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BACKGROUND: As part of the surveillance program to monitor the occurrence of birth defects in the metro-
politan Atlanta area, we developed a record linkage software tool that provides latitude in the choice of link-
age parameters, allows for efficient and accurate linkages, and enables objective assessments of the quality of
the linked data. METHODS: We developed and implemented a Java-based fine-grained probabilistic record
integration and linkage tool (FRIL) that incorporates a rich collection of record distance metrics, search meth-
ods, and analysis tools. Along its workflow, FRIL provides a rich set of user-tunable parameters augmented
with graphic visualization tools to assist users in understanding the effects of parameter choices. We used
this software tool to link data from vital records (n 5 1.25 million) with birth defects surveillance records (n
5 12,700) from the metropolitan Atlanta Congenital Defects Program (MACDP) for the birth years 1967–2006.
RESULTS: Compared with the data linkage performed by conventional algorithms, the data linkage of birth
certificates with birth defect records in MACDP using FRIL was more efficient. The linkage based on FRIL
was also accurate, showing 99% precision and 95% recall. Based on positive user feedback, new features con-
tinue to be developed, and the tool is being adopted in several other data linkage projects in MACDP.
CONCLUSIONS: A software tool that allows significant user interaction and control, such as FRIL, can provide
accurate data linkages for birth defect surveillance programs and allows an objective assessment of the qual-
ity of linked data. Birth Defects Research (Part A) 82:822–829, 2008. � 2008 Wiley-Liss, Inc.

INTRODUCTION

Birth defects surveillance programs conduct a number
of activities, such as monitoring the prevalence of birth
defects, maintaining case registries for epidemiologic
studies, evaluating morbidity and mortality associated
with birth defects, and providing data for education and
health policy decisions related to prevention (Correa
et al., 2007). An essential component of many of these
activities is the linkage of databases, a process of match-
ing two or more databases to validate information col-
lected in one database with that from another dataset or
to acquire additional information on possible cases of
birth defects. Traditional interactive tools for record link-
age provide users with limited control, mostly allowing
options to specify similarity measures between records
and decision models (Campbell, 2005; LinkageWiz, 2008;
Thoburn et al., 2007). Although the linkage tool may
allow a number of options for the search algorithm, the
combination of available choices typically does not pro-
vide enough parameter granularity to produce results
that are easily discernible, rendering the objective assess-
ment of the accuracy of the data linkage difficult.

The problem of record linkage can be described as fol-
lows. Given sets of records A and B, find a partition of

A3B consisting of sets M (matched), U (unmatched), and
P (possibly matched) that satisfy M 5 {(a, b) | a 5 b}
and U 5 {(a, b) | a = b}, where a and b represent the
records in sets A and B, respectively. A widely adopted
record linkage approach is the probabilistic approach
(Fellegi and Sunter, 1969). First, a vector of similarity
scores (or agreement values) is computed for each pair.
Then the pair is classified as either a match, non-match,
or possible match on the basis of an aggregate of the sim-
ilarity scores. Among the methods used for such classifi-
cation, there are rule-based methods that allow human
experts to specify matching rules, unsupervised learning
methods such as expectation-maximization (EM) that
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learn the weights or thresholds without relying on la-
beled data (i.e., pairs of records designated as matching
and non-matching), and supervised learning methods
that use labeled data to train a model, such as decision
tree, naive Bayesian or Support Vector Machine (SVM)
(Elmagarmid et al., 2007; Halevy et al., 2006; Winkler,
2006). For computing similarities between attributes, vari-
ous distance functions are used and studied (Cohen
et al., 2003; Navarro, 2001; Porter and Winkler, 1997; Ris-
tad and Yianilos, 1996). Despite recent developments in
data linkage methods, the literature on the application
and evaluation of these methods for data linkages in
birth defects surveillance projects (and in public health
surveillance projects in general) is limited.

We developed an open source fine-grained record inte-
gration and linkage tool (FRIL) to link a birth defects sur-
veillance database from the Metropolitan Atlanta Con-
genital Defects Program (MACDP) with a birth certificate
database as a test case. In this article, we describe the
spectrum of user-tunable parameters available in FRIL,
evaluate the linkage of MACDP records with vital
records, and discuss the potential use of FRIL in record
linkages that involve birth defect surveillance data.

METHODS

The workflow of FRIL is shown in Figure 1. The user
specifies the initial input files. Each run requires the user
to specify the search method, the distance function in the
attribute comparison module, and the decision model.
Output consists of sets M, U, P, and various summary
statistics. Sets U and P may be fed back into FRIL with a
different set of parameters. We describe each module in
turn.

Data Sources

An initial issue that the user must address when select-
ing attributes for comparison is to resolve possible dis-
crepancies between schemas of A and B. Attributes are
often labeled differently in the two data sets to be linked

(e.g., ‘‘Baby Name’’ vs. ‘‘B Name’’), and in some cases
two attributes of one source map onto a single attribute
of the other (e.g., mapping between fields ‘‘FirstName’’
and ‘‘LastName’’ in the first and field ‘‘Name’’ in the sec-
ond data file), or data needs to be parsed prior to match-
ing. FRIL allows users to identify attributes from one
source to the other. We call this user input attribute selec-
tion and mapping. The resulting set of attributes to be
used in the linking is denoted F.

Searching Methods

Search methods refer to algorithms for determining
which pairs of records to compare between the data
sources A and B and the attributes on which compari-
sons are made. FRIL implements the nested loop join,
sorted neighborhood method (SNM), and blocking search
method (BSM). Nested loop join performs an all-to-all
comparison between A and B, thus requiring |A|3|B|
comparisons. It is useful for small input data files.
Technical details. The SNM first sorts records of A

and B over the relevant attributes, and follows by com-
paring records within fixed windows xA and xB of
records as these windows are advanced along the data
files. Sorting moves records that have similar values (rel-
ative to the selected attributes) close together, presum-
ably to within xA and xB of each other. This avoids the
need to compare each record of one file against the entire
data set of the second file. We call user inputs to xA and
xB window sizing.
The BSM first groups records into blocks and then per-

forms a nested loop join within each block. Such a group-
ing places records that have identical or similar values
(with respect to a chosen blocking function) in the same
block. This improves efficiency by avoiding the need to
compare records that are classified into separate blocks.
The subtle difference between SNM and BSM is that in
SNM, users specify, a priori, values that fix the window
sizes xA and xB, but in BSM, sizes of the blocks may
vary. We call user inputs of the blocking function and its
associated attributes the blocking parameter.

Figure 1. The FRIL architecture.
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When F contains more than a single attribute and
searching is based on SNM, the choice of the dominant
sorting attribute plays a critical role. In Atlanta, we found
that when linking birth defects surveillance datasets with
other databases, while the baby name attribute carries
the greatest weight, using mother name as the dominant
sorting attribute allows additional matches to be found.
The reason is that data discrepancy occurs more fre-
quently on baby names, and if baby name is used as the
dominant sorting attribute, similar records may end up
outside the comparison windows. We call the user input
of the dominant sort attribute sort ordering.

Attribute Comparison

In this module, users choose distance functions that
will be used when comparing fields between two data
sources. Different pairs of fields may require different
distance functions. For instance, when names are ana-
lyzed, a distance function that considers possible mis-
spellings is appropriate. On the other hand, when fields
representing body height are analyzed, numeric distance
functions should be adopted.

Technical details. FRIL provides edit distance, Soun-
dex, Q-gram, and equality distance functions (Cohen
et al., 2003; Navarro, 2001; Porter and Winkler, 1997; Ris-
tad and Yianilos, 1996). All the functions have the same
type: a 3 a?[0,1], where a is an attribute in F. The
smaller the function value, the higher the probability that
the two inputs are an exact match. FRIL allows users to
choose different distance functions for each attribute in
F. We refer to this input as a distance function selection.

For each distance function f, the user indicates the thresh-
old for acceptance and rejection via a simple form of fuzzy
logic. Specifically, if fa is chosen as the distance function for
attribute a, the user specifies the maximum maxfa 2 ½0; 1�
and the minimumminfa 2 ½0; 1� values for outright rejection
and acceptance, respectively. For values betweenmaxfa and
minfa, we use the membership functionmfa:

mfaðs1; s2Þ ¼ 1 if faðs1; s2Þ � minfa

¼ 0 if faðs1; s2Þ > maxfa

¼ maxfa � faðs1; s2Þ
maxfa �minfa

otherwise

We call this set of user inputs attribute scoring. If minfa
5 0 and maxfa 5 1, then the above function is the same

as a continuous similarity function used in typical proba-
bilistic linkage methods.

Classification/Decision Module

This module is responsible for identifying pairs of
records that are considered matches or possible matches.
As different pairs of compared fields have different im-
portance, users may assign weights that appropriately
reflect the importance of each pair. For instance, between
name and body height, matching on name is more im-
portant and hence should carry a higher weight than
matching on body height.
Technical details. A weight is a real number aa 2 ½0; 1�

assigned to each attribute a in F. We refer to this user
input as attribute weighting. The final matching score for a
pair of records r1 and r2 is the normalized weighted sum
over all attributes:

scoreðr1; r2Þ ¼
P

a2U
aamfaðpaðr1Þ; paðr2ÞÞ

P

a2U
aa

p is the projection operator of the relational algebra. The
user may specify two weights, mint and maxt to indicate
the overall scores for match rejection and acceptance.
Linked records with scores above maxt are considered
matching, below mint are unmatching, and in between
are probable matches. A goodness-of-fit score is reported
based on the following membership function:

Mðr1; r2Þ ¼ 1 if scoreðr1; r2Þ � maxt

¼ 0 if scoreðr1; r2Þ < mint

¼ scoreðr1; r2Þ �mint

maxt �mint
otherwise

We refer to this user input as the record scoring. As an
example, let F 5 {a}, fa be the edit distance, minfa5 0.5
and maxfa 5 1, aa 5 1, mint 5 0 and maxt 5 1. The fol-
lowing shows the scores and match results for three
input record pairs (edit distance returns number of edits
as a fraction of the length of the longer string).

Table 1
FRIL Parameter Space

Description Possible values

SNM window size selection Two integer numbers greater than 0
Attribute selection and mapping Any subset combination of the data source attributes, including possible merging and splitting

of attributes
Attribute weighting Real numbers between 0 and 1
Sort ordering (only for SNM) All permutations of the attributes
Blocking parameter (only for BSM) All permutations of attributes chosen in attribute selection and mapping and distance functions
Distance function selection For each pair of attributes, distance function from a set of available functions
Attribute scoring Two real numbers in the range [0, 1] with respect to the distance function; 0 indicates identical

values
Record scoring Two real numbers in the range [0, 1] indicating acceptance and rejection thresholds of records

with respect to the attribute scoring

BSM, blocking search method; FRIL, fine-grained record integration and linkage tool; SNM, sorted neighborhood method.

r1 r2 #edits fa M

‘‘AARON’’ ‘‘ARON’’ 1 0.2 1.0
‘‘AARON’’ ‘‘ADAM’’ 4 0.8 0.4
‘‘AARON’’ ‘‘HUGH’’ 5 1 0.0
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Observe that the Boolean join (or exact match) condi-
tion is a special case of the above discussion and may be
obtained by choosing equality as the distance function,
choosing minfa 5 maxfa5 0, and mint5 maxt5 1. Table 1
includes a summary of the full space of parameters in
FRIL.

Support for User’s Decisions

Choosing the best combination of values over all the
parameters in FRIL can be a challenging task. Two solu-
tions exist. The first is to provide, as much as possible,
tools that help users understand the effects of parameter
choices quickly. To that end, for several key user-speci-
fied parameters, FRIL contains real-time visual displays
of the results over representative data samples. The sec-
ond approach is to provide automatic parameter sugges-
tions through machine-learning techniques and allow
users to modify suggested values. In FRIL, this approach
has been incorporated for choosing the attribute weight-
ing. We present below some of the tools available in dif-
ferent FRIL modules that assist users in the attributes
configuration process.

Data Sources

To assist users with attribute selection and mapping,
FRIL provides a data source summary. The summary
contains information on each attribute in the data sour-
ces, including name, type, and the percentage of null val-
ues found in the data sources. A screenshot of one such
summary is shown in Figure 2. Sample values for each
attribute can be displayed by clicking the ‘‘See. . .’’ but-
ton.

The second step in attribute selection and mapping is
the reconciliation of schemas provided by two data sour-
ces. FRIL enables users to graphically map attributes
between schemas. An example screenshot is shown in
Figure 3. Attribute converters can be used to modify the

attributes into a common format for linkage. Available
converters include split converters that separate a single
attribute into two attributes, merge converters that merge
multiple attributes into one attribute, and trim converters
that allow various string operations. In splitting, data are
separated based on regular expressions.
If schema reconciliation is configured correctly, users

do not need to normalize the data within each data
source; FRIL will perform the reconciliation automati-
cally.

Attribute Comparison

After attribute selection and mapping is complete,
users choose, for each attribute, a distance function and
its associated attribute scoring values. To guide the user,
dynamic distance function and attribute scoring analysis
are provided. Whenever a user makes a change to these
parameters, a brief summary of results is displayed. Note
that the analysis is performed independently for each
pair of matched attributes.
Figure 4 is a screenshot of the user interface for sup-

porting distance function selection and attribute scoring
selections for last names. Values from the data sources

Figure 2. Summary of data source.

Figure 3. Data source configuration.

Figure 4. Support for distance parameters selection.
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are shown with a numeric score, fa, which indicates the
level of match on the basis of the configuration of param-
eters. As the user adjusts the parameter values, the dis-
play is updated accordingly in real time. This gives users
the ability to tune all the parameters until a desired
result is obtained, before linking is performed.

Classification/Decision

To help users set the attribute weighting parameter,
FRIL implements the EM method. The algorithm learns
the weights without relying on labeled data. The user is
responsible for specifying a method for sampling data
sources and a search method for identifying tested pairs
of records. The goal of sampling is to speed computation
by reducing the number of records from the original data
sources. The purpose of the search method in the EM
algorithm is similar to that of the search methods for re-
cord linkage; it aims to identify pairs of records that will
be used by the algorithm for computing weights. The
options include all-to-all and blocking search methods.
After the algorithm finishes learning, it provides a set of
weights that can be used for attribute weighting.

Experiment

An objective of our experimental evaluation is to pres-
ent a process for efficiently obtaining the best possible
linkage between two input data sources. The MACDP
program is an active population-based surveillance sys-
tem for birth defects that was established in 1967 by the
Centers for Disease Control and Prevention, Emory Uni-
versity, and the Georgia Mental Health Institute. The pro-
gram collected information on more than 12,700 cases of
birth defects among offspring of residents of the five cen-
tral counties of Atlanta from 1997 through 2006. As part
of the surveillance program, a birth certificate database of
1.25 million records of children born in Georgia for the
same years was obtained from the Georgia Department
of Human Resources. The goal of linking the two data
sets is to match each record from the MACDP database
with its corresponding record in the birth certificate data-
base. However, the two sources contain numerous meta-
data (i.e., schema level) and object-data heterogeneities.
Metadata heterogeneities (e.g., different number of digits
used for encoding year of birth) are resolved in FRIL
through the attribute selection and mapping parameter.

Object-data heterogeneity examples include incorrectly
recorded information and missing data values. These are
more difficult to handle and require the full range of
FRIL features to resolve. The focus of the Results section
is on this type of heterogeneity.

Metrics

The two data sets of interest in this project had been
linked previously by using a deterministic, rule-based
approach and a combination of running the program and
manual inspections. We used the results from the linkage
as our gold standard, G, against which the results from
our data linkage approach are compared. For evaluation
of our data linkage results, we used two standard met-
rics: precision and recall.

precision ¼ # of true positives

# of true positivesþ # of false positives

recall ¼ # of true positives

# of true positivesþ # of false negatives

A true positive is a pair of correctly matched records,
while a false positive is one that is incorrectly matched.
For measuring improvements across experiments, preci-
sion and recall are better metrics than sensitivity and
specificity. In particular, specificity can be unduly influ-
enced by the large number of true negatives in large data
sets.

RESULTS
Data Characteristics

Among the 187 MACDP data attributes, Table 2 pro-
vides statistics about the data in some the more intui-
tively important attributes in our data sources. In gen-
eral, columns that have many null values are not good
candidates to include in the join condition. Sources of
null values vary and may indicate unknown, inapplica-
ble, or unrecorded parameters. Therefore, comparing
attributes with nulls provides less information than com-
paring attributes with non-nulls. Initial choices of attrib-
utes are highlighted in italic font in the table. Other
attributes in the data sources were not used in our
experiments.

Linkage Experiments (SNM)

With the attributes for the linking process fixed, we
now describe experiments aimed at finding parameters
of the join condition that produce the best linkage result.
The six remaining parameters are distance function selec-
tion, attribute scoring, attribute weighting, sort ordering,
record scoring, and window sizing.
Experiment 1. Our initial values for the first four pa-

rameters are shown in Table 3. The top-down ordering of
the attributes in the table corresponds to the sort order-
ing parameter. Initial values for record scoring are mint
5 maxt 5 0.61. In all experiments, we used xA 5 xB 5 8.
For attributes with likely misspellings, the edit distance
function is deployed with acceptance and rejection
thresholds specified (as fraction of the length of the lon-
ger string) in the table. Results produced by the join con-

Table 2
Characteristics of Columns in Datasets

Column name

Percentage of non-null values

MACDP data Birth certificate data

Birth date (baby) 100 100
Name (baby) 100 100
Birth date (mother) 100 100
Name (mother) 100 100
Birth date (father) 82 83
Name (father) 82 83
Hospital # 100 99.5
City 100 97.5
Zip code 100 99.8
Sex (child) 100 100

MACDP, Metropolitan Atlanta Congenital Defects Program.
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dition as specified were good: precision at 95% and recall
at 86%.

Experiment 2. We reviewed the false positives gener-
ated above and observed that non-matching date of birth
was an important cause. We refined the join condition by
increasing the weight assigned to the date of birth attrib-
ute to 0.35 and reduced the weight of the baby name at-
tribute to 0.3. This resulted in a 98% precision and a
slightly decreased recall value of 85%.

Experiment 3. An examination of the remaining false
positives showed a strong correlation to non-matching
baby name, and in particular to the overly relaxed accep-
tance threshold for the edit distance function for baby
name. We restricted the threshold by 25% (minfa 5
0.15,maxfa 5 0.25), and it resulted in an improved preci-
sion value of 99% with no change in the recall. The join
condition used in this experiment is presented in Table 4.

Experiment 4. To address the relatively low recall rate,
we sifted through records that appeared in the gold
standard G but that were not matched in Experiment 3.
For most of these records, we observed that no attempted
links were made by FRIL. The reason lies in the sort
ordering we used. Using baby name as the dominant
sorting attribute, two records with dissimilar values will
occur far apart in the sorted files, beyond the window
size for comparison. However, significant mismatches in
baby name often occur as the result of data entry conven-
tions; e.g., for babies that have not been given a first
name, the letter B is used to denote ‘‘Baby’’ (e.g., ‘‘Smith
B’’). In some cases, similar records appeared more than
1,200 records apart in the sorted file when sorted on
baby name (Fig. 5a). While mother name is a semanti-
cally less significant attribute (i.e., carries less weight), it
is a better dominant sorting attribute for many cases

because of fewer variations in how its values are
recorded. Figure 5b illustrates how the problem of Figure
5a is solved through a different sort ordering.
Rather than increasing the window sizes, which would

hamper computational efficiency, we handled the prob-
lem with another feature of FRIL: the join summary. It
allowed us to create an output of those MACDP records
not joined in the initial run of the experiment (>1,500
records), and use them as input in a second run of the
experiment under a different set of parameters. By
changing the dominant sorting attribute to mother name,
the second run linked nearly 900 of the unmatched
records from the first run. Thus the combined effect of
the two runs yielded 99% precision and 95% recall. With
a small window size of 8, each run of FRIL takes approx-
imately 20 min. The overall time for completing the four
experiments took less than 2 days. The remaining
unmatched records have non-matching names, dates of
birth, etc. Those records were joined manually in G with
the assistance of human expertise. We also found four
linkages that did not appear in G. This suggests another
utility of FRIL: it can be used as a verification tool for
existing linkage results. Figure 6 shows a summary of the
four experiments.

Linkage Experiments (BSM)

Experiment 5. We used the join condition presented in
Table 4. Recall that for the blocking search method, a
function for blocking with associated attributes needs to
be specified. Our initial test used Soundex for the block-
ing function and baby name as the associated attribute.
As a result, only records that had the same Soundex
code for baby name ended up in the same block. These

Table 3
Initial Join Condition

Column name Metric Weight

Name (baby) Edit dist. (minfa 5 0.2, maxfa 5 0.25) 0.4
Birth date (baby) Equality 0.25
Name (mother) Edit dist. (minfa 5 0.2, maxfa 5 0.25) 0.2
Zip code Equality 0.1
Hospital # Equality 0.05

Table 4
Join Condition Used in Experiment 3

Column name Metric Weight

Name (baby) Edit dist. (minfa 5 0.15, maxfa 5 0.25) 0.3
Birth date (baby) Equality 0.35
Name (mother) Edit dist. (minfa 5 0.2, maxfa 5 0.25) 0.2
Zip code Equality 0.1
Hospital # Equality 0.05

Figure 5. Impact of sort ordering on compared records in SNM search method.
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choices yielded 84% recall and 99% precision, which are
very similar to the results of Experiment 3 using the
SNM.

Experiment 6. Following the insights learned through
Experiment 4, we changed the attribute used for blocking
to mother name. This produced recall and precision of
88% and 98%, respectively. An inspection of the data
showed the same effect as Experiment 4: similar records
were more likely to be grouped together when blocking
on mother’s name.

Comparing the SNM and BSM, the latter is computa-
tionally more efficient and demands less configuration
effort from the user. During our experiments, each run of
the SNM took approximately 20 min, compared to an av-
erage of 12 min for the BSM. BSM requires specification
of blocking function and its attribute, while the SNM
requires user inputs on window sizes and a sort order-
ing. In general, while the BSM is easier to use, results of
the SNM are more directly connected to its input param-
eters and hence allow for more systematic manipulation.
For example, the user can intuitively understand that
larger window sizes will produce more accurate results
but will take longer to complete. A different selection of
the blocking function in the BSM, on the other hand,
may produce results that are drastically different. There-
fore, it is much more difficult to predict the accuracy
of linking results through refinements of the parameter
values.

Evaluation of the EM Method for Attribute
Weighting

To test the effectiveness of the EM method for choos-
ing the initial weights of attributes used in the join condi-
tion, we sampled 5% of the data from the inputs to train
the algorithm. As a search method used by the algorithm,

we used blocking on baby name. Table 5 presents a com-
parison between weights manually obtained in the previ-
ous experiments and those calculated by using the EM
algorithm.
We compared the effectiveness of the computed

weights against the results obtained previously in Table
6. For the SNM, we used the top-down ordering of the
attributes in Table 5 as the sort ordering. For BSM, the
baby name is used as a blocking attribute and Soundex
as a blocking function.
Results show that weights obtained through the EM

algorithm provide very high precision for both SNM and
BSM. On the other hand, recall values provided by com-
puted weights are less than manually selected weights.
The experiment suggests that a useful process may be to
apply the EM to obtain high-quality initial weights, and
in subsequent iterations, manually adjust the weights to
improve the recall value. Alternatively, initial linked set
may be used as input data for alternative linkage proc-
esses based on supervised learning algorithms.

DISCUSSION

FRIL facilitated efficient and accurate record linkage
over two large data sources with a great deal of flexibil-
ity in the choice of fine-grained parameters available for
tuning the linkage tasks. FRIL allowed us to link MACDP
and birth certificate data efficiently and accurately (99%
precision and 95% recall). By exploiting all the features
of FRIL, we presented an iterative process that enabled
us to find good join conditions.
FRIL is an open source application. The tool, documen-

tation, and other useful information can be found at
http://www.mathcs.emory.edu/Research/Area/datainfo/
FRIL/index.html.
FRIL uses a probabilistic linkage approach and pro-

vides users with options for tuning the accuracy and per-
formance of data linkages. The combination of parame-
ters provides researchers with objective measures for
comparing results of linked data. Among the user-con-
trolled parameters in FRIL are certain algorithmic deci-
sion points that are usually hidden in common linkage
tools such as Link King (Campbell, 2005), Link Plus (Tho-
burn et al., 2007), or LinkageWiz (LinkageWiz, 2008).
FRIL also differs from other tools that provide little or no
options for schema reconciliation. This limitation makes
the linkage process complicated and requires ad hoc data
preprocessing. Additionally, powerful analysis, debug

Table 5
Weights Obtained by Using EM Method

Column name Original weight Computed weight

Name (baby) 0.3 0.21
Birth date (baby) 0.35 0.29
Name (mother) 0.2 0.22
Zip code 0.1 0.18
Hospital # 0.05 0.1

EM, expectation-maximization.

Figure 6. Summary of results for SNM search method. Com-
bined result contains linkages from two runs.

Table 6
Precision and Recall Comparisons between Weights
Obtained Manually and Weights Computed by the

EM Method

Original
weights (%)

Weights computed
by EM (%)

SNM
search
methoda

Blocking
search
method

SNM
search
method

Blocking
search
method

Precision 99 98 99 99
Recall 95 88 86 86

aDenotes results from two iterations of the algorithm.
EM, expectation-maximization; SNM, sorted neighborhood

method.
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and decision support modules that are accessible at every
level of linkage configuration in FRIL enable users to
define linkage more intuitively, faster, and avoid com-
mon errors. A tabular comparison of FRIL to existing
tools can be found on the FRIL website.

FRIL embodies the standard process of record linkage
tools as described in, for example, TAILOR (Elfeky et al.,
2002). From the data sources, the user chooses a search
method, a set of distance functions for measuring record
similarity, and a decision model for accepting or rejecting
a match. Iterative refinement of linkage is possible:
unmatched records from one run of FRIL are available as
input to a follow-up run with a different set of parameters.
Graphic tools for reconciling schema discrepancy and for
analyzing, validating, and summarizing results have been
incorporated. In addition, computerized learning tools are
being developed to suggest automatic parameters.

The benefits of FRIL extend beyond the results of link-
ing. By revealing key algorithmic decision points for user
inputs, the tool forces researchers to consider computa-
tional issues that impact accuracy and performance of the
linkage process. As a result, researchers are able to judge
the quality of the linked data objectively and quantita-
tively. For already linked data, FRIL may also serve as a
validation tool, since results obtained by running FRIL
can be compared with linkage results obtained previously.

Work on extending the usability and efficiency of FRIL
is ongoing. These include methods for supervised learn-
ing methods and alternative search methods based on
clustering. Borrowing query optimization techniques
from databases, window size and sort ordering may also
be suggested through learning techniques.

In addition to conducting data linkages with vital
records, MACDP conducts linkages with other datasets
such as the National Death Index and the database of the
Metropolitan Atlanta Developmental Disabilities Surveil-
lance Program (Yazdy et al., 2008). In addition, MACDP
has recently conducted linkage of MACDP records with
an ambient air pollution database to examine the possible
association of air pollution with heart defects. We antici-
pate conducting data linkages with new databases in the
near future to improve case ascertainment for a number
of conditions that are likely to be better reported in
records on outpatient visits or other databases (e.g., some
genetic disorders, fetal alcohol syndrome), to examine
other possible outcomes, such as cancer, associated with
birth defects and to examine the possible association of
maternal lupus with birth defects. For such efforts, it will
be important to have a record linkage tool that is efficient

and accurate. We are optimistic that FRIL will facilitate
many future data linkage projects based on birth defects
surveillance data not only for MACDP but also for other
birth defects surveillance programs.
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