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Secure Distributed Data Anonymization and
Integration with m-Privacy
Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung

Abstract—In this paper, we study the collaborative data publishing problem for anonymizing horizontally partitioned data at multiple
data providers. We consider a new type of “insider attack” by colluding data providers who may use their own data records (a subset
of the overall data) to infer the data records contributed by other data providers. The paper addresses this new threat, and makes
several contributions. First, we introduce the notion of m-privacy, which guarantees that the anonymized data satisfies a given privacy
constraint against any group of up to m colluding data providers. Second, we present heuristic algorithms exploiting the monotonicity of
privacy constraints for efficiently checking m-privacy given a group of records. Third, we present a data provider-aware anonymization
algorithm with adaptive m-privacy checking strategies to ensure high utility and m-privacy of anonymized data with efficiency. Finally,
we propose secure multi-party computation protocols for collaborative data publishing with m-privacy. All protocols are extensively
analyzed, and their security and efficiency are formally proved. Experiments on real-life datasets suggest that our approach achieves
better or comparable utility and efficiency than existing and baseline algorithms, while satisfying m-privacy.
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1 INTRODUCTION

There is an increasing need for sharing data that con-
tain personal information from distributed databases. For
example, in the healthcare domain, a national agenda is
to develop the Nationwide Health Information Network
(NHIN)1 to share information among hospitals and other
providers, and support appropriate use of health informa-
tion beyond direct patient care with privacy protection.

Privacy preserving data analysis, and data publish-
ing [2]–[4] have received considerable attention in recent
years as promising approaches for sharing data while
maintaining individual privacy. In a non-interactive model,
a data provider (e.g., hospital) publishes a “sanitized”
view of the data, simultaneously providing utility for data
users (e.g., researchers), and privacy protection for the
individuals represented in the data (e.g., patients). When
data are gathered from multiple data providers or data
owners, two main settings are used for anonymization [3],
[5]. In one approach each provider anonymizes the data
independently (anonymize-and-aggregate, Fig. 1(a)), which
results in potential loss of integrated data utility. A more
desirable approach is collaborative data publishing [3], [5]–
[7], in which all providers anonymize data as if they
would come from one source (aggregate-and-anonymize,
Fig. 1(b)), using either a trusted third-party (TTP) or Secure
Multi-party Computation (SMC) protocols [8], [9].

• A preliminary version of the manuscript has been published in [1].
• S. Goryczka and L. Xiong are with the Department of Mathematics and

Computer Science, Emory University, Atlanta, GA, USA.
E-mail: sgorycz@emory.edu, lxiong@emory.edu

• Benjamin C. M. Fung is with Concordia University, Montreal, QC,
Canada.
E-mail: fung@ciise.concordia.ca

1. http://healthit.hhs.gov/nhin/

(a) Anonymize-and-aggregate. (b) Aggregate-and-anonymize.

Fig. 1. Distributed data publishing settings for four providers.

Problem Settings. We consider the collaborative data pub-
lishing setting (Fig. 1(b)) with horizontally distributed data
across multiple data providers, each contributing a subset
of records Ti. Each record has an owner, whose identity
shall be protected. Each record attribute is either a sensitive
attribute, which carries sensitive information about data
owners, an identifier, which directly identifies the owner,
or a quasi-identifier (QID), which may identify the owner if
joined with a publicly known dataset. As a special case,
a data provider could be the data owner itself who is
contributing its own records. A data recipient may have
access to some background knowledge (BK in Fig. 1),
which represents any publicly available information about
released data, e.g., Census datasets.

Our goal is to publish an anonymized view of the inte-
grated data, T ∗, which will be immune to attacks. Attacks
are run by attackers, i.e., a single or a group (a coalition) of
external or internal entities that wants to breach privacy of
data using background knowledge, as well as anonymized
data. Privacy is breached if one learns anything about data.

Existing Solutions. Collaborative data publishing can be
considered as a multi-party computation problem, in which
multiple providers wish to compute an anonymized view
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of their data without disclosing any private and sensi-
tive information. We assume the data providers are semi-
honest [8], [9], which is commonly assumed in distributed
computations. A trusted third party (TTP) or Secure Multi-
Party Computation (SMC) protocols [6] can be used to guar-
antee lack of intermediate information disclosure during the
anonymization. However, neither TTP nor SMC protects
against inferring information from the anonymized data.

The problem of inferring information from anonymized
data has been widely studied in a single data provider
settings [3]. A data recipient that is an attacker, e.g., P0,
attempts to infer additional information about data records
using the published data, T ∗, and background knowledge,
BK . For example, k-anonymity [10], [11] protects against
identity disclosure attacks by requiring each quasi-identifier
equivalence group (QI group) to contain at least k records.
l-Diversity requires each QI group to contain at least l
“well-represented” sensitive values [12]. Differential pri-
vacy [2], [4] guarantees that the presence of a record cannot
be inferred from a statistical data release, while assuming
very little about background knowledge of attackers.

New Challenges. Collaborative data publishing introduces
a new attack that has not been studied so far. Each data
provider, such as P1 in Fig. 1, can use both, anonymized
data T ∗, and its own data T1 to infer additional informa-
tion about other records. Compared to the attack by the
external recipient in the second scenario, each provider has
additional data knowledge of its own records, which can
help with the attack. This issue can be further worsened
when multiple data providers collude with each other.

In the social network or recommendation setting, a user
may attempt to infer private information about other users
using the anonymized data or recommendations assisted
by some background knowledge and her own account
information. Malicious users may collude or even create
artificial accounts as in a shilling attack [13].

We illustrate the m-adversary threats with an example
shown in Table 1. Assume that hospitals P1, P2, P3, and P4

wish to collaboratively anonymize their respective patient
databases T1, T2, T3, and T4. In each database, Name is an
identifier, {Age, Zip} is a quasi-identifier (QI), and Disease
is a sensitive attribute. Note that one record, owned by
Olga, is contributed by two providers P2 and P4, and is
represented as a single record in anonymized dataset. T ∗

a

is one possible anonymization that guarantees k-anonymity
and l-diversity (k = 2, l = 2), i.e., each QI group contains
records with at least l different sensitive values. However,
an attacker from the hospital P1 may remove all records
from P1. In the first QI group there will be only one
remaining record, which belongs to a patient between 20
and 30 years old. By using quasi-identifier attributes to
join this record with the background knowledge BK (e.g.,
part of the Census database), P1 can identify Sara as its
owner (highlighted in the table) and her disease Epilepsy. In
practice, the attacker would use more attributes as a QI and
maximal BK to mount the linking attack [14]. In general,
multiple providers may collude with each other, hence

having access to the union of their data, or a user may have
access to multiple databases, e.g., a physician switching
hospitals, and using information about her former patients.

TABLE 1
m-Adversary and m-privacy example.

T1

Name Age Zip Disease
Alice 24 98745 Cancer
Bob 35 12367 Epilepsy
Emily 22 98712 Asthma

T2

Name Age Zip Disease
Olga 32 98701 Cancer
Mark 37 12389 Flu
John 31 12399 Flu

T3

Name Age Zip Disease
Sara 20 12300 Epilepsy
Cecilia 39 98708 Flu

T4

Name Age Zip Disease
Olga 32 98701 Cancer
Frank 33 12388 Asthma

T∗
a

Providers Name Age Zip Disease
P1 Alice [20-30] ***** Cancer
P1 Emily [20-30] ***** Asthma
P3 Sara [20-30] ***** Epilepsy
P2 John [31-34] ***** Flu

P2, P4 Olga [31-34] ***** Cancer
P4 Frank [31-34] ***** Asthma

P1 Bob [35-40] ***** Epilepsy
P2 Mark [35-40] ***** Flu
P3 Cecilia [35-40] ***** Flu

T∗
b

Providers Name Age Zip Disease
P1 Alice [20-40] ***** Cancer
P2 Mark [20-40] ***** Flu
P3 Sara [20-40] ***** Epilepsy

P1 Emily [20-40] 987** Asthma
P2, P4 Olga [20-40] 987** Cancer
P3 Cecilia [20-40] 987** Flu

P1 Bob [20-40] 123** Epilepsy
P4 Frank [20-40] 123** Asthma
P2 John [20-40] 123** Flu

Contributions. We define and address this new type of
“insider attack” by an m-adversary, i.e., a coalition of m
colluding data providers or data owners that attempt to
infer data records contributed by others. Note that a 0-
adversary models the external data recipient, who has only
access to the external background knowledge. Since each
provider holds a subset of the overall data, this inherent
data knowledge has to be explicitly modeled, and consid-
ered when the data are anonymized.

We address the new threat introduced by m-adversaries,
and make several important contributions. First, we intro-
duce the notion of m-privacy that explicitly models the
inherent data knowledge of an m-adversary, and protects
anonymized data against such adversaries with respect to
a given privacy constraint. For example, in Table 1 T ∗

b is
an anonymized table that satisfies m-privacy (m = 1) with
respect to k-anonymity and l-diversity (k = 2, l = 2).

Second, for scenarios with a TTP, to address the chal-
lenges of checking a combinatorial number of potential m-
adversaries, we present heuristic algorithms for efficient m-
privacy verification given a set of records. Our approach
utilizes effective pruning strategies exploiting the equiva-
lence group monotonicity property of privacy constraints,
and adaptive ordering techniques based on a novel notion
of privacy fitness. We also present a data provider-aware ano-
nymization algorithm with adaptive strategies of checking
m-privacy fulfillment, to ensure high utility and m-privacy
of sanitized data with efficiency.

Compared to our preliminary version [1], our new con-
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tributions extend above results. First, we adapt privacy
verification and anonymization mechanisms to work for
m-privacy w.r.t. to any privacy constraint, including non-
monotonic ones. We list all necessary privacy checks, and
prove that no fewer checks is enough to confirm m-privacy.

Second, we propose SMC protocols for secure m-privacy
verification and anonymization. We prove their security,
complexity and experimentally confirm their efficiency.

2 m-PRIVACY DEFINITION

We first formally describe our problem setting. Then, we
present our m-privacy definition with respect to a privacy
constraint to prevent inference attacks by m-adversary,
followed by properties of this new privacy notion.

Let T = {t1, t2, . . .} be a set of records with the
same attributes gathered from n data providers P =
{P1, P2, . . . , Pn}, such that Ti ⊆ T are records provided
by Pi. Let AS be a sensitive attribute with a domain DS .

If the records contain multiple sensitive attributes then,
we could treat each of them as the sole sensitive attribute,
while others would be included to the quasi-identifier [12].
However, in our scenarios we use an approach, which
preserves more utility without sacrificing privacy [15].

Our goal is to publish an anonymized table T ∗ while
preventing any m-adversary from inferring AS for any
single record. An m-adversary is a coalition of data users
with m data providers cooperating to breach privacy of
anonymized records.

2.1 m-Privacy

To protect data from external recipients with certain back-
ground knowledge BK , we assume a given privacy re-
quirement C is defined as a conjunction of privacy con-
straints: C1∧C2∧. . .∧Cw. If a group of anonymized records
T ∗ satisfies C, we say C(T ∗) = true. By definition C(∅) is
true, and ∅ is private. Any of the existing privacy principles
can be used as a component constraint Ci.

We now formally define a notion of m-privacy with
respect to a privacy constraint C, to protect the anonymized
data against m-adversaries. The notion explicitly models
the inherent data knowledge of an m-adversary, the data
records they jointly contribute, and requires that each QI
group, excluding any of those records owned by an m-
adversary, still satisfies C .

Definition 2.1: (m-PRIVACY) Given n data providers, a
set of records T , and an anonymization mechanism A, an
m-adversary I (m 6 n − 1) is a coalition of m providers,
which jointly contribute a set of records TI . A(T ) satisfies
m-privacy with respect to a privacy constraint C if and
only if, any anonymized superset of records A(T ′) from
non-m-adversary providers satisfies C, i.e.,

∀I ⊂ P, |I| = m, ∀T ′ : T \ TI ⊆ T ′ ⊆ T,C(A(T ′)) = true

Corollary 2.1: For all m 6 n − 1, if A(T ) is m-private,
then it is also (m − 1)-private. If A(T ) is not m-private,
then it is also not (m+ 1)-private.

Note that this observation describes monotonicity of m-
privacy with respect to the number of adversaries, and is

independent from the privacy constraint C and records. In
the next section we investigate monotonicity of m-privacy
with respect to records for a given value of m.

m-Privacy with Duplicate Records. m-Privacy can be also
guaranteed when there are duplicate records (such as
records from a patient transferred between hospitals). In
our initial example Olga has records in two hospitals P2

and P4 (Table 1). For such cases, the duplicates are treated
as a single record shared by a few providers. If any of the
providers is a member of an m-adversary, the record will
be considered as a part of its background knowledge.

m-Privacy and Syntactic Privacy Constraints. Let C be a
syntactic privacy constraint, i.e., a constraint that preserves
data truthfulness at the record level, e.g., k-anonymity, l-
diversity, and t-closeness [16]. T ∗ satisfying C will only
guarantee 0-privacy w.r.t. C, i.e., C is not guaranteed to
hold for every QI group after excluding records belonging
to any data provider. m-Privacy is defined w.r.t. a privacy
constraint C , and hence will inherit all strengths and weak-
nesses of C. m-Privacy w.r.t. C protects against privacy
attacks issued by any m-adversary if and only if, C protects
against the same attacks by an external data recipient. m-
Privacy notion is orthogonal to the privacy constraint C
being used, and enhances privacy it defines to distributed
settings, where up to m data providers collude.

m-Privacy and Differential Privacy. Differential privacy
[2], [4], [17] guarantees privacy even if an attacker knows all
but one record. Thus, any differentially private mechanism
is (n − 1)-private w.r.t. differential privacy, which is the
maximum level of m-privacy, i.e., any (n − 1) collud-
ing providers cannot breach privacy of records. However,
differential privacy does not preserve data truthfulness
at the record level, and hence cannot be used for some
scenarios, e.g., by a pharmaceutical company that analyzes
anonymized patient records to choose a small group of
individual patients for clinical trials.

Opposite to differential privacy, m-privacy w.r.t. a syntac-
tic privacy notion preserves data truthfulness at the record
level. In the remaining of the paper, we will focus on
checking and achieving m-privacy w.r.t. different syntactic
privacy constraints.

2.2 Monotonicity of Privacy Constraints

Monotonicity of privacy constraints is defined for a single
equivalence group of records, i.e., a group of records that
QI attributes share the same generalized values. Let A1 be
a mechanism that anonymizes a group of records T into a
single equivalence group, T ∗ = A1(T ).

Generalization based monotonicity of privacy constraints
has been already defined in the literature (Definition 2.2)
[12], [16]. Its fulfillment is crucial for designing efficient
generalization algorithms [11], [12], [16], [18]. In this paper
we will refer to it as generalization monotonicity.

Definition 2.2: (GENERALIZATION MONOTONICITY OF A

PRIVACY CONSTRAINT [12], [16]) A privacy constraint C
is generalization monotonic if and only if, for any two
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equivalence groups A1(T ) and A1(T
′) that satisfy C, their

union satisfies C as well,

C(A1(T )) = true
C(A1(T

′)) = true
⇒ C(A1(T ) ∪ A1(T

′)) = true

In the definition of generalization monotonicity there
is an assumption that original records have been already
anonymized into equivalence groups, which are used for
further generalizations. In this paper, we introduce more
general and record-based definition of monotonicity in or-
der to facilitate the analysis, and design efficient algorithms
for verifying m-privacy w.r.t. C .

Definition 2.3: (EQUIVALENCE GROUP MONOTONICITY

OF A PRIVACY CONSTRAINT, EG MONOTONICITY) A pri-
vacy constraint C is EG monotonic if and only if, for a
group of records T such that its equivalence group A1(T )
satisfies C , and any group of records T̃ , their anonymized
union satisfies C,

C(A1(T )) = true ⇒ ∀T̃ , C(A1(T ∪ T̃ )) = true

EG monotonicity is more general than generalization
monotonicity. If a constraint is EG monotonic, it is also
generalization monotonic, but vice versa does not always
hold. k-Anonymity and l-diversity, which requires l distinct
values of sensitive attribute in a QI group, are examples
of EG and generalization monotonic constraints. Entropy
l-diversity [12] and t-closeness [16] are examples of gener-
alization monotonic, but not EG monotonic constraints at
the same time. For example, consider a subset of two ano-
nymized records with 2 different sensitive values satisfying
entropy l-diversity (l = 2), i.e., each record has different
sensitive value. Entropy l-diversity is not EG monotonic,
because it will not hold if we add records that change
the entropy of sensitive values significantly. However, it
is generalization monotonic because it will still hold if
two QI groups satisfying entropy l-diversity (l = 2) are
(generalized) into a new group.

Corollary 2.2: If all constraints in a conjunction C = C1∧
C2 ∧ . . . ∧ Cw are EG monotonic, then the constraint C is
EG monotonic.

Similar observation holds for generalization monotoni-
city. In our example, C is defined as a conjunction of
k-anonymity and l-diversity. Since both of them are EG
monotonic [12], C is EG monotonic as well.

Theorem 2.1: m-Privacy with respect to any constraint C
is EG monotonic if and only if, C is EG monotonic.

This theorem holds also when applied for generalization
monotonicity. Proofs of this theorem for both EG and gen-
eralization monotonicities defined with respect to records
and not m can be found in the Appendix A.

Corollary 2.3: If a constraint C is EG monotonic, then
the definition of m-privacy w.r.t. C (Definition 2.1) may
be simplified such that only T ′ = T \ TI are checked, i.e.,

∀I ⊂ P, |I| = m,C(A(T \ TI)) = true

Indeed, if A(T \TI) satisfies C, then EG monotonicity of C
guarantees that any anonymized superset of T \TI satisfies
C as well. Thus, A(T ) fulfills definition of m-privacy w.r.t.

C . In addition, if a coalition I cannot breach privacy, then
any its sub-coalition with fewer records cannot do so either
(Definition 2.3). Unfortunately, generalization monotonicity
of C is not enough to guarantee this property.

3 VERIFICATION OF m-PRIVACY

Checking whether a set of records satisfies m-privacy
creates a potential computational challenge due to the
combinatorial number of m-adversaries. In this section,
we first analyze the problem by modeling the adversary
space. Then, we present heuristic algorithms with effec-
tive pruning strategies and adaptive ordering techniques
for efficiently checking m-privacy w.r.t. an EG monotonic
constraint C . Implementation of introduced algorithms can
be run by a trusted third party (TTP). For scenarios without
such party, we introduce secure multi-party (SMC) proto-
cols. Finally, in Appendix B.1 we present modifications of
TTP heuristics and SMC protocols to verify m-privacy w.r.t.
non-EG monotonic privacy constraints.

3.1 Adversary Space Enumeration

Given a set of nG data providers, the entire space of m-
adversaries (m varying from 0 to nG−1) can be represented
using a lattice shown in Fig. 2. Each node at layer m
represents an m-adversary of a particular combination of
m providers. The number of all possible m-adversaries is
given by

(nG

m

)
. Each node has parents (children) represent-

ing their direct super- (sub-) coalitions. For simplicity the
space is depicted as a diamond, where a horizontal line at a
level m corresponds to all m-adversaries, the bottom node
to 0-adversary (external data recipient), and the top line to
(nG − 1)-adversaries.

n  -1

0

m

G

Fig. 2. m-Adversary space and pruning strategies upward
(+), and downward (-).

In order to verify m-privacy w.r.t. a constraint C for a
set of records, we need to check fulfillment of C for all
records after excluding any possible subset of m-adversary
records. When C is EG monotonic, we only need to check C
for the records excluding all records from any m-adversary
(Observation 2.3), i.e., adversaries on the horizontal line.

Given an EG monotonic constraint, a direct algorithm
can sequentially generate all possible

(nG

m

)
m-adversaries,

and then check privacy of the corresponding remaining
records. In the worst-case scenario, when m = nG/2, the
number of checks is equal to the central binomial coefficient( nG

nG/2

)
= O(2nGn

−1/2
G ). Thus, the direct algorithm is not

efficient enough.
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3.2 Heuristic Algorithms for EG Monotonic Constraints

In this section, we present heuristic algorithms for effi-
ciently checking m-privacy w.r.t. an EG monotonic con-
straint. Then, we modify them to check m-privacy w.r.t.
a non-EG monotonic constraint.

The key idea of our heuristics for EG monotonic privacy
constraints is to efficiently search through the adversary
space with effective pruning such that not all m-adversaries
need to be checked. This is achieved by two different
pruning strategies, an adversary ordering technique, and
a set of search strategies that enable fast pruning.

Pruning Strategies. The pruning is possible thanks to the
EG monotonicity of m-privacy (Observations 2.1, and 2.3).
If a coalition is not able to breach privacy, then all its sub-
coalitions will not be able to do so as well, and hence
do not need to be checked (downward pruning). On the
other hand, if a coalition is able to breach privacy, then
all its super-coalitions will be able to do so as well, and
hence do not need to be checked (upward pruning). In
fact, if a sub-coalition of an m-adversary is able to breach
privacy, then the upward pruning allows the algorithm to
terminate immediately as the m-adversary will be able to
breach privacy (early stop). Fig. 2 illustrates the two pruning
strategies where (+) represents a case when a coalition does
not breach privacy and (−) otherwise.

Adaptive Ordering of Adversaries. In order to facilitate
the above pruning in both directions, we adaptively order
the coalitions based on their attack powers (Fig. 3(a)). This
is motivated by following observations. For downward
pruning, super-coalitions of m-adversaries with limited
attack powers are preferred to be checked first, as they
are less likely to breach privacy, and hence increase the
chance of downward pruning. In contrast, sub-coalitions of
m-adversaries with significant attack powers are preferred
to be checked first, as they are more likely to breach privacy,
and hence increase the chance of the early stop.

(a) Adaptive ordering. (b) First steps of the binary al-
gorithm with verified coalitions
depicted as numbered red dots.

Fig. 3. Adaptive ordering for efficient pruning and an exam-
ple run of the binary algorithm.

To quantify privacy fulfillment by a set of records, which
is used to measure the attack power of a coalition and
privacy of remaining records, we introduce a privacy fitness
score w.r.t. C. It also used to facilitate the anonymization,
which we will discuss in the following section.

Definition 3.1: (PRIVACY FITNESS SCORE) Privacy fitness
FC for a set of anonymized records T ∗ is a level of
fulfillment of the privacy constraint C. A privacy fitness
score is a function f of privacy fitness with values greater

or equal to 1 only if C(T ∗) = true,

scoreFC
(T ∗) = f (FC1(T

∗), FC2(T
∗), . . . , FCw(T

∗))

In our setting, C is defined as a conjunction of k-
anonymity and l-diversity. The privacy fitness score is
defined as the minimum fitness score of privacy constraints.
In our example scoreFC is defined as follows:

scoreFC
(T ∗) = min

{ |T ∗|
k

,
|{t[AS ] : t ∈ T ∗}|

l

}
(1)

Notice that scoreFC
(T ∗) > 1, if and only if C(T ∗) = true.

The privacy fitness score also quantifies the attack power
of attackers. The higher their privacy fitness scores are,
the more likely they are able to breach the privacy of the
remaining records. In order to maximize the benefit of both
pruning strategies, the super-coalitions of m-adversaries
are generated in the order of ascending fitness scores
(ascending attack powers), and the sub-coalitions of m-
adversaries are generated in the order of descending fitness
scores (descending attack powers) (Fig. 3(a)).

Now we present several heuristic algorithms that use
different search strategies, and hence utilize different prun-
ing directions. All of them use the adaptive ordering of
adversaries to enable fast pruning.

The Top-Down Algorithm. The top-down algorithm checks
the coalitions in a top-down fashion using downward
pruning, starting from (nG − 1)-adversaries, and moving
down until a violation by an m-adversary is detected or all
m-adversaries are pruned or checked.

The Bottom-Up Algorithm. The bottom-up algorithm is
similar to the top-down algorithm. The main difference is
in the sequence of coalition checks, which is in a bottom
up fashion starting from 0-adversary, and moving up. The
algorithm stops if a violation by any adversary is detected
(early stop) or all m-adversaries are checked.

The Binary Algorithm. The binary algorithm (Algorithm 1),
inspired by the binary search algorithm, checks coalitions
between (nG−1)-adversaries and m-adversaries, and takes
advantage of both pruning strategies (Fig. 3(b)). Thanks to
EG monotonicity of the privacy constraint, we do not con-
sider coalitions of less than m adversaries (Corollary 2.3).

The goal of each iteration in the algorithm is to search
for a pair of coalitions Isub and Isuper , such that Isub is a
direct sub-coalition of Isuper , and Isuper breaches privacy,
while Isub does not. Then, Isub and all its sub-coalitions
are pruned (downward pruning), Isuper and all its super-
coalitions are pruned (upward pruning) as well.

The search works as follows. First, it starts with (nG−1)-
adversaries, finds the first coalition of attackers that violates
privacy, and assigns it to Isuper (lines from 4 to 7). Then,
it finds an Isub, i.e., a sub-coalition of Isuper , which does
not breach privacy (line 8). At each step, a new coalition
I : Isub ⊂ I ⊂ Isuper (such that |I| = |Isuper|+|Isub|

2 ; line 12)
is checked (line 13). If I can breach privacy, then Isuper
is updated to I (line 14). Otherwise, Isub is updated to
I (line 16). The algorithm continues until a direct parent-
child pair Isuper and Isub is found (line 11). Then pruning
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Algorithm 1: The binary m-privacy verification algorithm.

Data: Anonymized records T ∗ from providers P , an EG
monotonic C, a fitness scoring function scoreF , and the m.

Result: true if T ∗ is m-private w.r.t. C, false otherwise.
1 sites = sort_sites(P , increasing order, scoreF )
2 use_adaptive_order_generator(sites, m)
3 while is_m-privacy_verified(T ∗, m, C) == false do
4 Isuper = next_coalition_of_size(nG − 1)
5 if privacy_is_breached_by(Isuper , C) == false then
6 prune_all_sub-coalitions_downwards(Isuper)
7 continue

8 Isub = next_sub-coalition_of(Isuper,m)
9 if privacy_is_breached_by(Isub, C) == true then

10 return false // early stop

11 while is_any_coalition_between(Isub, Isuper) do
12 I = next_coalition_between(Isub, Isuper)
13 if privacy_is_breached_by(I ,C) == true then
14 Isuper = I
15 else
16 Isub = I

17 prune_all_sub-coalitions_downwards(Isub)
18 prune_all_super-coalitions_upwards(Isuper)

19 return true

in both directions is performed (lines 17 and 18), and the
algorithm starts the next iteration. The algorithm stops
when m-privacy can be determined (line 3).
Adaptive Selection of Algorithms. Each of the above
algorithms focuses on different search strategy, and hence
utilizes different pruning. Which algorithm to use is largely
dependent on the characteristics of a given group of provid-
ers. Intuitively, the privacy fitness score (Equation 1), which
quantifies also the level of privacy fulfillment of the group,
may be used to select the most suitable algorithm. The
higher the fitness score, the more likely m-privacy will be
satisfied, and hence the top-down algorithm with downward
pruning will significantly reduce the number of adversary
checks. We utilize such strategy in the anonymization al-
gorithm (discussed later), and experimentally evaluate it.

3.3 Time Complexity

In this section, we derive the time complexity for the m-
privacy w.r.t. C verification algorithms in terms of the
number of privacy checks. Since all algorithms involve
multiple checks of privacy for various records, we assume
that each check of C takes a constant time. Formally, it
can be modeled by an oracle, which performs a check for
given records in O(1) time. For a particular definition of
C, time complexity of a single privacy verification should
be also taken into account. Details of time complexity
computations can be found in the Appendix E.

EG Monotonic m-Privacy. All the above verification al-
gorithms have the same worst-case scenario, in which
all super-coalitions of m-adversaries violate privacy, while
all sub-coalitions of m-adversaries do not. Hence, neither
adaptive ordering nor pruning strategies are useful. For
these settings, the direct algorithm will check exactly

(nG

m

)
possible m-adversaries before confirming m-privacy, where
nG is the number of data providers contributing to the
group. This is the minimal number of privacy verifications

for this scenario. The bottom-up algorithm will check 0-
adversary (external data recipient) up to all m-adversaries,
which requires

∑m
i=0

(nG

i

)
= O (nm

G ) checks. The top-
down algorithm will check all (nG − 1)-adversaries first,
then smaller coalitions up to all m-adversaries, which re-
quires

∑m
i=nG−1

(nG

i

)
= O

(
nnG−1−m
G

)
checks. The binary

algorithm will run
(nG

m

)
iterations with O(log (nG −m))

privacy checks in every iteration. Thus, the total time
complexity is equal to O (nm

G log (nG −m)).
The average time complexity analysis is more involved,

and its results depend on the parameter m. For each
algorithm the lower bound of the average time complexity
is O(nG), but the upper bound varies, and is equal to
O ((3/2)nG) for the top-down, O

(
2nGn

−1/2
G

)
for the bottom-

up, O
(
2nGn−1

G

)
for the direct, and O

(
2nGn−1

G log2 nG

)
for

the binary. Thus, adapting verification strategy to different
settings is crucial to achieve, on average, a low runtime.

4 SECURE m-PRIVACY VERIFICATION PRO-
TOCOLS
All the above algorithms can be run by a trusted third-party
(TTP). For settings without such a party, data providers
need to run an SMC protocol. We assume that all providers
are semi-honest, i.e., honest but curious. In this section
we present secure protocols to verify m-privacy w.r.t. EG
monotonic constraint C.

A secure m-privacy verification protocol for a non-EG
monotonic constraint is an extension of the bottom-up ap-
proach. Due to space limit details of such protocol were
moved to Appendix D.2.

Note that the TTP can recognize duplicated records, and
treats them in the appropriate way. For SMC protocols all
records are unique, and duplicates are not detected.
Preliminaries. Our SMC protocols are based on Shamir’s
secret sharing [19], encryption, and other secure schemas.
In a secret sharing scheme, the owner of a secret message
s prepares, and distributes nG shares, such that each party
gets a few shares (usually one). We use [s] to denote the
vector of shares, and [s]i to refer to an ith share sent to
Pi. An algorithm reconstructing s requires any r shares as
its input. To prevent any coalition of up to m providers to
reveal intermediate results, we set r = m+ 1.

Note that receivers of shares do not have to be providers
nor trusted. They could be run as separate processes in a
distributed environment, e.g., cloud, and still computations
would stay information-theoretically secure [20]. In our
implementation and complexity analyzes, we have used
SEPIA framework [21].
Secure Subprotocols. To compute sums we run a secure
sum protocol, which securely computes the sum of num-
bers held by providers. Implementation of such protocol
is based on Shamir’s secret sharing scheme, and has been
introduced in SEPIA framework [21]. Another protocol that
is provided by SEPIA is secure comparison, which securely
compares two numbers. By running this protocol for a set
of numbers, we find the minimum and maximum values
in the set, and set its elements in order.
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In our protocols we also use secure size of set union
subprotocol, which is a slight modification of the secure
size of set intersection protocol [22]. The modification is to
count all distinct encrypted items, and not only ones that
are contributed by every provider.

Correctness, security, and complexity of these protocols
and their implementations have been proven in [21], [22].
Secure Leader Election Protocol. All protocols are initiated
by a leader P ′, i.e., a chosen provider, which is found
by running a secure leader election protocol (SLE). Our
SLE protocol (Algorithm 9 in Appendix D.1) runs a secret
sum protocol over randomly generated numbers in order to
elect the leader. The implementation utilizes Shamir’s secret
sharing scheme, and does not disclose any information
about data and its providers. The leader is considered
untrusted, therefore any honest but curious party (also
external) can participate in the election. Each data provider
can simulate, monitor, and verify the leader actions to
detect any malicious behavior.

4.1 Secure EG Monotonic m-Privacy Verification
Assume that a group of data records is horizontally distrib-
uted among nG data providers. They would like to securely
verify, if anonymization of their records into one QI group,
is m-private w.r.t. C. Additionally, assume that verification
of privacy defined by C is given (described below), and all
providers have already elected a leader P ′. Before verifying
m-privacy the leader securely sorts data providers.
Secure Sorting and Adaptive Ordering. The main respon-
sibility of the leader is to determine m-privacy fulfillment
with as little privacy checks as possible. Our heuristic
minimizes the number of privacy checks by utilizing EG
monotonicity of C and adaptive ordering of m-adversary
generation (Section 3.2). To define such order, P ′ runs any
sorting algorithm, which sorts providers by fitness scores
of their local records, with all comparisons run securely.

Applying the adaptive ordering heuristic uncovers the
order of fitness scores of data providers. Without such
ordering more privacy checks need to be performed.

Our implementations of secure sorting protocol utilizes
the Shamir’s secret sharing scheme with r shares required
to reconstruct a secret. To ensure m-privacy we set r = m+
1. Thus, for nG data providers the protocol requires run-
ning a sorting algorithm, which takes O(nG log nG) secure
comparisons. Each secure comparison has the same com-
plexity, i.e., requires a few secure multiplications, where
each multiplication takes O(m2) time [21]. Thus, the secure
sorting time complexity is equal to O(m2nG log nG). Each
secure multiplication requires passing nG(nG−1) messages
in total, although only (m+ 1)2 of them are needed to get
the result. Thus, the communication complexity is equal to
O(n3

G log nG).
Note that if we allow disclosing fitness score values

from all providers, then all complexities can be significantly
reduced to O(nG log nG) for time complexity, and O(nG)
for communication complexity.
Secure m-Privacy Verification Protocol. After finding the
order of data providers, the leader P ′ starts verifying

privacy for different coalitions of attackers, which are gen-
erated in specific order. A general scheme of secure m-
privacy verification is the same for all heuristic algorithms
(Algorithm 2). Common steps are as follows. In the main
loop P ′ verifies privacy of records for m-adversaries until
m-privacy can be decided (line 3). Note that in order to
determine m-privacy w.r.t. EG monotonic C, it is enough
to check privacy for all scenarios with exactly m attackers
(Corollary 2.3). In the loop, P ′ generates, and broadcasts
a coalition of potential adversaries I , so each party can
recognize its status (attacker/non-attacker) for the current
privacy check. Then, the leader runs the secure privacy
verification protocol for I (line 6). If privacy could be
breached, and I has no more than m data providers, then
the protocol stops, and returns negative answer (line 7).
Otherwise, the information about privacy fulfillment is
used to prune (upwards or downwards) a few potential
m-adversaries (line 9). Finally, if m-privacy w.r.t. C can be
decided, P ′ returns the result of the verification (line 10).

Algorithm 2: Secure m-privacy verification protocol w.r.t. EG
monotonic constraint C for top-down, bottom-up, and direct algo-
rithms; code run by the leading provider P ′.

Data: List of providers P , an EG monotonic C, and the m.
Result: true if A1 (T ) is m-private w.r.t. C, false otherwise.

1 sites = securely_sort_providers(P , increasing order,
scoreF )

2 use_adaptive_order_generator(sites, m)
3 while is_m-privacy_decided() == false do
4 I = generate_next_coalition(P)
5 Broadcast coalition I .

// Runs secure privacy verification protocol.
6 privacy breached = is_privacy_breached_by(I)
7 if privacy breached and |I| 6 m then
8 return false // early stop

9 prune_coalitions(I , privacy breached)

10 return is_m-private()

For the binary algorithm, secure m-privacy verification
protocol is also run by P ′, which executes all steps of the
Algorithm 1. The only difference is privacy verification,
which is implemented as an SMC protocol. Due to lack
of space details of this protocol are skipped.

Proposition 4.1: Assuming security of subprotocols, all m-
privacy protocols are secure except revealing results of
potential attacks of generated m-adversaries.

Proof: Results of all privacy checks are publicly known,
and, by applying pruning, one can determine privacy of
records for a few potential m-adversaries. Thus, the security
disclosure depends on data, and the sequence of generated
m-adversaries I is very important to minimize it. In this
proof, we analyze security for all heuristics that are pre-
sented above (Section 3.2).

All generated m-adversaries can be partitioned into two
groups by the result of privacy check: 1) the m-adversary,
and all its subsets, cannot breach privacy of remaining
records, 2) the m-adversary, and all its supersets, can breach
privacy of remaining records.

If the records are m-private w.r.t. C, then direct and
bottom-up algorithms make the verification protocol fully
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secure. Fulfillment of m-privacy implies that all verified
coalitions have size up to m, and are in the group 1), i.e.,
there is no security breach. On the contrary, both top-down
and binary algorithms consider coalitions of more than m
providers from both groups. Coalitions from group 1) can
have any size, but all coalitions from group 2) contain
more than m providers. Thus, these two algorithms disclose
both positive and negative results of possible attacks from
coalitions of different size.

If the records are not m-private w.r.t. C , i.e., there is an
m-adversary that can breach privacy, perfect security of the
protocol cannot be guaranteed. Due to pruning property
all heuristics reveal information about all coalitions from
group 1), and about a single coalition of size up to m from
group 2). In addition, top-down and binary algorithms reveal
also results of privacy checks for coalitions from group 2)
having more than m providers.

Note that for a potential attacker, finding a coalition
that is able to breach privacy, is more important than
finding a coalition that cannot do so. Thus, both direct
and bottom-up algorithms are more secure than others.
Among them bottom-up have more chances to identify the
smallest coalition that is able to breach privacy. Thus, direct
is our choice for maximum privacy scenarios. For other
settings, our anonymization algorithm adaptively chooses
the verification algorithm.

Computation Complexity. Electing the leader is a separate
task, which can be run once for all privacy verifications. Its
time complexity is equal to O(mnG).

In Algorithm 2, a single loop iteration executes fol-
lowing operations: generating next coalition of attackers
(O(log nG)), broadcasting generated coalition (O(log nG)),
verifying if m-privacy can be determined (O(nG)), and
pruning (O(nG)). Among them privacy verification has the
highest complexity. Assuming that its time complexity is
equal to V (computed below), and complexity of a single
verification loop is equal to V = V + O(nG). The direct
algorithm will check privacy for at most

(nG

m

)
possible m-

adversaries. Thus, the complexity of m-privacy verifica-
tion is equal to O (V · nm

G ). The bottom-up algorithm will
check 0-adversary (external data recipient) up to all m-
adversaries, which requires

∑m
i=0

(nG

i

)
= O (nm

G ) checks,
therefore for this case complexity is equal to O (V · nm

G ).
The top-down algorithm will check all (nG − 1)-adversaries
first, then smaller coalitions down to all m-adversaries,
which requires

∑m
i=nG−1

(nG

i

)
= O

(
nnG−1−m
G

)
checks,

and the overall complexity of the protocol is equal to
O
(
V · nnG−1−m

G

)
. The binary algorithm will run

(nG

m

)
it-

erations with O(log (nG −m)) privacy checks in each of
them. Thus, when used, the protocol time complexity is
equal to O (V · nm

G log (nG −m)).

Communication Complexity. During each loop iteration of
the m-privacy verification protocol (Algorithm 2) the leader
sends (nG − 1) messages to providers with information
if they should act as attackers or not. Assume that VC

is a communication complexity for a privacy verification
protocol (computed below), and VC = VC + nG − 1 is the

total communication. Thus, the total communication com-
plexities depend on the number of privacy checks, which is
different for each algorithm, i.e., direct, O (VC · nm

G ); bottom-
up, O (VC · nm

G ); top-down, O
(
VC · nnG−1−m

G

)
; and binary,

O (VC · nm
G log (nG −m)).

4.2 Secure Privacy Constraint Verification

To allow using any privacy constraint in our m-privacy
verification protocol, secure privacy verification is imple-
mented as a separate protocol, and results of its runs are
disclosed. Presenting verification protocols for any privacy
constraint is out of the scope of this paper, but we present
secure protocols to verify k-anonymity and l-diversity. All
implementations use Shamir’s secret sharing [19] as their
main scheme. For a few subprotocols we use encryp-
tion (commutative, homomorphic, etc.), and other secure
schemas for efficiency. Assume that there are nG data
providers, and each data provider Pi provides Ti records.

Secure k-Anonymity Verification. To securely verify k-
anonymity, the leader counts all records s = |T | using
the secure sum protocol [22]–[24], and securely compares
s with k. Our implementation of the secure sum protocol
uses only Shamir’s secret sharing scheme (Algorithm 3).

First, all data providers run secure sum protocol in order
to compute total number of records s. To avoid disclosing
s it is stored in distributed shares [s] (line 1). Finally, all
providers securely compare [s] with k [21]. As the result,
each provider gets a share of 1 if k-anonymity holds or a
share of 0 otherwise (line 2).

Algorithm 3: The secure k-anonymity verification protocol.

Data: P1, . . . , PnG providing T1, . . . , TnG records respectively.
Result: Each Pi gets [1]i if s > k, [0]i otherwise.

1 [s] = secureSum (|T1|, . . . , |TnG |)
2 return 1− lessThan([s], k)

Theorem 4.1: Assuming security of subprotocols, the k-
anonymity verification protocol is secure against at most
m attackers.

Proof: Assuming secure communication channels, the
Shamir’s secret sharing scheme were proven correct and
information-theoretically secure [20]. Thus, knowing up to
m shares of any value does not disclose it. Correctness and
security of both secureSum and lessThan subprotocols
were proven in [21]. The protocol does not reveal anything,
but the result of the comparison s > k.

Complexity Analysis. Computation complexity of the pro-
tocol is equal to the sum of complexities for both sub-
protocols. In [21] complexities are given as functions of
secure multiplications. Each secure multiplication requires
additional shares generation, and secret reconstruction,
which take O(mnG) time. Assuming that number of bits
used to represent a number in our protocols is constant,
secure comparison protocol requires constant number of
multiplications, i.e., its time complexity is O(mnG). Secure
sum protocol (including shares generation) has the same
complexity. Thus, the overall time complexity is O(mnG).
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While running the secureSum subprotocol nG(nG − 1)
messages are sent. Additionally, the lessThan subprotocol
requires constant number of multiplications, therefore total
number of messages is equal to nG(nG−1). Thus, the total
communication complexity is equal to O(n2

G).

Secure l-Diversity Verification. The goal of this protocol
is to securely verify if the total number of sensitive values
from all records, is at least l (Algorithm 4). The protocol
has two phases. In the first phase, each data provider Pi

finds the set of sensitive values Si of its records. Then,
it randomly generates pi fake values, and adds them to
Si (line 1). Note that each provider generates fake values
from a different domain. In the last step of this phase,
the leader runs the secure size of set union subprotocol
to compute s̄, i.e., the size of the set of sensitive values of
all records with a few additional fake values (line 2). The
subprotocol is run in the same way as the secure size of
set intersection [22], [25] with a few minor modifications.
Note that the use of commutative encryption scheme in
the subprotocols ensures that duplicated sensitive values
are properly handled.

In the second phase, all providers securely compute the
number all fake values (line 3). Then, they securely check
if the number of sensitive values is not less than l, i.e, if
s̄− [p] > l. The results are stored by providers as shares of
1 if l-diversity holds or shares of 0 otherwise (line 4).

Algorithm 4: The secure l-diversity verification protocol.

Data: Each Pi has records Ti.
Result: Each Pi gets [1]i if |

∪nG
i=1 Si| > l, [0]i otherwise.

1 Si = {t[As] : t ∈ Ti} ∪ generate_fake_values(pi)
2 s̄ = secureSizeOfUnion (S1, . . . , SnG )
3 [p] = secureSum (p1, . . . , pnG )
4 return 1− lessThan(s̄− l, [p])

Theorem 4.2: Assuming security of subprotocols, the l-
diversity verification protocol is secure against up to m
attackers except an upper bound of the number of sensitive
values.

Proof: Using commutative encryption scheme in imple-
mentation of the secureSizeOfUnion subprotocol guar-
antees its correctness and security. Adding distinct fake
values ensures that the local number of sensitive values
will not be disclosed. Since each data provider generates
different fake values, the sum of their counts is equal to the
count of their union. The only information that is revealed,
is s̄, i.e., the upper bound of the number of sensitive
values. However, allowing large and random number of
fake values guarantees the low probability of guessing the
real number of sensitive values. The second phase of the
protocol utilizes Shamir’s secret sharing scheme for secure
sum, and comparison subprotocols, which are secure [20],
[21]. Thus, the protocol is also secure.

Complexity Analysis. The first steps of the protocol re-
quires 2nG rounds of communication, and encryptions.
Thus, if there are at most dS sensitive values, and up to pS
fake values, the time complexity is equal to O(nG(dS+pS)).

Time complexity of the secure sum protocol implemented
using secret sharing scheme is equal to O(mnG).

While computing s̄ all providers exchange 2nG mes-
sages. Both secureSum and lessThan protocols generate
2nG(nG − 1) messages, and the overall communication
complexity is equal to O(n2

G).

Secure Privacy Verification. Above protocols return the
verification result as shares of [1] if privacy constraint is
fulfilled, and [0] otherwise. Each provider holds a single
share for a constraint Ci. Any r = m + 1 providers are
able to check if C = C1 ∧ . . . ∧ Cw holds, by securely
multiplying their results for all constraints, and comparing
it with zero [21]. If the final reconstructed value is equal to
1, then C holds, otherwise it does not.

The fulfillment of each privacy constraint is kept secret,
and only the fulfillment of their conjunction is disclosed.
Given results of privacy checks for all w constraints in the
conjunction, the time complexity is equal to O(rwnG), and
communication complexity is equal to O(n2

G).
Overall the time complexity for our running example is

equal to O((wm +m + pS)nG), while the communication
complexity is equal to O(n2

G).

5 ANONYMIZATION FOR m-PRIVACY

After defining the m-privacy verification algorithms and
protocols, we can use them to anonymize a horizontally dis-
tributed dataset, while preserving m-privacy w.r.t. C . In this
section, we present a baseline anonymization algorithm,
and then our approach that utilizes a data provider-aware
algorithm with adaptive verification strategies to ensure
high utility and m-privacy for anonymized data. We also
present an SMC protocol that implements our approach in
a distributed environment, while preserving security.

For a privacy constraint C that is generalization mono-
tonic, m-privacy w.r.t. C is also generalization monotonic
(Theorem 2.1), and most existing generalization-based ano-
nymization algorithms can be easily modified to guarantee
m-privacy w.r.t. C . The adoption is straightforward, every
time a set of records is tested for privacy fulfillment, we
check m-privacy w.r.t. C instead. As a baseline algorithm
to achieve m-privacy, we adapted the multidimensional
Mondrian algorithm [18] designed for k-anonymity. The
main limitation of such adaptation is that groups of records
are formed oblivious of the data providers, which may result
in over-generalization in order to satisfy m-privacy w.r.t. C .

5.1 Anonymization Algorithm

We introduce a simple and general algorithm based on the
Binary Space Partitioning (BSP) (Algorithm 5). Similar to
the Mondrian algorithm, it recursively chooses an attribute
to split data points in the multidimensional domain space
until the data cannot be split any further without breaching
m-privacy w.r.t. C. However, the algorithm has three novel
features: 1) it takes into account the data provider as an
additional dimension for splitting; 2) it uses the privacy
fitness score as a general scoring metric for selecting the
split point; 3) it adapts its m-privacy checking strategy for
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Algorithm 5: The provider-aware anonymization algorithm.

Data: Records T provided by Pj (j = 1, . . . , n), QI attributes Ai

(i = 1, . . . , q), the m, and a constraint C
Result: Anonymized T ∗ that is m-private w.r.t. C

1 π = get_splitting_points_for_attributes(Ai)
2 π = π ∪ get_splitting_point_for_providers(A0)
3 π′ = {ai ∈ π, i ∈ {0, 1, . . . , q} :
are_both_split_subpartitions_m-private(T, ai)}

4 if π′ is ∅ then
5 T ∗ = T ∗ ∪ A1(T )
6 return T ∗

7 Aj = choose_splitting_attribute(T , C, π′)
8 (T ′

r, T
′
l ) = split(T , Aj)

9 Run recursively for T ′
l and T ′

r

efficient verification. The pseudo code for our provider-aware
anonymization algorithm is presented in Algorithm 5.

Provider-Aware Partitioning. The algorithm first generates
all possible splitting points, π, for QI attributes and data
providers (lines 1 to 2). In addition to the multidimen-
sional QI domain space, we consider the data provider
of each record as its additional attribute A0. For instance,
each record t contributed by data provider P1 will have
t[A0] = P1. Introducing this additional attribute adds also
a new dimension for partitioning. Using A0 to split data
points decreases number of providers in each partition, and
hence increases the chances that more sub-partitions will
be m-private, and feasible for further splits. This leads to
a more precise view of the data, and have a direct impact
on the anonymized data utility. To find the potential split
point along this dimension, we impose a total order on
the providers, e.g., sorting the providers alphabetically or
based on the number of records they provide, and partition
them into two groups with approximately the same size.

Adaptive Verification for EG-Monotonic m-Privacy. m-
Privacy is then verified for all possible splitting points,
and only those satisfying it are added to a candidate set
π′ (line 3). In order to minimize the time, our algorithm
adaptively selects an m-privacy verification strategy using
the fitness score of the partitions. Intuitively, in the early
stage of the anonymization algorithm, the partitions are
large and likely m-private. The top-down algorithm, which
takes advantage of the downward pruning, may be used
for fast privacy verification. However, as the algorithm
continues, the partitions become smaller, the downward
pruning is less likely, and the top-down algorithm will be
less efficient. The binary algorithm may be used instead to
take advantage of upward pruning. We experimentally find
the threshold of privacy fitness score for selecting the best
algorithm, and confirm the benefit of this strategy.

Privacy Fitness Score Based Splitting Point Selection.
Given a non-empty candidate set π′ (Algorithm 5), the
privacy fitness score (Definition 3.1) is used to find the
best split (line 7). Intuitively, if the resulting partitions have
higher fitness scores, they are more likely to satisfy m-
privacy, and allow further splitting. We note that the fitness
score does not have to be exactly the same function used for
adaptive ordering in m-privacy check. Then, the partition

is split, and the algorithm is run recursively on each sub-
partition (lines 8 and 9).

5.2 Secure Anonymization Protocol

Algorithm 5 can be executed in a distributed environment
by a TTP or by all providers running an SMC protocol. In
this section we present a secure protocol for semi-honest
providers. As an SMC schema we use Shamir’s secret
sharing, but, when needed, we employ also encryption.

The key idea of the protocol is to use existing SMC proto-
cols. The first step for all providers is to elect the leader P ′

by running a secure election protocol (Algorithm 9, [26]),
which then runs Algorithm 6.

The most important step of the protocol is to choose an
attribute used to split records based on fitness scores of
record subsets. Splitting is repeated until no more valid
splits can be found, i.e., any further split would return
records that violate the privacy.

Secure anonymization protocol runs as follows. First,
the median of each attribute Ai is found by running the
secure median protocol (line 4, [27]). All records with the Ai

values less than the median, and some records with the Ai

values equal to the median establish the distributed set T s,i.
Remaining records define the distributed set T g,i. Then, m-
privacy w.r.t. C is verified for T s,i by running the secure
verification protocol, i.e., either Algorithm 2 or 10 (line 8). If
A1

(
T s,i

)
is m-private w.r.t. C , then the same verification

protocol is run for T g,i (line 11). If A1

(
T g,i

)
is also m-

private w.r.t. C, then this split becomes a candidate split.
For each candidate split, minimum fitness score of T s,i and
T g,i is computed (secure fitness score protocol is described
below). Among candidate splits, the one with the maximal
fitness score is chosen, and the protocol is run recursively
for its subpartitions (lines 21 to 22). If no such attribute can
be found for any group of records, the protocol stops.

Secure m-privacy anonymization protocol calls three dif-
ferent SMC subprotocols: the secure median [27], [28], the
secure m-privacy verification (Section 4), and the secure
fitness score (Algorithm 7). The last protocol needs to be
defined for each privacy constraint C (described below).
For the sake of this analysis, we assume that all these
protocols are perfectly secure, i.e., all intermediate results
can be inferred from the protocol outputs.

At each anonymization step following values are dis-
closed: medians si of all QID attributes, fulfillment of
m-privacy w.r.t. C for records split according to every
computed median, and, for m-private splits, the order of
privacy fitness scores of all verified subsets of records.
Medians of all QID attributes need to be revealed to allow
each provider defining its local subgroups of records. An-
nouncing results of m-privacy verification for distributed
sets of records allow each provider to accept or to drop
candidate splits. The best splitting attribute is the one that
maximizes fitness scores of split record groups.

Theorem 5.1: The m-privacy anonymization protocol is
secure except median values for each attribute, m-privacy
fulfillments for records split by these medians, and the
order of fitness score values for m-private QI groups.
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Algorithm 6: Secure provider-aware anonymization protocol.

Data: A set of distributed records T , a set of QI attributes Ai

(i = 1, . . . , q), m, a privacy constraint C.
Result: An anonymized view of distributed records A (T ) that is

m-private w.r.t. C.
1 imax = −1
2 [fmax] = [0]
3 foreach i ∈ {0, . . . , q} do
4 Find the median value si of Ai in the set T (using secure

median protocol).
5 Send si and Ai to other providers.
6 Locally split set Tj into T s,i

j = {t ∈ Tj : t[Ai] < si}, and
T g,i
j = {t ∈ Tj : t[Ai] > si}.

7 Locally distribute records {t ∈ Tj : t[Ai] = si} among T s,i
j

and T g,i
j to reduce their uneven distribution.

8 Securely verify m-privacy w.r.t. C of a distributed set
T s,i =

∪n
j=1 T

s,i
j (using Algorithm 2 or 10).

9 if T s,i is not m-private w.r.t. C then
10 continue

11 Securely verify m-privacy w.r.t. C of a distributed set
T g,i =

∪n
j=1 T

g,i
j (using Algorithm 2 or 10).

12 if T g,i is not m-private w.r.t. C then
13 continue

14 [f(T s,i)] =secure_fitness_score(T s,i)
15 [f(T g,i)] =secure_fitness_score(T g,i)
16 [f ] = min([f(T s,i)], [f(T g,i)])
17 if reconstruct(lessThan([fmax], [f ])) == 1 then
18 [fmax] = [f ]
19 imax = i

20 if imax > 0 then
21 Run this protocol for T s,imax .
22 Run this protocol for T g,imax .

Proof: To prove formally that the m-privacy anonymi-
zation protocol is secure, we assume that all subprotocols
are secure, and present a simulator that, using outputs
of the protocol and subprotocols, computes intermediate
results. Each party splits its records based on the received
median values si. Obtained subsets are used only by secure
m-privacy verification, and secure fitness score protocols.
Disclosing the order of fitness scores for m-private subsets
of records allows the simulator to choose the splitting
attribute, which has the maximal fitness score value.

If none of possible splits is m-private, then the simula-
tor finishes splitting the current set of records. No other
intermediate and undisclosed results are computed during
the protocol computation. Finally, since the secure median
protocol, and the m-privacy verification protocol, as well
as the secure fitness score protocol are assumed to be
secure, and from the composition theorem [8] the m-privacy
anonymization protocol is secure as well.

Complexity Analysis. Before analyzing complexity of the
secure anonymization protocol, let us make a note about
complexity of the secure median protocol. A secure me-
dian protocol for an attribute Ai uses the binary search
to find the median. To verify if the median is found,
one needs to make sure that there are n/2 records with
values of Ai not greater and not less than the value, i.e.,
if both sets split by the value are n/2-anonymous (Algo-
rithm 3). The time complexity of such protocol is equal to

O(n2 log(domain(Ai))). The communication complexity is
also equal to O(n2 log(domain(Ai))).

Time complexity of the m-privacy anonymization proto-
col depends on complexities of the secure median protocol
MT , the m-privacy verification protocol VT , and the se-
cure fitness protocol FT . Assuming the worst-case scenario
(maximal number of splits) for |T | records and q QID
attributes, the time complexity is equal to O(|T |(q+1)(VT+
2 · VT +2 ·FT )). For our running example the overall time
complexity is equal to O(|T |(q + 1)(n2 + npS)).

Communication complexity heavily depends on used
subprotocols. MC , VC , and FC denote communication com-
plexities for the secure median, the m-privacy verification,
and the fitness score protocols, respectively. The communi-
cation complexity for the m-privacy anonymization proto-
col is equal to O(|T |(q+1)(3+MC +VC +FC)), which for
our running example is equal to O(|T |qn2).

Secure Fitness Score Protocol. Many privacy constraints
(including ones we have used in our running example) base
on threshold values T . In order to securely compare fitness
scores of constraints, they need to be scaled, e.g., using the
least common multiple (lcm) of all threshold values. After
that the secure fitness score can be computed by running
the following protocol (Algorithm 7). The elected leader
computes the least common multiple of all thresholds from
the privacy constraints (line 1). Then, values measured, and
compared with thresholds in each privacy constraints can
be securely computed (line 3), and scaled (line 4). Shares of
the minimal one are scaled back, and returned (line 5).

In our running example, we require fulfillment of k-
anonymity and l-diversity. Thus, for Pi, γ1 = |T |, and γ2
is equal to the number of distinct sensitive values of local
records T . In order to compute γ1 and γ2, we run secure
k-anonymity, and l-diversity protocols (Algorithm 3 and
Algorithm 4 respectively). However, in both protocols we
skip comparison of computed values with their thresholds
(k and l respectively), and return shares of such values.

Algorithm 7: Secure fitness score protocol.

Data: T – thresholds from all w constraints, data records T .
Result: Shares of the minimal fitness score value.

1 lcm =least_common_multiple(T0, T1, . . . , Tw)
2 foreach i ∈ {0, . . . , w} do
3 Securely compute γi, i.e., value measured for Ci, and T
4 [Fi] = multiplicate([γi], lcm/Ti)
5 return reconstruct (min([F1], . . . , [Fw])) /lcm

The Shamir’s secret sharing scheme, with secure commu-
nication channels, is information-theoretically secure [20].
Correctness and security of the multiplicate subprotocol
has been discussed in details in [21]. The above protocol
reveals the fitness score value. However, if this protocol is
used as a subprotocol, and revealing of the minimal fitness
score value is not necessary, then the protocol would return
shares of the minimal value, i.e., min([F1], . . . , [Fw]).

Complexity Analysis. Computation complexities of shares
generation, as well as multiplication for n providers, are
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equal to O(n2) each [21]. Secure minimum protocol re-
quires (log2 w) comparisons, which takes O(n2) time. Thus,
the overall time complexity is equal to O(n2 log2 w) +∑w

i=1 time complexity(γi). For our running example, the
time complexity is equal to O(n2 + npS), where pS is the
maximal number of fake values in the l-diversity protocol.

While running the above protocol, each data provider
exchanges w(n − 1) messages for all multiplications. Se-
cure minimum protocol is implemented using lessThan
comparison subprotocol, and therefore its communica-
tion complexity is equal to O(n logw) [21]. The overall
communication complexity is then equal to O(wn2) +∑w

i=1 communication complexity(γi), which for our run-
ning example is equal to O(n2).

6 EXPERIMENTS
We run two sets of experiments for m-privacy w.r.t. C with
the following goals: 1) to compare, and evaluate the differ-
ent m-privacy verification algorithms, and 2) to evaluate,
and compare the proposed anonymization algorithm with
the baseline algorithm in terms of both utility and efficiency.
All experiments have been run for scenarios with a trusted
third party (TTP), and without it (SMC protocols). Due to
space restrictions all experiments for a TTP setting have
been moved to Appendix C. They can also be found in the
earlier version of the paper [1].

6.1 Experiment Setup
We merged the training and testing sets of the Adult
dataset2. Records with missing values have been removed.
All remaining 45,222 records have been randomly distrib-
uted among n providers. As a sensitive attribute AS we
chose Occupation with 14 distinct values.

To implement SMC protocols, we have enhanced the
SEPIA framework [21], which utilizes Shamir’s secret shar-
ing scheme [19]. Security of communication is guaranteed
by the SSL using 128-bit AES encryption scheme. For
the secure l-diversity protocol we have used commutative
Pohlig-Hellman encryption scheme with a 64-bit key [29].
Privacy Constraints. The EG monotonic privacy constraint
is defined as a conjunction of k-anonymity [11] and l-
diversity [12]. Privacy fitness score is defined by Equa-
tion 1. All algorithm parameters, and their default values
are listed in the Table 2.

TABLE 2
Experiment settings and default values of SMC protocols.
Name Description Verification Anonymization

m Power of m-privacy 3 3
n Number of data providers – 10

nG
Number of data providers
contributing to a group 10 –

|T | Total number of records – 1000
|TG| Number of records in a group 150 –
k Parameter of k-anonymity 30 30
l Parameter of l-diversity 3 3

All experiments have been performed on the local net-
work of 64 HP Z210 with 2 quad-core CPUs, 8 GB of RAM,
and running Ubuntu 2.6 each. The efficiency of protocols is
measured by their computation time.

2. The Adult dataset has been prepared using the Census database
from 1994, http://archive.ics.uci.edu/ml/datasets/Adult

6.2 Secure m-Privacy Verification

The objective of the first set of experiments is to evaluate
the efficiency of different heuristics in generating attacker
coalitions for privacy verification. Note that computation
times are presented in seconds, not milliseconds.
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Fig. 4. Computation time (logarithmic scale) vs. power of
m-privacy and number of data providers.

Attack Power. In this experiment, we compare m-privacy
verification heuristics against different attack powers, and
different number of data providers. Fig. 4(a) shows com-
putation time with varying m for all heuristics.

Similar to the TTP implementation, the secure protocols
for the top-down and binary algorithms demonstrate the best
performance. The difference between these two approaches
is negligible for most values of m. The direct approach is
not that efficient as the above algorithms except small and
large values of m. The bottom-up approach is useful only
for very small values of m.

Numbers of messages that are generated, while running
protocols (not shown), are between 104 and 106 for different
m, and confirm our conclusions.

Number of Contributing Data Providers. In this experi-
ment we analyze the impact of increasing number of data
providers, nG, on different algorithms. Fig. 4(b) shows the
runtime of different heuristics with varying nG.

As expected, the computation time increases exponen-
tially with the number of data providers. Differences among
approaches are not significant, and as above top-down and
binary algorithms are more efficient than other approaches.
The bottom-up heuristic is the slowest among others.

6.3 Secure m-Privacy Anonymization

This set of experiments compares estimates of our provider-
aware and the baseline approaches, and evaluates the over-
head of our solution. Due to high runtime of protocols,
we estimated their computation times using runs of TTP
algorithms, and computation times of subprotocols.

As a comparison, we implemented an independent ap-
proach in which each provider anonymizes its data on its
own. We observe that its runtime is independent of m and
n, and equals to 1.2 seconds (not shown). However, the
query error is significantly worse than for the collaborative
setting (Appendix C.3).

Attack Power. We first evaluate both anonymization heuris-
tics with varying attack power m. Fig. 5(a) shows the
estimated computation time with varying m for both
approaches. As expected for EG monotonic constraints,
increasing m results in stopping anonymization process
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Fig. 5. Computation time vs. m and the number of providers.

significantly earlier. In addition, both approaches have
comparable computation times with negligible differences.

Number of Data Providers. In this experiment, we estimate
computation times for different number of data providers
n, but with the same average number of records per
provider (|T |/n = 100). Fig. 5(b) shows estimated time
with varying the number of providers for both algorithms.
As expected, the computation time is similar for both
approaches, and increases exponentially with n.

7 RELATED WORK

Privacy preserving data analysis and publishing has re-
ceived considerable attention in recent years [2]–[4]. Most
work has focused on a single data provider setting, and
considered the data recipient as an attacker. A large body
of literature [3] assumes limited background knowledge
of the attacker, and defines privacy using relaxed adver-
sarial notion [12] by considering specific types of attacks.
Representative principles include k-anonymity [10], [11], l-
diversity [12], and t-closeness [16]. A few recent works have
modeled the instance level background knowledge as cor-
ruption, and studied perturbation techniques under these
syntactic privacy notions [30]. In the distributed setting that
we study, since each data holder knows its own records,
the corruption of records is an inherent element in our
attack model, and is further complicated by the collusive
power of the data providers. On the other hand, differential
privacy [2], [4] is an unconditional privacy guarantee, but
only for statistical data release or data computations.

There are some works focused on anonymization of
distributed data. [6], [31], [32] studied distributed anonymi-
zation for vertically partitioned data using k-anonymity.
Zhong et al. [33] studied classification on data collected
from individual data owners (each record is contributed by
one data owner), while maintaining k-anonymity. Jurczyk
et al. [34] proposed a notion called l′-site-diversity to ensure
anonymity for data providers in addition to privacy of the
data subjects. Mironov et al. [35] studied SMC techniques to
achieve differential privacy. Mohammed et al. [5] proposed
SMC techniques for anonymizing distributed data using
the notion of LKC-privacy to address high dimensional
data. Gal et al. [15] proposed a new way of anonymization
of multiple sensitive attributes, which could be used to
implement m-privacy w.r.t. l-diversity with providers as
one of sensitive attributes. However, this approach uses the
same privacy requirements for all sensitive attributes, while
m-privacy has no such limitation.

Nergiz et al. [36] proposed a look ahead approach in
horizontally distributed anonymization. In their approach
providers disclose some information about data in order
to decide if collaborative anonymization will gain more
information than individual one. We leave for the future
research applying the look ahead approach to colluding
scenarios considered with m-privacy.

Our work is the first that considers data providers as po-
tential attackers in the collaborative data publishing setting,
and explicitly models their inherent instance knowledge as
well as potential collusion between them.

The m-privacy verification problem in the combinatorial
m-adversary search space is reminiscent of the frequent
itemset mining problem, in which the search space is the
combination of all items. An example of EG monotonic con-
straints is support, which is used in mining itemsets. Each
item corresponds to a single data provider, and a frequent
itemset represent a group of private records. Due to the
apriori property of frequent itemsets or EG monotonicity of
the frequency count, both upward and downward pruning
are possible. Taking advantage of the dual-pruning is an
essential point of the algorithm presented in [37]. The
main difference with our approach is the goal of constraint
verifications. To find frequent itemsets, all itemsets need
to be decided either by checking or pruning. Checking m-
privacy of records for EG monotonic constraint requires
finding out if all m-coalitions are not able to compromise
privacy of remaining records (Corollary 2.3). After simple
modifications (e.g., not using early stop) our algorithm can
find frequent itemsets, and the dual-pruning algorithm can
verify m-privacy, but, in both cases, inefficient.

8 CONCLUSIONS

In this paper we considered a new type of potential attack-
ers in collaborative data publishing – a coalition of data
providers, called m-adversary. Privacy threats introduced
by m-adversaries are modeled by a new privacy notion,
m-privacy, defined with respect to a constraint C .

We presented heuristics to verify m-privacy w.r.t. C. A
few of them check m-privacy for EG monotonic C, and
use adaptive ordering techniques for higher efficiency. We
also presented a provider-aware anonymization algorithm
with an adaptive verification strategy to ensure high utility
and m-privacy of anonymized data. Experimental results
confirmed that our heuristics perform better or comparable
with existing algorithms in terms of efficiency and utility.

All algorithms have been implemented in distributed set-
tings with a TTP and as SMC protocols. All protocols have
been presented in details with their security and complexity
carefully analyzed. Implementations of algorithms for the
TTP setting is available on-line for further development3.
There are many potential research directions and open
questions, e.g., modeling settings with vertically or ad-hoc
distributed datasets, generalizing our approach to other
kinds of data such as set-valued data.

3. http://www.mathcs.emory.edu/aims/m-anonymizer/
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