
Dynamic Query Processing for P2P Data

Services in the Cloud

Pawel Jurczyk and Li Xiong

Emory University, Atlanta GA 30322, USA
{pjurczy,lxiong}@emory.edu

Abstract. With the trend of cloud computing, data and computing are
moved away from desktop and are instead provided as a service from
the cloud. Data-as-a-service enables access to a wealth of data across
distributed and heterogeneous data sources in the cloud. We designed
and developed DObjects, a general-purpose P2P-based query and data
operations infrastructure that can be deployed in the cloud. This paper
presents the details of the dynamic query execution engine within our
data query infrastructure that dynamically adapts to network and node
conditions. The query processing is capable of fully benefiting from all
the distributed resources to minimize the query response time and max-
imize system throughput. We present a set of experiments using both
simulations and real implementation and deployment.

1 Introduction

With the trend of cloud computing1,2, data and computing are moved away from
desktop and are instead provided as a service from the cloud. Current major
components under the cloud computing paradigm include infrastructure-as-a-
service (such as EC2 by Amazon), platform-as-a-service (such as Google App
Engine), and application or software-as-a-service (such as GMail by Google).
There is also an increasing need to provide data-as-a-service [1] with a goal of
facilitating access to a wealth of data across distributed and heterogeneous data
sources available in the cloud.

Consider a system that integrates the air and rail transportation networks
with demographic databases and patient databases in order to model the large
scale spread of infectious diseases (such as the SARS epidemic or pandemic
influenza). Rail and air transportation databases are distributed among hundreds
of local servers, demographic information is provided by a few global database
servers and patient data is provided by groups of cooperating hospitals.

While the scenario above demonstrates the increasing needs for integrating
and querying data across distributed and autonomous data sources, it still re-
mains a challenge to ensure interoperability and scalability for such data services.

1 http://en.wikipedia.org/wiki/Cloud computing
2 http://www.theregister.co.uk/2009/01/06/year ahead clouds/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 396–411, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Query Processing for P2P Data Services in the Cloud 397

To achieve interoperability and scalability, data federation is increasingly becom-
ing a preferred data integration solution. In contrast to a centralized data ware-
house approach, a data federation combines data from distributed data sources
into one single virtual data source, or a data service, which can then be accessed,
managed and viewed as if it was part of a single system. Many traditional data
federation systems employ a centralized mediator-based architecture (Figure 1).
We recently proposed DObjects [2, 3], a P2P-based architecture (Figure 2) for
data federation services. Each system node can take the role of either a mediator
or a mediator and wrapper at the same time. The nodes form a virtual system
in a P2P fashion. The framework is capable of extending cloud computing sys-
tems with data operations infrastructure, exploiting at the same time distributed
resources in the cloud.

Mediator

Wrapper . . .

Client

DB

Client Client

. . .

Wrapper

DB

Wrapper

DB

Fig. 1. Typical Mediator-Based Architecture

Mediator

Client

DB

Client Client

. . .

DB DB

Mediator/WrapperMediator/Wrapper

Mediator

Fig. 2. P2P-Based Architecture

Contributions. In this paper we focus on the query processing issues of DOb-
jects and present its novel dynamic query processing engine in detail. We present
our dynamic distributed query execution and optimization scheme. In addition
to leveraging traditional distributed query optimization techniques, our opti-
mization is focused on dynamically placing (sub)queries on the system nodes
(mediators) to minimize the query response time and maximize system through-
put. In our query execution engine, (sub)queries are deployed and executed on
system nodes in a dynamic (based on nodes’ on-going knowledge of the data
sources, network and node conditions) and iterative (right before the execution
of each query operator) manner. Such an approach guarantees the best reaction
to network and resource dynamics. We experimentally evaluate our approach
using both simulations and real deployment.

2 Related Work

Our work on DObjects and its query processing schemes was inspired and in-
formed by a number of research areas. We provide a brief overview of the relevant
areas in this section.
Distributed Databases and Distributed Query Processing. It is impor-
tant to distinguish DObjects and its query execution component from the many
existing distributed database systems. At the first glance, distributed database
systems have been extensively studied and many systems have been proposed.
Earlier distributed database systems [4], such as R* and SDD-1, share mod-
est targets for network scalability (a handful of distributed sites) and assume

398 P. Jurczyk and L. Xiong

homogeneous databases. The focus is on encapsulating distribution with ACID
guarantees. Later distributed database or middleware systems, such as Garlic [5],
DISCO [6] or TSIMMIS [7], target large-scale heterogeneous data sources. Many
of them employ a centralized mediator-wrapper based architecture (see Figure 1)
to address the database heterogeneity in the sense that a single mediator server
integrates distributed data sources through wrappers. The query optimization
focuses on integrating wrapper statistics with traditional cost-based query op-
timization for single queries spanning multiple data sources. As the query load
increases, the centralized mediator may become a bottleneck. More recently, In-
ternet scale query systems, such as Astrolabe [8] and PIER [9], target thousands
or millions of massively distributed homogeneous data sources with a peer-to-
peer (P2P) or hierarchical network architecture. However, the main issue in such
systems is how to efficiently route the query to data sources, rather than on in-
tegrating data from multiple data sources. As a result, the query processing in
such systems is focused on efficient query routing schemes for network scalability.

The recent software frameworks, such as map-reduce-merge [10] and Hadoop3,
support distributed computing on large data sets on clusters of computers and
can be used to enable cloud computing services. The focus of these solutions,
however, is on data and processing distribution rather than on data integration.

While it is not the aim of DObjects to be superior to these works, our system
distinguishes itself by addressing an important problem space that has been
overlooked, namely, integrating large-scale heterogeneous data sources with both
network and query load scalability without sacrificing query complexities and
transaction semantics. In spirit, DObjects is a distributed P2P mediator-based
system in which a federation of mediators and wrappers forms a virtual system
in a P2P fashion (see Figure 2). Our optimization goal is focused on building
effective sub-queries and optimally placing them on the system nodes (mediators)
to minimize the query response time and maximize throughput.

The most relevant to our work are OGSA-DAI and its extension OGSA-
DQP [11] introduced by a Grid community as a middleware assisting with access
and integration of data from separate sources. While the above two approaches
share a similar set of goals with DObjects, they were built on the grid/web
service model. In contrast, DObjects is built on the P2P model and provides
resource sharing on a peer-to-peer basis.

Data Streams and Continuous Queries. A large amount of efforts was
contributed to the area of continuous or pervasive query processing [12,8,13,14,
15, 16, 17]. The query optimization engine in DObjects is most closely related
to SBON [18]. SBON presented a stream based overlay network for optimizing
queries by carefully placing aggregation operators. DObjects shares a similar set
of goals as SBON in distributing query operators based on on-going knowledge of
network conditions. SBON uses a two step approach, namely, virtual placement
and physical mapping for query placement based on a cost space. In contrast, we
use a single cost metric with different cost features for easy decision making at

3 http://hadoop.apache.org/core/

http://hadoop.apache.org/core/

Dynamic Query Processing for P2P Data Services in the Cloud 399

individual nodes for a local query migration and explicitly examine the relative
importance of network latency and system load in the performance.
Load Balancing. Past research on load balancing methods for distributed
databases resulted in a number of methods for balancing storage load by man-
aging the partitioning of the data [19, 20]. Mariposa [21] offered load balancing
by providing marketplace rules where data providers use bidding mechanisms.
Load balancing in a distributed stream processing was also studied in [22] where
load shedding techniques for revealing overload of servers were developed.

3 DObjects Overview

In this section we briefly describe DObjects framework. For further details we
refer readers to [2, 3]. Figure 3 presents our vision of the deployed system. The
system has no centralized services and thus allows system administrators to
avoid the burden in this area. It also uses a P2P resource sharing substrate as
a resource sharing paradigm to benefit from computational resources available
in the cloud. Each node serves as a mediator that provides its computational
power for a query mediation and results aggregation. Each node can also serve
as a data adapter or wrapper that pulls data from data sources and transforms
it to a uniform format that is expected while building query responses. Users can
connect to any system node; however, while the physical connection is established
between a client and one of the system nodes, the logical connection is between
a client node and a virtual system consisting of all available nodes.

DObjects node

(Mediator)

Client Client

Oracle

PostgreSQL
Data stream

Data

adapters

(Wrappers)

DObjects

node

(Mediator)

DObjects

node

(Mediator)

DObjects node

(Mediator)

Fig. 3. System architecture

select c.name, r.destination,

f.flightNumber, p.lastName

from CityInformation c, c.lRails r, c.lFlights f,

f.lPassengers p

where c.name like „San%” and p.lastName=„Adams”

Fig. 4. Query example

4 Query Execution and Optimization

In this section we focus on the query processing issues of DObjects, present
an overview of the dynamic distributed query processing engine that adapts
to network and resource dynamics, and discuss details of its cost-based query
placement strategies.

4.1 Overview

As we have discussed, the key to query processing in our framework is to have a
decentralized and distributed query execution engine that dynamically adapts to
network and resource conditions. In addition to adapting ”textbook” distributed

400 P. Jurczyk and L. Xiong

query processing techniques such as distributed join algorithms and the learning
curve approach for keeping statistics about data adapters, our query processing
framework presents a number of innovative aspects. First, instead of generating
a set of candidate plans, mapping them physically and choosing the best ones as
in a conventional cost based query optimization, we create one initial abstract
plan for a given query. The plan is a high-level description of relations between
steps and operations that need to be performed in order to complete the query.
Second, when the query plan is being executed, placement decisions and physical
plan calculation are performed dynamically and iteratively. Such an approach
guarantees the best reaction to changing load or latency conditions in the system.

1: generate high-level query plan tree
2: active element← root of query plan tree

3: choose execution location for active ele-
ment

4: if chosen location �= local node then
5: delegate active element and its sub-

tree to chosen location
6: return
7: end if
8: execute active element;
9: for all child nodes of active element do
10: go to step 2
11: end for
12: return result to parent element

Alg. 1. Local algorithm for query pro-
cessing

Join City Information with

referential attributes

Merge City

Information

from different

locations

Select City

Information from

different locations

Prepare

referential

attributes

Prepare Flights

(join it with

Passengers)

Select Railroad

Connections

Merge

Railroad

Connections

from different

loctions

Fig. 5. Example of high-level query plan

It is important to highlight that our approach does not attempt to optimize
physical query execution performed on local databases. Responsibility for this is
pushed to data adapters and data sources. Our optimization goal is at a higher
level focusing on building effective sub-queries and optimally placing those sub-
queries on the system nodes to minimize the query response time.

Our query execution and optimization consists of a few main steps. First, when
a user submits a query, a high-level query description is generated by the node
that receives it. An example of such a query plan is presented in Figure 5. The
plan corresponds to the query introduced in Figure 4 that queries for cities along
with related referential attributes: railroad connections and flights. In addition,
each flight will provide a list of passengers. Note that each type is provided by
a different physical database. The query plan contains such elements as joins,
horizontal and vertical data merges, and select operations that are performed
on data adapters. Each element in the query plan has different algorithms of
optimization (see Section 4.2).

Next, the node chooses active elements from the query plan one by one in a
top-down manner for execution. Execution of an active element, however, can
be delegated to any node in the system in order to achieve load scalability. If the
system finds that the best candidate for executing current element is a remote
node, the migration of workload occurs. In order to choose the best node for the

Dynamic Query Processing for P2P Data Services in the Cloud 401

execution, we deploy a network and resource-aware cost model that dynamically
adapts to network conditions (such as delays in interconnection network) and
resource conditions (such as load of nodes) (see Section 4.3). If the active element
is delegated to a remote node, that node has a full control over the execution
of any child steps. The process works recursively and iteratively, therefore the
remote node could decide to move child nodes of submitted query plan element
to other nodes or execute it locally in order to use the resources in the most
efficient way to achieve good scalability. Algorithm 1 presents a sketch of the
local query execution process. Note that our algorithm takes a greedy approach
without guaranteeing the global optimality of the query placement. In other
words, each node makes a local decision on where to migrate the (sub)queries.

4.2 Execution and Optimization of Operators

In previous section we have introduced the main elements in the high-level query
plan. Each of the elements has different goals in the optimization process. It is
important to note that the optimization for each element in the query plan is
performed iteratively, just before given element is executed. We describe the
optimization strategies for each type of operators below.
Join. Join operator is created when user issues a query that needs to join data
across sites. In this case, join between main objects and the referenced objects
have to be performed (e.g., join flights with passengers). The optimization is
focused on finding the most appropriate join algorithm and the order of branch
executions. The available join algorithms are nested-loop join (NLJ), semi-join
(SJ) and bloom-join (BJ) [4]. In case of NLJ, the branches can be executed in
parallel to speedup the execution. In case of SJ or BJ algorithms, the branches
have to be executed in a pipeline fashion and the order of execution has to
be fixed. Our current implementation uses a semi-join algorithm and standard
techniques for result size estimations. There is also a lot of potential benefits
in parallelization of the join operator execution using such frameworks as map-
reduce-merge [10]. We leave this to our future research agenda.
Data Merge. Data merge operator is created when data objects are split among
multiple nodes (horizontal data split) or when attributes of an object are located
on multiple nodes (vertical data split). Since the goal of the data merge opera-
tion is to merge data from multiple input streams, it needs to execute its child
operations before it is finished. Our optimization approach for this operator tries
to maximize the parallelization of sub-branch execution. This goal is achieved
by executing each sub-query in parallel, possibly on different nodes if such an
approach is better according to our cost model that we will discuss later.
Select. Select operator is always the leaf in our high-level query plan. Therefore,
it does not have any dependent operations that need to be executed before it fin-
ishes.Moreover, this operationhas to be executed on locations that provide queried
data. The optimization issues are focused on optimizing queries submitted to data
adapters for a faster response time.For instance, enforcing anorder (sort) to queries
allows us to use merge-joins in later operations. Next, response chunks are built

402 P. Jurczyk and L. Xiong

in order to support queries returning large results. Specifically, in case of heavy
queries, we implement an iterative process of providing smaller pieces of the final
response. In addition to helping to maintain a healthy node load level in terms of
memory consumption, such a feature is especially useful when building a user in-
terface that needs to accommodate a long query execution.

4.3 Query Migration

The key of our query processing is a greedy local query migration component for
nodes to delegate (sub)queries to a remote node in a dynamic (based on current
network and resource conditions) and iterative (just before the execution of each
element in the query plan) manner. In order to determine the best (remote) node
for possible (sub)query migration and execution, we first need a cost metric for
the query execution at different nodes. Suppose a node migrate a query element
and associated data to another node, the cost includes: 1) a transmission delay
and communication cost between nodes, and 2) a query processing or computa-
tion cost at the remote node. Intuitively, we want to delegate the query element
to a node that is ”closest” to the current node and has the most computational
resources or least load in order to minimize the query response time and max-
imize system throughput. We introduce a cost metric that incorporates such
two costs taking into account current network and resource conditions. Formally
Equation 1 defines the cost, denoted as ci,j , associated with migrating a query
element from node i to a remote node j:

ci,j = α ∗ (DS/bandwidthi,j + latencyi,j) + (1 − α) ∗ loadj (1)

where DS is the size of the necessary data to be migrated (estimated using
statistics from data sources), bandwidthi,j and latencyi,j are the network band-
width and latency between nodes i and j, loadj is the current (or most recent)
load value of node j, and α is a weighting factor between the communication
cost and the computation cost. Both cost terms are normalized values between
0 and 1 considering the potential wide variances between them.

To perform query migration, each node in the system maintains a list of
candidate nodes that can be used for migrating queries. For each of the nodes,
it calculates the cost of migration and compares the minimum with the cost
of local execution. If the minimum cost of migration is smaller than the cost of
local execution, the query element and its subtree is moved to the best candidate.
Otherwise, the execution will be performed at the current node. To prevent a
(sub)query being migrated back and forth between nodes, we require each node
to execute at least one operator from the migrated query plan before further
migration. Alternatively, a counter, or Time-To-Live (TTL) strategy, can be
implemented to limit the number of migrations for the same (sub)query. TTL
counter can be decreased every time a given (sub)tree is moved, and, if it reaches
0, the node has to execute at least one operator before further migration. The
decision of a migration is made if the following equation is true:

minj{ci,j} < β ∗ (1 − α)loadi (2)

Dynamic Query Processing for P2P Data Services in the Cloud 403

where minj{ci,j} is the minimum cost of migration for all the nodes in the node’s
candidate list, β is a tolerance parameter typically set to be a value close to 1
(e.g. we set it to 0.98 in our implementations). Note that the cost of a local
execution only considers the load of the current node.

Fig. 6. Setup for Optimization Illustration

Illustration. To illustrate our query optimization algorithm, let us consider a
query from Figure 4 with a sample system deployment as presented in Figure 6.
Let us assume that a client submits his query to Node 5 which then generates
a high-level query plan as presented in Figure 5. Then, the node starts a query
execution. The operator at the root of the query plan tree is join. Using the
equation 1 the active node estimates the cost for migrating the join operator.
Our calculations will neglect the cost of data shipping for simplicity and will use
α = 0.3 and β = 1.0. The cost for migrating the query from Node 5 to Node 1
is: c5,1 = 0.3 ∗ (50/50) + (1 − 0.3) ∗ 0.54 = 0.68. Remaining migration costs are
c5,2 = 0.671, c5,3 = 0.635 and c5,4 = 0.33. Using the equation 2 Node 5 decides
to move the query to Node 4 (c5,4 < 1.0 ∗ (1 − 0.3) ∗ 1.0). After the migration,
Node 4 will start execution of join operator at the top of the query plan tree. Let
us assume that the node decides to execute the left branch first. CityInformation
is provided by only one node, Node 1, and no data merge is required. Once the
select operation is finished on Node 1, the right branch of join operation can be
invoked. Note that Node 4 will not migrate any of the sub-operators (besides
selections) as the cost of any migration exceeds the cost of local execution (the
cost of migrations: c4,1 = 0.558, c4,2 = 0.611, c4,3 = 0.695 and c4,5 = 0.82; the
cost of local execution: 0.21).

4.4 Cost Metric Components

The above cost metric consists of two cost features, namely, the communication
latency and the load of each node. We could also use other system features (e.g.
memory availability), however, we believe the load information gives a good esti-
mate of resource availability at the current stage of the system implementation.
Below we present techniques for computing our cost features efficiently.
Latency between Nodes. To compute the network latency between each pair
of nodes efficiently, each DObjects node maintains a virtual coordinate, such that
the Euclidean distance between two coordinates is an estimate for the communi-
cation latency. Storing virtual coordinates has the benefit of naturally capturing

404 P. Jurczyk and L. Xiong

latencies in the network without a large measurement overhead. The overhead of
maintaining a virtual coordinate is small because a node can calculate its coordi-
nate after probing a small subset of nodes such as well-known landmark nodes or
randomly chosen nodes. Several synthetic network coordinate schemes exist. We
adopted a variation of Vivaldi algorithm [23] in DObjects. The algorithm uses
a simulation of physical springs, where each spring is placed between any two
nodes of the system. The rest length of each spring is set proportionally to cur-
rent latency between nodes. The algorithm works iteratively. In every iteration,
each node chooses a number of random nodes and sends a ping message to them
and waits for a response. After the response is obtained, initiating node calcu-
lates the latency with remote nodes. As the latency changes, a new rest length of
springs is determined. If it is shorter than before, the initiating node moves closer
towards the remote node. Otherwise, it moves away. The algorithm always tends
to find a stable state for the most recent spring configuration. An important
feature about this algorithm is that it has great scalability which was proven by
its implementation in some P2P solutions (e.g. in OpenDHT project [24]).

2

4

1

3

60ms

60ms

70ms

2

4

1

3

100ms

30ms

2

4

1

3

100ms

60ms

30ms

New latency

Fig. 7. Illustration of Virtual Coordinates Computation for Network Latency

Figure 7 presents an example iteration of the Vivaldi algorithm. The first
graph on the left presents a current state of the system. New latency informa-
tion is obtained in the middle graph and the rest length of springs is adjusted
accordingly. As the answer to the new forces in the system, new coordinates are
calculated. The new configuration is presented in the rightmost graph.
Load of Nodes. The second feature of our cost metric is the load of the nodes.
Given our desired goal to support cross-platform applications, instead of depend-
ing on any OS specific functionalities for the load information, we incorporated
a solution that assures good results in a heterogeneous environment. The main
idea is based on time measurement of execution of a predefined test program
that considers computing and multithreading capabilities of machines [25]. The
program we use specifically runs multiple threads. More than one thread assures
that if a machine has multiple CPUs, the load will be measured correctly. Each
thread performs a set of predefined computations including a series of integer as
well as floating point operations. When each of the computing threads finishes,
the time it took to accomplish operations is measured which indicates current
computational capabilities of the tested node. In order to improve efficiency of
our load computation method, we can dynamically adjust the interval between
consecutive measurements. When a node has a stable behavior, we can increase
this interval. On the other hand, if we observe rapid change in the number of
queries that reside on a given node, we can trigger the measurement.

Dynamic Query Processing for P2P Data Services in the Cloud 405

After the load information about a particular node is obtained, it can be prop-
agated among other nodes. Our implementation builds on top of a distributed
event framework, REVENTS4, that is integrated with our platform for an effi-
cient and effective asynchronous communication among the nodes.

5 Experimental Evaluation

Our framework is fully implemented with a current version available for down-
load5. In this section we present an evaluation through simulations as well as a
real deployment of the implementation.

5.1 Simulation Results

We ran our framework on a discrete event simulator that gives us an easy way
to test the system against different settings. The configuration of data objects
relates to the configuration mentioned in Section 4 and was identical for all the
experiments below. The configuration of data sources for objects is as follows:
object CityInformation was provided by node1 and node2, object Flight by node3
and node4, object RailroadConnection by node1 and finally object Passenger by
node2. All nodes with numbers greater than 4 were used as computing nodes.
Load of a node affects the execution time of operators. The more operators were
invoked on a given node in parallel, the longer the execution time was assumed.
Different operators also had different impact on the load of nodes. For instance,
a join operator had larger impact than merge operator. In order to evaluate the
reaction of our system to dynamic network changes, the communication latency
was assigned randomly at the beginning of simulation and changed a few times
during the simulation so that the system had to adjust to new conditions in order
to operate efficiently. The change was based on increasing or decreasing latency
between each pair of nodes by a random factor not exceeding 30%. Table 1 gives
a summary of system parameters (number of nodes and number of clients) and
algorithmic parameter α with default values for different experiments.

Table 1. Experiment Setup Parameters

Test Case Figure # of Nodes # of Clients α
(Mediators)

α vs. Query Workloads 8 6 14 *

α vs. # of Nodes 9 * 32 *

α vs. # of Clients 10 6 * *

Comparison of Query Optimization Strategies 11 6 14 0.33

System Scalability 12, 13 20 * 0.33

Impact of Load of Nodes 14 * 256 0.33

Impact of Network Latencies 15 6 14 0.33

* - varying parameter

4 http://dcl.mathcs.emory.edu/revents/index.php
5 http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

http://dcl.mathcs.emory.edu/revents/index.php
http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

406 P. Jurczyk and L. Xiong

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
e

p
o

c
h

]

Alpha value

Small query

Medium query

Heavy query

Fig. 8. Parameter Tuning -
Query Workloads

0

500

1000

1500

2000

2500

3000

3500

4000

0.0 0.33 0.66 1

A
v
e
ra

g
e
 e

x
e
c
u

ti
o

n
 t

im
e
 [

e
p

o
c
h

]

Alpha value

4 nodes

8 nodes

16 nodes

32 nodes

Fig. 9. Parameter Tuning -
Number of Nodes

0

500

1000

1500

2000

2500

0.0 0.33 0.66 1

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
e

p
o

c
h

]

Alpha value

4 clients

8 clients

16 clients

32 clients

Fig. 10. Parameter Tuning -
Number of Clients

Parameters Tuning - Optimal α. An important parameter in our cost metric
(introduced in equation 1) is α that determines the relative impact of load and
network latency in the query migration strategies. Our first experiment is an
attempt to empirically find optimal α value for various cases: 1) different query
workloads, 2) different number of nodes available in the system, and 3) different
number of clients submitting queries.

For the first case, we tested three query workloads: 1) small queries for City-
Information objects without referential attributes (therefore, no join operation
was required), 2) medium queries for CityInformation objects with two referen-
tial attributes (list of Flights and RailroadConnections), and 3) heavy queries
with two referential attributes of CityInformation of which Flight also had a
referential attribute. The second case varied the number of computational nodes
and used the medium query submitted by 32 clients simultaneously. The last
case varied a number of clients submitting medium queries.

Figure 8, 9 and 10 report average execution times for different query loads,
varying number of computational nodes, and varying number of clients respec-
tively for different α. We observe that for all three test cases the best α value
is located around the value 0.33. While not originally expected, it can be ex-
plained as follows. When more importance is assigned to the load, our algorithm
will choose nodes with smaller load rather than nodes located closer. In this case,
we are preventing overloading a group of close nodes as join execution requires
considerable computation time. Also, for all cases, the response time was better
when only load information was used (α = 0.0) compared to when only distance
information was used (α = 1.0). For all further experiments we set the α value
to be 0.33.

Comparison of Optimization Strategies. We compare a number of varied
optimization strategies of our system with some baseline approaches. We give
average query response time for the following cases: 1) no optimization (a naive
query execution where children of current query operator are executed one by one
from left to right), 2) statistical information only (a classical query optimization
that uses statistics to determine the order of branch executions in join opera-
tions), 3) location information only (α = 1), 4) load information only (α = 0),
and 5) full optimization (α = 0.33).

Dynamic Query Processing for P2P Data Services in the Cloud 407

0

1000

2000

3000

4000

5000

6000

Small query Medium

query

Heavy query

A
v

e
ra

g
e

 e
x

e
c

u
ti

o
n

 t
im

e
 [

e
p

o
c

h
]

Query type

No optimization

Statistical information only

Location information only

Load information only

Full optimization

Fig. 11. Comparison of Dif-
ferent Query Optimization
Strategies

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64 128 256 512

N
u

m
b

e
r

o
f

q
u

e
ri

e
s

Number of clients

Small query

Medium query

Heavy query

Fig. 12. System Scalability
(Throughput) - Number of
Clients

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

e
p

o
c
h

s
]

Number of clients

Small query

Medium query

Heavy query

Fig. 13. System Scalability
(Response Time) - Number
of Clients

0

5000

10000

15000

20000

25000

30000

35000

10 16 32 64 128 256 512

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

e
p

o
c
h

s
]

Number of nodes

Small query

Medium query

Heavy query

Fig. 14. Impact of Compu-
tational Resources

0

1000

2000

3000

4000

5000

6000

7000

Fast speed

network

Medium

speed

network

Slow speed

network

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 [

e
p

o
c

h
]

Type of network

Small query

Medium query

Heavy query

Fig. 15. Impact of Network
Latency

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

m
s
]

Number of clients

Small query - full optimization

Small query - no optimization

Medium query - full optimization

Medium query - no optimization

Fig. 16. Average Response
Time in Real System

The results are presented in Figure 11. They clearly show that, for all types of
queries, the best response time corresponds to the case when full optimization is
used. In addition, the load information only approach provides an improvement
compared to the no optimization, statistical information only, and location in-
formation only approaches (the three lines overlap in the plot). The performance
improvements are most manifested in the heavy query workload.

System Scalability. An important goal of our framework is to scale up the
system for number of clients and load of queries. Our next experiment attempts
to look at the throughput and average response time of the system when different
number of clients issue queries. We again use three types of queries and a similar
configuration to the above experiment.

Figures 12 and 13 present the throughput and average response time for dif-
ferent number of clients respectively. Figure 12 shows the average number of
queries that our system was capable of handling during a specified time frame
for a given number of clients. As expected, the system throughput increases as
the number of clients increases before it reaches its maximum. However, when
the system reaches a saturation point (each node is heavily loaded), new clients
cannot obtain any new resources. Thus, the throughput reaches its maximum
(e.g., around 3950 queries per specified time frame for the case of small queries

408 P. Jurczyk and L. Xiong

at 64 clients). Figure 13 reports the average response time and shows a linear
scalability. Please note that the figure uses logarithmic scales for better clarity.

Impact of Available Computational Resources. In order to answer the
question how the number of nodes available in the system affects its perfor-
mance, we measured the average response time for varying number of available
system nodes with 256 clients simultaneously querying the system. The results
are provided in Figure 14. Our query processing effectively reduces the average
response time when more nodes are available. For small queries, 10 nodes appears
to be sufficient as an increase to 16 nodes does not improve the response time
significantly. For medium size queries 16 nodes appears to be sufficient. Finally,
for heavy queries we observed improvement when we used 32 nodes instead of
16. The behavior above is not surprising and quite intuitive. Small queries do
not require high computational power as no join operation is performed. On the
other hand, medium and heavy queries require larger computational power so
they benefit from a larger number of available nodes.

Impact of Network Latency. Our last experiment was aimed to find the
impact of a network latency on the performance. We report results for three
network speeds: a fast network that simulates a Fast Ethernet network offering
speed of 100MBit/s, a medium network that can be compared to an Ethernet
speed of 10MBit/s, and finally a slow network that represents speed of 1MBit/s.

The result is reported in Figure 15. The network speed, as expected, has a
larger impact on the heavy query workload. The reason is that the amount of
data that needs to be transferred for heavy queries is larger than medium and
small queries, and therefore the time it takes to transfer this data in slower
network will have much larger impact on the overall efficiency.

5.2 Testing of a Real Implementation

We also deployed our implementation in a real setting on four nodes started on
general-purpose PCs (Intel Core 2 Duo, 1GB RAM, Fast Ethernet network con-
nection). The configuration involved three objects, CityInformation (provided by
node 1), Flight (provided by nodes 2 and 3) and RailroadConnection (provided
by node 3). Node 4 was used only for computational purposes. We ran the exper-
iment for 10,000 CityInformation, 50,000 Flights (20,000 in node 2 and 30,000
in node 3) and 70,000 RailroadConnections. The database engine we used was
PostgreSQL 8.2. We measured the response time for query workloads including
small queries for all relevant CityInformation and medium queries for all objects
mentioned above. We used various number of parallel clients and α = 0.33.

Figure 16 presents results for small and medium queries. It shows that the
response time is significantly reduced when query optimization is used (for both
small and medium queries). The response time may seem a bit high at the first
glance. To give an idea of the actual overhead introduced by our system, we in-
tegrated all the databases used in the experiment above into one single database
and tested a medium query from Java API using JDBC and one client. The
query along with results retrieval took an average of 16s. For the same query,

Dynamic Query Processing for P2P Data Services in the Cloud 409

our system took 20s that is in fact comparable to the case of a local database.
While the overhead introduced by DObjects cannot be neglected, it does not
exceed reasonable boundary and does not disqualify our system as every mid-
dleware is expected to add some overhead. In this deployment, the overhead
is mainly an effect of the network communication because data was physically
distributed among multiple databases. In addition, the cost of distributed com-
puting middleware and wrapping data into object representation also add to
the overhead which is the price a user needs to pay for a convenient access to
distributed data. However, for a larger setup with larger number of clients, we
expect our system to perform better than centralized approach as the benefit
from distributed computing paradigm and load distribution will outweigh the
overhead.

6 Conclusion and Future Work

In this paper we have presented the dynamic query processing mechanism for
our P2P based data federation services to address both geographic and load scal-
ability for data-intensive applications with distributed and heterogeneous data
sources. Our approach was validated in different settings through simulations as
well as real implementation and deployment. We believe that the initial results
of our work are quite promising. Our ongoing efforts continue in a few directions.
First, we are planning on further enhancement for our query migration scheme.
We are working on incorporating a broader set of cost features such as location
of the data and dynamic adjustment of the weight parameter for each cost fea-
ture. Second, we plan to extend the scheme with a dynamic migration of active
operators in real-time from one node to another if load situation changes. This
issue becomes important especially for larger queries which last longer time in
the system. Finally, we plan to improve the fault tolerance design of our query
processing. Currently, if a failure occurs on a node involved in execution of a
query, such query is aborted and error is reported to the user. We plan to ex-
tend this behavior with possibility of failure detection and allocation of a new
node to continue execution of the operator that was allocated to the failed node.

Acknowledgement

We thank the anonymous reviewers for their valuable feedback. The research
is partially supported by a Career Enhancement Fellowship by the Woodrow
Wilson Foundation.

References

1. Logothetis, D., Yocum, K.: Ad-hoc data processing in the cloud. Proc. VLDB
Endow. 1(2), 1472–1475 (2008)

2. Jurczyk, P., Xiong, L., Sunderam, V.: DObjects: Enabling distributed data services
for metacomputing platforms. In: Proc. of the ICCS (2008)

410 P. Jurczyk and L. Xiong

3. Jurczyk, P., Xiong, L.: Dobjects: enabling distributed data services for metacom-
puting platforms. Proc. VLDB Endow. 1(2), 1432–1435 (2008)

4. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4) (2000)

5. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flick-
ner, M., Luniewski, A.W., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H.,
Wimmers, E.L.: Towards heterogeneous multimedia information systems: the Gar-
lic approach. In: Proc. of the RIDE-DOM 1995, Washington, USA (1995)

6. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the
Design of Disco. In: ICDCS (1996)

7. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, Tokyo, Japan (1994)

8. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2) (2003)

9. Huebsch, R., Chun, B.N., Hellerstein, J.M., Loo, B.T., Maniatis, P., Roscoe, T.,
Shenker, S., Stoica, I., Yumerefendi, A.R.: The architecture of pier: an internet-
scale query processor. In: CIDR (2005)

10. Yang, H.c., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified
relational data processing on large clusters. In: SIGMOD 2007: Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pp. 1029–
1040. ACM, New York (2007)

11. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A.A.A.,
Sakellariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applica-
tions for the grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS,
vol. 3458, pp. 13–24. Springer, Heidelberg (2005)

12. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. In: OSDI (2002)

13. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-
tem. In: SIGCOMM (2004)

14. Trigoni, N., Yao, Y., Demers, A.J., Gehrke, J., Rajaraman, R.: Multi-query opti-
mization for sensor networks. In: DCOSS (2005)

15. Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing aggregate com-
putation for distributed queries. In: SIGMOD (2007)

16. Xiang, S., Lim, H.B., Tan, K.L., Zhou, Y.: Two-tier multiple query optimization
for sensor networks. In: Proceedings of the 27th International Conference on Dis-
tributed Computing Systems, Washington, DC. IEEE Computer Society Press, Los
Alamitos (2007)

17. Xue, W., Luo, Q., Ni, L.M.: Systems support for pervasive query processing. In:
Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems (ICDCS 2005), Washington, DC, pp. 135–144. IEEE Computer Society,
Los Alamitos (2005)

18. Pietzuch, P.R., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.I.: Network-aware operator placement for stream-processing systems. In: ICDE
(2006)

19. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay
networks. In: Proc. of the VLDB 2005, pp. 685–696 (2005)

Dynamic Query Processing for P2P Data Services in the Cloud 411

20. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. Technical report, Stanford U.
(2004)

21. Stonebraker, M., Aoki, P.M., Devine, R., Litwin, W., Olson, M.A.: Mariposa: A
new architecture for distributed data. In: ICDE (1994)

22. Tatbul, N., Çetintemel, U., Zdonik, S.B.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: VLDB, pp. 159–170 (2007)

23. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: Proceedings of the ACM SIGCOMM 2004 Conference (2004)

24. Sean Rhea, B.G., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica,
I., Yu, H.: Opendht: A public dht service and its uses. In: SIGCOMM (2005)

25. Paroux, G., Toursel, B., Olejnik, R., Felea, V.: A java cpu calibration tool for load
balancing in distributed applications. In: ISPDC/HeteroPar (2004)

	Dynamic Query Processing for P2P Data Services in the Cloud
	Introduction
	Related Work
	DObjects Overview
	Query Execution and Optimization
	Overview
	Execution and Optimization of Operators
	Query Migration
	Cost Metric Components

	Experimental Evaluation
	Simulation Results
	Testing of a Real Implementation

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

