
Adapting Commit Protocols for Large-Scale and
Dynamic Distributed Applications

Pawel Jurczyk and Li Xiong

Emory University, Atlanta GA 30322, USA
{pjurczy,lxiong}@emory.edu

Abstract. The continued advances in distributed data intensive
applications have formed an increasing demand for distributed commit
protocols that are adaptive to large scale and dynamic nature of the
applications to guarantee data consistency and integrity. Well known
two-phase commit protocol and three-phase commit protocol and their
variants do not provide scalability and flexibility desired for a wide range
of applications with potentially different requirements on consistency and
efficiency. In this paper, we present an adaptation of three-phase commit
protocol for dynamic and scalable distributed systems. The protocol is
not only resistant to dynamic network and node failures but also provides
good scalability. Most importantly, it offers a set of adjustable parame-
ters for a desired level of consistency at lowest cost depending on specific
requirements of different applications.

1 Introduction

An emerging class of distributed data intensive applications relies on large scale
distributed data sources in a dynamic and wide-area network setting; examples
are enterprise end-system management, workflow management, and computer-
supported collaborative work. Consider a nation-wide IT network provider that
owns hundreds of thousands of network devices across the country and utilizes
hundreds of small servers connecting to local devices to store information re-
ported by them. In order to develop applications such as an enterprise-scale
device management system or a report generation tool, data from distributed
data sources must be operated. In addition to queries, such data operations also
include data creations, updates, and deletions.

One of the key desired properties for building such large scale and dynamic
distributed data intensive applications is to guarantee data consistency and in-
tegrity. The problem of atomic commitment of transactions has been studied
in distributed systems and database systems and it requires that a set of nodes
have to either commit or abort a transaction, even in the case of network failures
or node failures. Some well-known algorithms for atomic commit are two-phase
commit protocol (2PC) and three-phase commit protocol (3PC) and their variants
[1,2,3,4,5]. Many of these traditional commit protocols make strong assumptions
that are unrealistic for the wide-area large-scale applications. Below we identify

R. Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp. 465–474, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

466 P. Jurczyk and L. Xiong

a number of research challenges for adapting distributed commit protocols for
such applications.

First, the scale of the applications we consider ranges from a handful of nodes
to hundreds of nodes and requires good system scalability. Earlier distributed
database systems (R* [2]), while providing a data consistency guarantee, use
protocols that are blocking and do not scale well. Second, the dynamic nature
of the wide-area networks and varying conditions of system nodes and resources
pose a stronger requirements on distributed commit protocols. They need to han-
dle a variety of potential failures and situations including network partitioning
as well as multiple node failures. Finally, to support a wide range of applica-
tions with potentially different requirements for data consistency and efficiency,
commit protocols need to be adaptive and potentially offer a trade-off between
the two above requirements. In certain cases, the consistency requirement is
mandatory (e.g. systems for a bank or financial institution). On the other hand,
systems for analysis purposes will not suffer from relaxed consistency and it is
more beneficial to offer more efficient operations at the cost of possibly incon-
sistent states when rare failures are encountered. We strongly believe that the
new-generation distributed data systems need to offer this flexibility and leave
decisions to users who can choose between full consistency at a higher cost or
some risk of inconsistent state in case of failures for a trade-off for efficiency.

Contributions. We present a distributed commit protocol for supporting a wide
variety of applications. The protocol has a number of features distinguishing itself
from existing solutions. First, the protocol addresses both small scale systems
with a handful of nodes and larger systems with hundreds of nodes. Second,
it is resilient to network partitioning and multiple node failures. Finally, the
protocol provides a flexible solution in the level of consistency through adjustable
parameters and offers a trade-off between consistency and efficiency.

2 Three-Phase Commit Protocol

To facilitate the discussion of our proposed protocol, we first briefly describe
the three-phase commit protocol and analyze its limitations. Figure 1 presents
the state diagrams of the 3PC [1]. The protocol proceeds as follows. First, the
coordinator sends commit request to all cohorts. If all cohorts agree to the trans-
action, the coordinator moves to the next phase. If any cohort does not agree, the
transaction is aborted. After all cohorts agreed to the transaction, the coordina-
tor sends prepare to commit message (pre-commit phase) to cohorts. After all
cohorts acknowledge the receipt of the prepare message, the coordinator sends
commit messages and commits. The basic version of 3PC does not support net-
work partitioning or multiple nodes failure. If any of these is met, it can end up
in inconsistent state. If network partitioning occurs when coordinator is sending
pre-commit messages, nodes that received pre-commit would commit while oth-
ers would abort. It also assumes atomic transitions from one state to another
(the message pre-commit can either be sent to all the cohorts or to none of

Adapting Commit Protocols for Large-Scale 467

qi

wi

q

ci

pi

aiw

a p

c

F, T

F, T

F,
T

Commit request sent to
all cohorts

A
ll co

h
o
rts

ag
reed

S
en

d
p
rep

are
to

all co
h
o
rts

A
n
y

co
h
o
rt

re
p
lie

d
ab

o
rt

S
en

d
ab

o
rt

to
al

l c
o
h
or

ts

T

Send abort to cohorts A
ll c

o
h

o
rts

 a
c

k
e

d

S
e

n
d

 c
o

m
m

it to
 a

ll

C
om

m
it received

S
end

abort

C
om

m
it

re
ce

iv
ed

S
en

d
ag

re
e

P
re

p
a

re
 r

e
c
e

iv
e

d

S
e

n
d

 a
c

k

Abort received

C
o

m
m

it
 r

e
c
e

iv
e

d

Abort received

Protocol coordinator Protocol cohorts

F

F
, T

F
, T

Fig. 1. Basic 3PC protocol

them). Such an assumption is hard to implement in distributed systems with-
out a hardware or operating system support. Extensions of 3PC (Q3PC [3] or
E3PC [4] or X3PC), while addressing some of these issues through the idea of
quorum, suffer the cost of blocking and also do not offer the desired trade-off
between consistency and efficiency.

To achieve our design goal for efficiency and scalability as well as flexibility
of consistency level, we also analyzed the 3PC in terms of its efficiency and ob-
served that the efficiency is affected by two factors. First, logging has a large
impact. As each log has to be forced to persistent storage before the protocol pro-
ceeds, such operations are expected to have impact on the response time of the
commit protocol (especially for tightly coupled distributed systems connected
by very fast connection backbone). The amount of logged information impacts
the response time. Second, the blocking approach in quorum-based 3PC modi-
fications utilizes a timeout (the time after which timeout transition is followed)
and blocks transactions that are accesssing data items locked by active transac-
tions. The longer transactions are blocked, the longer many data items can be
locked which harms especially wider systems (e.g. systems that offer statistical
analysis) where consistency is not of critical importance and can be relaxed.

3 Proposed Protocol

To address the issues with 3PC, we devised a protocol based on our three design
goals for large-scale and dynamic distributed applications. In addition to using
quorum to decide about unresolved transactions to address network partitioning
and multiple node failures, our protocol introduces a set of adjustable parameters

468 P. Jurczyk and L. Xiong

so that users can achieve a desired level of consistency and efficiency. In this
section, we introduce our assumptions, and present our protocol.

Protocol assumptions. We assume nodes in our commit protocol provide an
interface that performs operations in the following way. When a node successfully
executes an operation, it guarantees that the operation can be locally commit-
ted. Later, the protocol can either commit or roll back the operations. However,
when node failure occurs after operations were executed, but before transaction
is committed or rolled back, the state of operations is unidentified. We assume
that nodes use write ahead log (WAL), i.e. information is logged on persistent
storage before any actions on local operations are performed. We also relaxed
the assumption of atomic state transition in 3PC. Our assumption is that, when
a state transition is performed, operations associated with this transition are
executed in the new state. However, the operations do not have to be executed
atomically. For instance, when the transition between from state w to p is per-
formed at the coordinator, the sending of prepare messages starts after the
transition and the coordinator can fail after sending any number of messagess.

Protocol parameters. The key idea of our protocol is to introduce adjustable
parameters to make it configurable so that users can achieve the best consistency
and efficiency at the lowest cost in terms of system resources. As we discussed,
the amount of log data and the timeout value both have a large impact on the
efficiency of 3PC and its variants. This motivates us to design two key parameters
for our protocol, namely, log level and transaction timeout.

Log level. The log level allows the protocol to switch between different levels of
logged information: no logging, optimistic logging and full logging. In the case of
no logging, nodes do not log any information to persistent storage. In the case of
optimistic logging, each node logs to persistent storage only information about
crucial states of the protocol (commit request, prepare or commit). However, no
information about operations being performed is logged. In this case recovery
options are limited. When a node fails after operations were executed but before
they were committed, it can obtain the state of the transaction that it was
participating in. However, it does not have information about operations that
should be executed to undo/redo the transaction. In the case of full logging, each
node logs to persistent storage states of protocol and operations for undo/redo
recovery. As a consequence, nodes have full information that enables undo or
redo of any operations even if it fails before committing or rolling back.

Transaction timeout. This parameter defines the time an unresolved transaction
can persist in the system. Note that this is different from the message timeout
used in 3PC. When the transaction timeout is reached, decision is made even if
some participants of the commit protocol are not available. Such an approach
can lead to inconsistent decisions that have to be solved by users (e.g. resubmit-
ting the transaction after the system was repaired). When the timeout is set to
infinity, the transaction will not be finished before the agreement is reached.

Adapting Commit Protocols for Large-Scale 469

qi

wi

q

cipi

aiw

a p

c

(TT) and ((any of alive cohorts aborted) or
(none of alive cohorts (pre-)committed))

OR

(T,F) and (any cohort aborted or ((all
available) and (none (pre-)committed)))

F, T

F
, T Commit request sent to

all cohorts

A
ll cohorts agreed

S
end

prepare to all cohorts

A
n
y

c
o
h
o
rt

re
p
li
e
d

a
b
o
rt

S
e
n
d

a
b
o
rt

to
a
ll

c
o
h
o
rt

s

F, T

A
ll c

o
h

o
rts

 a
c

k
e

d

S
e

n
d

 c
o

m
m

it to
 a

ll

Com
m

it received

Send
abortCom

m
it

re
ceiv

ed

Send
agre

e

P
re

p
a

re
 r

e
c
e

iv
e

d

S
e

n
d

 a
c

k

Abort received

Commit received

(T,F or TT) and
(any cohort (pre-)committed)

Protocol coordinator Protocol cohorts

e

u

All cohorts aborted or noone committed All cohorts

com
m

itted

TT

OR

Som
e aborte

d

and
som

e

com
m

itt
ed

F
,
T

F, T

Fig. 2. Commit protocol. T is timeout waiting for next message, TT is transaction
timeout.

Protocol details. Figure 2 presents the state transition diagram of the pro-
posed protocol. The initial states work similarly to 3PC. We discuss below the
later states of the protocol. Readers should be aware that two types of time-
outs are used. Timeout T is the timeout when waiting for a message as used in
3PC. Transaction timeout TT is the parameter we introduced in our protocol
representing the timeout for a transaction to resolve.

At the coordinator site, a new state called u representing unknown outcome
of the transaction is introduced to solve the issue of potential non-atomic state
transition. When coordinator is in state p, it can start sending pre-commit to
cohorts. When coordinator fails just after sending none or a few messages, but
not all of them, the exact outcome of a transaction is unknown (it could not
happen in original 3PC because of its atomic state transition assumption). In
this case, cohorts can achieve full or partial agreement by communicating with
each other. When all cohorts commit, transaction commits on coordinator site
and state c is reached. On the other hand, when all cohorts abort, transaction
aborts and state a is reached. Finally, when some cohorts commit, some abort
or when some cohorts are not available and the transaction timeouts, the error
state e is reached. In this case, additional steps have to be performed by user (e.g.
the transaction has to be resubmitted). Depending on the transaction timeout
and log level, the protocol may have different outcomes and achieve different
consistency and we will analyze it in detail in next section.

At the cohort site, new state transitions are introduced at state wi to solve
the issue of coordinator failure during the state transitions. In the original 3PC,

470 P. Jurczyk and L. Xiong

both failure and timeout transitions lead to state a. However, such an approach
is not viable anymore given the possible non-atomic transitions in coordinator.
In case of coordinator failure during some of the state transitions (e.g. sending
pre-commit or abort messages), some cohorts may be notified with the messages
and eventually commit or abort the transaction while others are not and have to
make a final decision with respect to possible decisions of others. When message
timeout T or failure F occurs at state wi, and all cohorts are present, transac-
tion can be committed or aborted depending on the state of other cohorts. The
approach here is similar to the quorum-based protocols but has a key difference
with the adjustable transaction timeout. If transaction timeout TT occurs, max-
imum allowable time for transaction expires and decision has to be made even
when not all cohorts are available. An explanation is justified for the timeout T
as versus the transaction timeout TT at state wi. Timeout T can be considered
as a timer and when it expires, the node checks the transition conditions. If any
condition is satisfied, the corresponding transition is followed. If no condition is
satisfied, it stays in the same state and resets the timer.

4 Protocol Analysis

The proposed protocol provides either a blocking protocol that is similar to
2PC or quorum-based 3PC and guarantees full consistency, or a non-blocking
alternative that is resilient to network partitioning and multiple node failures at
the cost of certain inconsistency. We now analyze the protocol in detail.

4.1 Full Consistency Configuration

Claim 1. When full logging and infinite transaction timeout are used, all cohorts
commit or abort transaction.

No failure. In the case of no failure, we will prove Claim 1 by contradiction
assuming the protocol ends with inconsistent decision. The inconsistent decision
would require that some nodes obtained commit and some obtained abort mes-
sages. However, such a situation is not possible, as all cohorts are notified with
either pre-commit and commit or with abort message and once the coordinator
makes decision to commit the transaction, this decision is not changed.

Coordinator failure. We consider a few cases of coordinator failure and show
the nodes will reach a consistent state.

Case 1 : coordinator fails in state p when it starts sending pre-commit messages
to cohorts. Recall that we assume when a state transition is performed, opera-
tions associated with this transition are executed in the new state. In this case,
no cohorts received commit message and some (or all) received pre-commits. Co-
horts are either in state wi (if pre-commit was not received) or pi (if pre-commit
was received). If a cohort is in state pi, it will commit following a timeout or
failure transition. If a cohort is in state wi, the first condition in transition to
abort state will never be satisfied as transaction timeout TT is set to infinity.

Adapting Commit Protocols for Large-Scale 471

The second part of the condition can only be satisfied if any cohort received
abort (not possible as coordinator failed before sending commit message, but
after sending pre-commits) or none of cohorts involved in transaction received
pre-commit or commit (again not possible). Clearly, such transition conditions
at cohort sites guarantee that if any cohort received commit or pre-commit, oth-
ers will not abort but will eventually follow failure or timeout transition from
state wi to ci and commit the transaction.

Case 2 : coordinator fails in state a when it starts sending abort messages to
cohorts. If the abort message is delivered to any cohort, or if none receives pre-
commit or commit message, the protocol guarantees that all other cohorts would
follow to abort state.

Case 3 : coordinator fails in state c when it starts sending commit messages to
cohorts. If commit messages are being sent, all the cohorts have acknowledged
delivery of pre-commit. This means that each cohort has at least reached state pi.
When cohorts in this state do not receive further messages, they follow timeout
transition to commit, which guarantees consistency.

Cohort failures. We consider a few cases of cohort failure and show the nodes
will reach a consistent state.

Case 1 : cohort fails in state qi. In this case, it follows failure transition to abort
state immediately. When any cohort is in the above state, coordinator is in state
w or q and in case of failure or timeout it follows to abort state. Therefore, both
coordinator and failed cohorts abort transaction. Cohorts that did not fail can
be in either state qi or wi. As they would not receive further messages from
coordinator, they follow timeout transition to abort state.

Case 2 : cohort fails in state wi. In this case, coordinator can be either in state
w (no pre-commit was sent) or p (some pre-commit messages might have been
sent). If coordinator is still in w and fails, it moves to abort. Other cohorts will
also eventually reach the abort state (including the failed cohort). If coordinator
is in state p and it fails, it moves to state u. However, some cohorts might
have received pre-commit message and moved to state pi and eventually commit
state. The failed cohort in state wi contacts other cohorts after recovery, which
guarantees the consistency. Note that as full logging was used, cohort has all
the information to perform recovery. Also note that infinite transaction timeout
guarantees that either the cohort that knows the outcome of transaction has
to be contacted or the protocol waits for all cohorts to verify that outcome is
unknown and aborts transaction. If pre-commit message was delivered to any
cohort, the transaction will be committed. If no one received pre-commit, the
transaction will be aborted. Finally, as coordinator being in state u sees that all
the cohorts either committed or aborted, it makes the final decision as well.

Case 3 : cohort fails in state pi. In this case, it commits the transaction after
recovery. If a cohort is in state pi, coordinator can be in state p or c and other
cohorts can be either in state wi or qi. If coordinator is in state p and fails, it fails
after sending at least some pre-commit messages as failed cohort received this

472 P. Jurczyk and L. Xiong

message. When other cohorts that have not received pre-commit message timeout
from state wi, they will verify the state of other cohorts and eventually commit
as transaction timeout being set to infinity ensures that at least one cohort is
aware of the outcome or all cohorts are required for making final decision. If
coordinator is in state c and fails, all cohorts must have received the pre-commit
message and are in state qi. Therefore, all the cohorts follow failure or timeout
transactions and commit.

Network partitioning. Network partitioning disables communication capabil-
ities between sites. If partitioning occurs, messages will not be delivered between
sites and in consequence timeout transitions will be followed. As timeout transi-
tions in our protocol are parallel to failure transitions, network partitioning will
cause similar scenarios as node failures described above.

4.2 Other Configurations

No logging. When a node fails and recovers, no information about the state
of the transaction is available. In fact, the node is not even aware that the
transaction existed. There are some scenarios that will still lead to consistent
state. For instance, when coordinator fails before sending commit messages but
after sending all the pre-commits, all cohorts would timeout from states pi and
the transaction would be committed among all other cohorts. There are many
cases, however, that can lead to inconsistency. One example is as follows. Assume
coordinator starts sending pre-commit messages and it fails after the first one
is sent (when coordinator fails and no logging option is used, it does not follow
any failure transitions and simply forgets about the transaction). Assume the
cohort that received pre-commit message waits, times out to commit state, then
fails and forgets about the transaction. Then the rest of the cohorts time out,
and start to ask other cohorts about the outcome of the transaction. When
failed cohort recovers, however, it does not have any information about the past
transaction so it cannot inform other cohorts about the fact it committed the
transaction. In consequence, other cohorts abort and the state is inconsistent.

Optimistic logging. Optimistic logging is sufficient to solve the inconsistency
scenario above. In this case, each node participating in the transaction logs crit-
ical steps in the commit protocol. When the failed cohort recovers, it is aware
that the transaction was committed and notifies other cohorts about the status.
Therefore, other cohorts pending in state wi would follow transition to commit
state and consistent state is maintained. While solving some of the inconsistency
situations, optimistic logging can also lead to inconsistency. Consider the sce-
nario above again and assume another cohort fails in state wi. Even though the
node has the knowledge of the transaction and its state, because of the limited
logging information, it may not be able to perform necessary undo/redo recovery
depending on the transaction outcome in order to reach a consistent state. Such
a problem is solved by full logging as discussed in subsection 4.1.

Adapting Commit Protocols for Large-Scale 473

Table 1. Summary of available consistency level depending on protocol parameters

No log Optimistic log Full log
Finite
timeout

Consistency if protocol finishes before
timeout (nodes failure cause incon-
sistency). Possibly no information for
users about the outcome of transaction

Consistency if protocol
finishes before timeout
(nodes failure can cause
inconsistency)

Consistency if pro-
tocol finishes before
timeout

Infinite
timeout

Resistant to net. failures, nodes failures
lead to inconsistency. Possibly no infor-
mation for users about the outcome of
transaction

Resistant to net. fail-
ures, nodes failures can
lead to inconsistency

Full consistency,
prone to net. and
node failures, block-
ing protocol

Finite transaction timeout. We now take a closer look at what happens when
a finite value is specified for transaction timeout. The transaction timeout limits
amount of time that nodes can wait before being able to contact others in case
of network partitioning or node failures. In case of network partitioning without
node failures, assume some cohorts in state wi become unreachable from the
coordinator, these cohorts will simply wait for messages. When none is received,
they face timeout and attempt to contact others to find the outcome of the
transaction. However, if network failure is not fixed before transaction timeout
is reached, decision can be made without respect to some of the cohorts. This can
lead to inconsistency. For instance, when coordinator sends pre-commit messages
and network partitioning occurs, the group of connected nodes that includes
cohorts who received pre-commit would commit while the group of nodes that
did not receive any pre-commit would abort.

In case of node failures, the scenarios we discussed for each of the log levels
remain valid when a finite transaction timeout is used. The parameter limits
the waiting time for other cohorts to restart. If a failed cohort restarts before
transaction timeout occurs, the scenario is followed as discussed and consistency
is maintained to the extent provided by the given log level. If the node does not
restart before the transaction timeout occurred, some cohorts can make decisions
without respect to the state of the transaction on failed cohorts and inconsistent
states can be reached. Table 1 contains a summary of available parameters.

5 Conclusion

We have presented a new commit protocol based on 3PC that is scalable and
resistant to dynamic network and node failures, and provides a configurable
level of consistency depending on specific application and system deployment
characteristics. When full logging and infinite transaction timeout are used, full
consistency is guaranteed at the cost of blocking. This is not surprising, as it has
been proven that there does not exist a non-blocking commit protocol resilient
to multiple nodes failure or network partitioning [1]. In case of other parameter
configurations, the protocol is resistant to certain types of failures, but can lead
to inconsistency. Our future work aims to provide fault tolerance properties for
the protocol. In particular, we are planning to introduce data replications and
extend the system with tolerance of Byzantine node failures.

474 P. Jurczyk and L. Xiong

References

1. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed system.
Concurrency control and reliability in distributed systems, 295–317 (1987)

2. Mohan, C., Lindsay, B.G., Obermarck, R.: Transaction management in the r* dis-
tributed database management system. ACM Trans. Database Syst. 11(4), 378–396
(1986)

3. Skeen, D.: A quorum-based commit protocol. Technical report, Cornell University,
Ithaca, NY, USA (1982)

4. Keidar, I., Dolev, D.: Increasing the resilience of atomic commit, at no additional
cost. In: Proc. of the PODS (1995)

5. Kempster, T., Stirling, C., Thanisch, P.: A more committed quorum-based three
phase commit protocol. In: Proc. of the DISC (1998)

	Introduction
	Three-Phase Commit Protocol
	Proposed Protocol
	Protocol Analysis
	Full Consistency Configuration
	Other Configurations

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

