www.utdallas.edu/~mxk093120/paillier
http://acs.lbl.gov/software/colt

Name Description Default Value

n Number of running nodes 32

k Size of encryption keys in bits 128

γn Number of trusted nodes 8

t Shamir secret sharing threshold,
i.e., the min number of shares
required to reconstruct the secret

3

The key size (in bits) of the AES
encryption with RSA for SSL
communication channels

128

Table 2: Default values of experiment parameters.

6.2 Privacy
The main goal of this experiment is to evaluate the over-

head of all DLPA (Laplace, Gamma, and Gauss) privacy
mechanisms (Section 5). All of them guarantee that the final
results have the same level of differential privacy, i.e., noise
added to the results is drawn from the same distribution.
We compare the local computation time of the three noise
generation schemes, as well as their impact on the overall
protocol performance.

Noise share generation. In order to ensure that enough
noise is added to the final result, each node adds its share
of the noise. The average generation time of such shares for
different mechanisms is shown in Figure 2.

Laptop Server Node
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Gamma
Gauss
Laplace

time [us]

Figure 2: The average noise share generation times
in microseconds for different mechanisms and plat-
forms, taken from 1, 000, 000 tries.

Generating a noise share for the Laplace DLPA is the most
efficient, which confirms our expectations (Section 5.4). It
only requires a single uniformly distributed random number
and some simple arithmetics, in order to get a noise share.
Gauss mechanism requires generating 4 normally distributed
random numbers, while Gamma mechanism, on average, re-
quires slightly over 5 uniformly distributed random num-
bers [3]. Note that Laplace DLPA requires also a random
number drawn from the beta distribution. This number is
generated by one node, and broadcasted to all nodes as part
of the setup message, therefore it is not considered here.

Impact on Protocol Performance. For devices with
plenty of resources, e.g., desktop computers, the different
privacy mechanisms have small impact on the overall run-
time. However, for devices with limited computational re-
sources (e.g. smart phones) running the aggregation proto-
col repeatedly, the amount of randomly generated numbers
impacts energy consumption significantly. Thus, choosing
the most efficient privacy mechanism, which also minimize

redundant noise, is important in these settings.

6.3 Security
In this group of experiments we evaluate performance

of distributed aggregation protocols for different security
schemes. Security levels guaranteed by each scheme have
been already discussed (Section 4).

6.3.1 Homomorphic Encryption
In this set of experiments we evaluate homomorphic en-

cryption schemes in order to identify factors impacting their
performance and security. In the setup phase encryption
keys are generated, and distributed. To ensure maximal
security of the Paillier and the Ács schemes each round is
performed with a new set of encryption keys. Generation
and distribution of encryption keys in the Ács scheme has
negligible overhead, but in the Paillier scheme the overhead
is significant. Thus, if we lower our security requirements,
the same encryption key can be reused for a few runs. There-
fore, we set up the Paillier scheme to be run in two settings
named new key and reuse key. In the former scenario each
distributed aggregation is performed using new encryption
keys, while in the latter scenario the key generated in the
first round is used in other computations as well.

0 32 64 96 128 160 192 224 256
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

[bits]

Paillier (new
key)
Paillier (reuse
key)
Acs & Shi

k

time [s]

(a)

0 8 16 24 32 40 48 56 64
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Paillier (new
key)
Paillier (reuse
key)
Acs
Shi

n

time [s]

(b)

Figure 3: The average runtimes of a protocol for
different encryption key sizes k (n = 32) and different
number of participants n (k = 128).

Figure 3 shows the average runtime of a single round for
encryption keys of different sizes and different amounts of
participants. Since results of Ács, and Shi schemes are very
similar, we represent them as a single line, when evaluat-
ing schemes against different encryption key sizes. Generat-
ing and distributing a set of encryption keys in the Paillier
scheme is a very time consuming process. Increasing the key

size k, significantly increases computation time for the new
key scenario, but has a negligible overhead when one key is
used all the time in the reuse key scenario.
Despite encryption overhead, the homomorphic encryp-

tion schemes scale well. Adding new nodes linearly increases
the average runtime of all homomorphic encryption schemes.

6.3.2 Comparison
The goal of these experiments is to compare performance

of presented security schemes. Since different privacy mech-
anisms have very little impact on the overall performance,
we use Laplace LDPA in all runs.

Data Preparation Overhead. For all protocols majority
of their computations are local and prior to any communica-
tion with other nodes. Therefore, before comparing proto-
cols for different scenarios, we run an experiment to evaluate
time needed by each node to prepare its data before sending
them to other nodes.

Laptop Server Node
1E−8

1E−7

1E−6

1E−5

1E−4

1E−3

1E−2
Paillier
Shamir
Acs
Shi
Perturbation−
based

time [s]

Figure 4: The average local computation time (log-
arithmic scale) for data preparation of different se-
curity schemes on different platforms.

Figure 4 shows the average local computation time (log-
arithmic scale) for data preparation of security schemes on
different platforms. The runtime includes all random num-
ber generations, encryptions, and any other necessary com-
putations. The Perturbation-based scheme outperforms oth-
ers by at least 2 orders of magnitude. In this scheme each
node generates at most one random number, which is a rel-
atively easy task. Each node running Shamir, or Ács, or Shi
scheme spends more time before communicating with oth-
ers. However, it is still 2 orders of magnitude faster than for
the Paillier scheme. Note that, we have measured only the
encryption time, and skipped the time spent on generating
128-bit encryption keys.

Overall Protocol Performance. In this experiment we
compare all security schemes for different numbers of nodes.
Distributed noise is generated using Laplace DLPA mech-
anism for all protocols. Figure 5 shows runtimes of the
distributed aggregation protocols implemented in different
security schemes. Note that the total runtime of the proto-
col includes the computation time for data preparation as
well as all communication and subsequent computation time
before the protocol completes.
Note that for security, nodes in both Paillier and Ács

schemes reestablish their encryption keys in each round. As
the number of nodes increases, both Perturbation-based and
Shamir schemes do not scale well as the increasing commu-
nication cost becomes the dominant overhead.

0 8 16 24 32 40 48 56 64
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Perturba−
tion−based
Shamir
Paillier (new
key)
Acs
Shi

n

time [s]

Figure 5: The average runtimes for different num-
bers of nodes and security schemes.

On the other hand, all homomorphic encryption schemes
scale well due to their low communication costs. However,
the Paillier scheme has a big computation overhead com-
pared to others, which limits its scalability. Among encryp-
tion schemes, the Shi scheme is the fastest one. In each
round of this scheme encryption keys do not have to be re-
generated, and the encryption function has a relatively low
complexity. Both of these factors allow computations to fin-
ish in a short time.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have described different ways of dis-

tributed data aggregation with security and privacy. Secu-
rity schemes provide different levels of security with different
overhead. There is no scheme that outperforms others in all
settings. All evaluated privacy mechanisms ensure differ-
ential privacy, but with different overhead. The choice of
privacy mechanism has relatively small impact on the per-
formance. However, if one uses devices with limited power
and computation resources, e.g., mobile devices, choosing
the most efficient privacy mechanism is very important.

In future, we plan to evaluate security schemes and pri-
vacy mechanisms using devices with limited power and com-
putation resources like smart phones. We will also evaluate
new distributed privacy mechanisms that ensures approxi-
mated differential privacy and other privacy notions.

Acknowledgments. This research is supported by AFOSR
under grant FA9550-12-1-0240. The authors would also like
to thank the anonymous reviewers for their valuable com-
ments and suggestions to improve the quality of the paper.

8. REFERENCES
[1] Report of the August 2010 Multi-Agency Workshop on

InfoSymbiotics/DDDAS, The Power of Dynamic Data Driven
Applications Systems. Workshop sponsored by: Air Force
Office of Scientific Research and National Science Foundation.

[2] G. Ács and C. Castelluccia. I have a DREAM!: differentially
private smart metering. In Proc. of the 13th Intl Conf. on
Information Hiding, IH, pages 118–132, 2011.

[3] J. Ahrens and U. Dieter. Computer methods for sampling from
gamma, beta, Poisson and bionomial distributions. Computing,
12:223–246, 1974.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation. In STOC, pages 1–10, 1988.

[5] G. E. P. Box and M. E. Muller. A note on the generation of
random normal deviates. The Annals of Mathematical
Statistics, 29(2):610–611, 1958.

[6] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,
S. Reddy, and M. B. Srivastava. Participatory sensing. In

Workshop on World-Sensor-Web (WSW): Mobile Device
Centric Sensor Networks and Applications, 2006.

[7] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain
network events and statistics. In 19th USENIX Security
Symposium, August 2010.

[8] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik.
Efficient and provably secure aggregation of encrypted data in
wireless sensor networks. ACM Trans. Sen. Netw.,
5(3):20:1–20:36, June 2009.

[9] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient
aggregation of encrypted data in wireless sensor networks. In
Proc. of the The 2nd Annual Intl Conf. on Mobile and
Ubiquitous Systems: Networking and Services,
MOBIQUITOUS, pages 109–117, 2005.

[10] O. Catrina and A. Saxena. Secure computation with fixed-point
numbers. In Proc. of the 14th Intl Conf. on Financial
Cryptography and Data Security, FC, pages 35–50, 2010.

[11] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu.
Tools for privacy preserving distributed data mining. SIGKDD
Explor. Newsl., 4:28–34, 2002.

[12] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty
computation from threshold homomorphic encryption. In
EUROCRYPT, pages 280–299, 2001.

[13] I. Damg̊ard and M. Jurik. A generalisation, a simplification and
some applications of Paillier’s probabilistic public-key system.
In Proc. of the 4th Intl Workshop on Practice and Theory in
Public Key Cryptography: Public Key Cryptography, PKC,
pages 119–136, 2001.

[14] I. Damg̊ard and G. Mikkelsen. Efficient, robust and
constant-round distributed rsa key generation. In
D. Micciancio, editor, Theory of Cryptography, volume 5978 of
Lecture Notes in Computer Science, pages 183–200, 2010.

[15] C. Dwork. Differential privacy. In Proc. of the 33rd Intl Conf.
on Automata, Languages and Programming - Volume Part II,
ICALP, pages 1–12, 2006.

[16] C. Dwork. Differential privacy: a survey of results. In Proc. of
the 5th Intl Conf. on Theory and Applications of Models of
Computation, TAMC, pages 1–19, 2008.

[17] C. Dwork. A firm foundation for private data analysis.
Communications of the ACM, 54(1):86–95, 2011.

[18] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: privacy via distributed noise
generation. In Proc. of the 24th Annual Intl Conf. on The
Theory and Applications of Cryptographic Techniques,
EUROCRYPT, pages 486–503, 2006.

[19] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, pages
265–284, 2006.

[20] T. El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In Proc. of CRYPTO 84
on Advances in Cryptology, pages 10–18, 1985.

[21] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu.
Privacy-preserving data publishing: A survey of recent
developments. ACM Comput. Surv., 42(4):14:1–14:53, 2010.

[22] S. L. Garfinkel and M. D. Smith. Guest editors’ introduction:
Data surveillance. IEEE Security & Privacy, 4(6), 2006.

[23] C. Gentry. Fully homomorphic encryption using ideal lattices.
In STOC, pages 169–178, 2009.

[24] A. Ghosh, T. Roughgarden, and M. Sundararajan.

Universally utility-maximizing privacy mechanisms. In STOC,
pages 351–360, 2009.

[25] O. Goldreich. Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, 2004.

[26] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. Efficient
RSA key generation and threshold Paillier in the two-party
setting. In Proc. of the 12th Conf. on Topics in Cryptology,
CT-RSA, pages 313–331, 2012.

[27] J. Kang, K. Shilton, D. Estrin, J. Burke, and M. Hansen.
Self-surveillance privacy. Iowa Law Review, 97, 2012.

[28] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In SIGMOD, pages 193–204, 2011.

[29] S. Kotz, T. Kozubowski, and K. Podgórski. The Laplace
Distribution and Generalizations: A Revisit with Applications
to Communications, Economics, Engineering, and Finance.
Progress in Mathematics Series. Birkhäuser Boston, 2001.

[30] Y. Lindell and B. Pinkas. Secure multiparty computation for
privacy-preserving data mining. IACR Cryptology ePrint
Archive, 2008:197, 2008.

[31] G. Marsaglia and T. A. Bray. A convenient method for
generating normal variables. SIAM Review, 6(3):260–264, 1964.

[32] G. Marsaglia and W. W. Tsang. The Ziggurat method for
generating random variables. J. Stat. Softw., 5(8):1–7, 10 2000.

[33] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda. PEIR, the
personal environmental impact report, as a platform for
participatory sensing systems research. In Proc. of the 7th Intl
Conf. on Mobile Systems, Applications, and Services,
MobiSys, 2009.

[34] T. Nishide and K. Sakurai. Distributed Paillier cryptosystem
without trusted dealer. In Y. Chung and M. Yung, editors,
Information Security Applications, volume 6513 of Lecture
Notes in Computer Science, pages 44–60, 2011.

[35] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, pages 223–238, 1999.

[36] T. B. Pedersen, Y. Saygın, and E. Savaş. Secret Sharing vs.
Encryption-based Techniques For Privacy Preserving Data
Mining. In Proc. of UNECE/Eurostat Work Session on SDC,
2007.

[37] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In
SIGMOD, pages 735–746, 2010.

[38] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[39] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[40] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In NDSS,
2011.

[41] K. Shilton. Four billion little brothers?: privacy, mobile phones,
and ubiquitous data collection. CACM, 52:48–53, 2009.

[42] J. Vaidya and C. Clifton. Privacy-preserving data mining: Why,
how, and when. IEEE Security & Privacy, 2(6):19–27, 2004.

[43] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan.
Fully homomorphic encryption over the integers. In
EUROCRYPT, pages 24–43, 2010.

[44] A. C. Yao. How to generate and exchange secrets. In Proc. of
the 27th Annual Symposium on Foundations of Computer
Science, pages 162–167. IEEE, 1986.

	Introduction
	Related Work
	System Setting and Models
	System Setting
	Adversary Model
	Privacy Model
	Security Model
	Additional Requirements

	Secure Computation Schemes
	Homomorphic Encryption
	Secret Sharing
	Perturbation-Based Protocols
	Comparison

	Distributed Differential Privacy Mechanisms
	Gamma
	Gauss
	Laplace
	Comparison

	Experiments
	Experiment Setup
	Privacy
	Security
	Homomorphic Encryption
	Comparison

	Conclusions and Future Work
	References

