
Frequent Pattern Mining for Kernel Trace Data
Christopher LaRosa, Li Xiong, Ken Mandelberg

Department of Mathematics and Computer Science
Emory University, Atlanta, GA 30322

+1 404-727-7580
{clarosa,lxiong,km}@mathcs.emory.edu

ABSTRACT
Operating systems engineers have developed tracing tools that log
details about process execution at the kernel level. These tools
make it easier to understand the actual execution that takes place
on real systems. Unfortunately, uncovering certain types of useful
information in kernel trace data is nearly impossible through
manual inspection of a trace log. To detect interesting inter-
process communication patterns and other recurring runtime
execution patterns in operating system trace logs, we employ data
mining techniques, in particular, frequent pattern mining. We
present a framework for mining kernel trace data, making use of
frequent pattern mining in conjunction with special considerations
for the temporal characteristics of kernel trace data. We report our
findings using our framework to isolate processes responsible for
systemic problems on a LINUX system and demonstrate our
framework is versatile and efficient.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – measurements,
monitors, operational analysis, stochastic analysis; D.2.5
[Software Engineering]: Testing and Debugging – tracing; G.3
[Probability and Statistics]: time series analysis; H.2.8
[Database Applications]: data mining.

General Terms
Measurement, design, performance, experimentation.

Keywords
Frequent pattern mining, sequential pattern mining, kernel tracing.

1. INTRODUCTION
The introduction of low-impact kernel-level tracing tools allows
for comprehensive and transparent reporting of process and
operating system activity. An operating system trace log provides
detailed, explicit information about which processes use which
system resources at what time. This time series data contains
underlying knowledge, such as common execution patterns. This
information can assist in many systems-related tasks: application
debugging, security enforcement, performance optimization,
operating system debugging, and dynamic reconfiguration.
However, while kernel trace collection tools have advanced and
matured, there remains a lack of trace analysis tools for extracting
useful knowledge from raw trace logs.

 Motivation and Goals. Most current trace collection tools, such
as the Linux Trace Toolkit (LTT) [22] and Solaris’s dTrace [2],
provide powerful mechanisms for collecting data. Unfortunately
for their users, the tools provide limited or no functionality for
analyzing the data collected. Neither LTT nor dTrace provide
analysis functionality beyond simple aggregations, which must be
specified before a trace can begin. Neither tool provides a
mechanism to look for patterns either during a trace or after a
trace is completed.

The lack of proper kernel trace analysis tools motivates us to
build a framework that applies data mining techniques to analyze
kernel trace data. The framework is designed to discover
information in trace logs that could not be detected with existing
system tools like top or ps or be found through manual inspection
of a kernel trace log. We study the pre-processing and data mining
techniques that can be used to identify interesting recurring inter-
process patterns in noisy kernel trace data. These execution
patterns can potentially help a variety of users including system
administrators, application programmers, operating systems
engineers, and security analysts.

In the systems area, data mining techniques have been
successfully used in the past for profiling and detecting mal-ware
[19], optimizing data placement and prefetching for fast retrieval
[14], and detecting operating system bugs introduced by copying
and pasting of kernel source code [15]. To our knowledge, this is
the first effort for a general-purpose solution that mines across
multiple kernel subsystems and the first attempt to tackle the task of
mining kernel trace logs.

Issues and Challenges. While data mining techniques [5, 10]
have been successfully applied to mine time-series data in a
variety of applications, mining kernel trace data presents a unique
set of challenges.
 The complex and voluminous data generated by kernel tracing
tools create our first mining challenge. A typical kernel tracing
tool, the Linux Trace Toolkit (LTT), can report thousands of
kernel-event records every second. Each kernel event is a multi-
attribute tuple containing, a record of which process caused the
event, the sub-system of the operating system involved with
executing the event, the event type, the address or descriptor for
any resource accessed during the event, and the time at which the
event occurred. Sample values for these attributes are shown in
Table 1.
 Further adding to the challenge is our desire to detect complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

Table 1. Trace Attributes with Sample Values

Attribute Sample Values
process Firefox, staroffice, xFree86
subsystem file system, memory, syscall, sched
Event open, alloc, syscall entry
descriptor bookmarks.html, gettimeofday

2 (file descriptor), 2531 (process ID)

patterns in multiple attribute data. To uncover systemic problems
we cannot focus our attention on one subsystem or application.
For example, isolating a memory allocation problem would
necessitate looking at information in the event attribute that shows
when a log entry involves the memory subsystem and the process
attribute that indicates which program generated the event.
 Another important consideration for mining a kernel trace is
appropriate treatment of a trace’s time-series data. The
timestamp attribute allows us to find more interesting patterns
using data mining techniques than we could obtain by computing
event aggregations for data in kernel trace logs. In addition, the
unique scheduling characteristics of the operating system make
the kernel trace mining task not a straightforward application of
existing sequence mining algorithms.
 Finally we must consider a way to interpret the results of our
mining system. A main concern is that events related to systemic
problems could appear in the logs with relatively low frequencies
compared to normal events that appear with very high
frequencies. Our system needs to identify not-too-frequent event
patterns that indicate problems and report those patterns in its
output. In addition, we should provide efficient ways to hide very
frequent patterns that do not indicate problems.

Contributions and Organization. Bearing the above issues in
mind, we design a framework for effectively and efficiently
mining kernel trace logs and implement a suite of trace mining
tools to test the design. Our framework makes a number of unique
contributions. First, we transform the problem of kernel trace data
pattern mining to maximal frequent itemset mining. We provide
special treatment for the unique temporal characteristics of kernel
trace data and propose a combined approach of window folding
and window slicing to group trace events into itemsets using their
timestamp as a measure of temporal proximity (Section 2.1).
Second, we develop a set of data preprocessing techniques
including bit packing and data filtering that allow efficient and
flexible cross-attribute pattern mining (Section 2.2). Finally, we

perform experimental studies to detect systemic problems on real
systems. We test our tools with a range of algorithmic parameters,
showing the feasibility and effectiveness of the approach (Section
3). We conclude the paper with a review of related work (Section
4), a brief summary, and a discussion of futures directions for our
research (Section 5).

2. KERNEL TRACE MINING FRAMEWORK
Kernel trace logs are massive, ordered records of events that occur
inside the operating system. Our goal is to find common execution
patterns so that we can better understand the execution that is
taking place on a machine. In this section, we present an overview
of our framework and show how we model kernel trace mining.

We present a conceptual diagram of our framework for mining
kernel data in Figure 1. In our system, un-modified processes
make requests of the operating system in the form of system calls.
A trace module inside the operating system transparently monitors
these calls and other internal activity. The trace monitor writes a
detailed, time-series record of these events to a log file. The
preprocessing utilities in our suite harvest the time-series data
from a log and translate it into itemset data for frequent itemset
mining. The preprocessor output is passed into a frequent itemset
mining tool and the output patterns are passed to a program for
display and analysis.

2.1 Frequent Itemset Mining
Finding frequently occurring patterns in ordered or time-series
data like our trace logs is a mining task commonly referred to as
Sequential Pattern Mining [5]. Given an ordered series of events,
S, and a minimum support, min_sup, mining for frequent
sequences involves finding the set of all ordered series of events,
F, that occur at least min_sup times in S. For example, with
min_sup = 2 and S = <A, C, B, A, B> we have the frequent
sequences F = <A, B>, <A>, . These frequent subsequences
are referred to as serial episodes.

Additional constraints may be placed on the sequential mining
problem. Constraining the interval i puts an upper limit on the
maximum time that can have elapsed between any two
consecutive items in a serial episode. On an integral timescale an
interval of 0 requires all serial events to have no intervening
events. With our original S, min_sup=2, i=0, only the single event
series <A> and would be reported as frequent series; there
would be no multi-itemsets in our results for this example.

Kernel trace logs have unique temporal characteristics due to
the partially ordered execution resulting from OS scheduling. We
discuss below why we need a special treatment of the kernel trace
data compared to typical time-series data. We propose two
important techniques for the treatment, namely, window folding
and window slicing. Window folding creates a series of parallel
events and window slicing creates a sequence database. Together
these steps create a database of parallel events. As a result, we
treat the parallel events as unordered and reduce the problem of
sequential pattern mining to frequent itemset mining.

Window Folding. For the purposes of examining system trace
data we need to maintain a sufficiently large interval to account
for sequence gaps and re-orderings introduced by the operating
system’s scheduler. On any modern OS the scheduler will
regularly suspend the execution of a process so that other
processes may execute. The maximum period for which a process
may execute uninterrupted by the scheduler is referred to as the
timeslice. Intervals used by our mining algorithms need to be

Figure 1. System Architecture

sufficiently long to detect patterns that exist across multiple
timeslices. Certainly if we hope to find inter-application patterns
we need to consider more than one process at a time. Furthermore,
because the scheduler does not guarantee any ordering of process
execution to processes, detecting common process interactions
requires relaxing the definition of sequence mining further to
allow for changes in ordering.

To illustrate this challenge, suppose jobs j1 and j2 require
inter-process communication among processes A, B, and C. A and
B’s execution can happen in any order. Furthermore, C is
dependent on B having completed its work. The two similar jobs
j1, j2 could be completed according to either of the execution
schedules shown in Figure 2. Both sequences illustrate the same
pattern of collaborative work being done by the same processes
but in different orders of execution. Unless we relax the strict
ordering constraint enforced in traditional sequence mining, we
will fail to generate any sequences demonstrating the interesting
interaction between processes A, B, and C.

Relaxing the ordering constraint means that we can loose
potentially useful information, such as event ordering information
for frequently occurring deadlock situations. However, relaxing
ordering allows us to discover problem interactions both where
ordering is an issue and where ordering is not a factor. Our system
could be adapted to recover lost ordering information by
employing an approach presented in [16], which first identifies
frequent parallel episodes and then recovers ordering information
for the parallel episodes to establish frequent serial episodes.

In order to expose all potentially interesting inter-process
interactions on timeshared systems we relax the ordering
requirement to consider events occurring within a certain temporal
distance to be parallel events. The temporal distance is referred to
as a folding window.

Window Slicing. Our task now becomes finding frequent parallel
episodes—frequently occurring sets of temporally proximal
events. Unfortunately, representing a list of all groups of parallel
events with a folding window size w for a sequence with N items
leads to a growth of data O(w*N). Although this growth is
constant, for the w values used in our experiments storing every
parallel event window would require several hundred to several
thousand times more storage and processing than the original
trace representation. To avoid expanding our dataset we adopt a
technique called window slicing.

Window slicing is introduced in [14] as an effective technique
to perform sequence mining of an extended sequence. Window
slicing converts an extended sequence into a sequence database, a
collection of relatively shorter sequences. The non-overlapping
version of window slicing technique divides time-series data using
a window period. Events that take place in the same window are

treated as a single sequence record in the event database. We
adapt this form of window slicing to our data while
simultaneously performing window folding using the same period.
This slice-and-fold step gives us an unordered database of parallel
events.

Without loss of generality, we consider LTT logs where
timestamps are recorded as the number of microseconds elapsed
since the UNIX epoch. We define a parameter w, the fold-slice-
window period in microseconds. Using w we calculate a window
ID for each log entry, Lx, using the formula:

Any two log entries that share a window ID are treated as parallel
events. The window ID serves as an itemset ID for our frequent
itemset mining.

Clearly, for a window of size w, some event sequences of size w
will not be included in our sequence database using this window
slicing method (Figure 3). However by using a window long
enough to capture frequent patterns at least once in most windows,
we minimize the disruptive effects of window slicing. Our
experimentation confirms previous work in [14] that shows window
slicing will not adversely affect the effectiveness of our mining for
sufficiently large windows.

Frequent Itemset Mining. By combining the window folding
and window slicing methods, we can treat the parallel events as
unordered and so our task of mining trace data has been reduced
to frequent itemset mining.

Specifically we look for maximal frequent itemsets, the
elements of which comprise common maximal execution patterns
in the original trace. We use maximal frequent itemset mining
(MFI) in favor of frequent closed itemset mining (FCI) and
frequent itemset (FI) mining because the volume of MFI output is
much lower than that produced by FCI and FI mines. This is
important because we want our output to be human-readable.
Furthermore frequent closed itemset mining introduces noise into
our results because slightly different supports for items in a
maximal frequent itemset, which exists as a result of window-
slicing and scheduling, cause multiple frequent closed itemsets to
be reported—none of which provide any more insight than the
single maximal frequent itemset.

2.2 Data Preprocessing
Our kernel trace mining system includes a series of C++ and perl
data preprocessing tools that transform time-series trace logs into
a series of integers for frequent itemset mining.

Our preprocessing tools work together to perform the
following tasks in the listed order: resolve operating system
descriptors to file and executable names, create uniform
dictionaries for attribute representation, convert log entries to
normalized integer representations. We also have a tool that filters
data using a pass-through filter that discards records that do not

Figure 2. Alternative Scheduling of a Single Load

Figure 3. Windowing Slicing Error for Event SCHED 452

match any rule in a user-specified list. Our rules are a series of
formatted strings adhering to our attribute format proc-subsystem-
call-descriptor-size. We allow wildcard matching for an attribute
with the asterisk character. For example, the rule *,MEM,*,*,*
allows any call to the memory subsystem to pass into the dataset
we use for mining.

3. EXPERIMENTATION
We performed a set of experiments evaluating the feasibility,
effectiveness and cost of our proposed framework. Our goal is to
answer the following important questions: 1) Can kernel trace
mining help system users in system-related tasks such as
performance tuning and systems debugging? 2) How do different
algorithmic parameters in our framework affect the mining
results?

In this section, we report findings from a case study with our
system. We use our framework to detect a known problem
program, the GNOME applet gtik. We describe the problem and
our experiment setup for the GNOME applet, present the mining
results, and illustrate the effects of different algorithmic
components and parameters of the mining framework. We also
implemented our framework on Solaris using dTrace and
conducted a separate case study that confirmed our findings from
the LINUX and LTT case study. Interested readers can find
details about our implementation and experience mining kernel
traces on Solaris in [9].

3.1 Problem Scenario
The GNOME stock ticker applet gtik version 2.0 is a process now
known to induce systemic problems because of the number of
high-impact X programming calls it generates. However,
identifying this process as a heavy consumer of system resources
presents a challenge.

Because much of the work being created by the gtik applet
takes place inside the X server, detecting the applet as the source
of system overhead using traditional tools such as top is
impossible. A recent study [2] used dTrace to identify the applet
on a multi-processor Solaris system. The study used the output of
mpstat, a tool for monitoring processor activity, as a starting point
for writing a series of dScripts. dScripts provide control and
analysis functionality for Solaris’ dTrace kernel tracing
mechanism. In all, five ad-hoc dScripts were necessary to trace
the suspicious activity reported by mpstat back to gtik. These
scripts required not only knowledge of X programming calls, but
also implementation knowledge of an X server. Furthermore this
solution using dTrace and custom dScripts was only possible
because of the clues provided at the onset by mpstat’s cross call
report, a feature that is not available on single processor machines.

Given this problem scenario, we study how the proposed
kernel trace mining system can help in detecting the problematic
process through pattern discovery in kernel traces.

3.2 Experiment Setup
Using the LINUX Trace Toolkit we collected traces of kernel
level activity, including system calls. We mined the traces
collected using our suite of data preprocessing tools and MFI
mining. For MFI mining we adopt MAFIA [1], which uses a
highly efficient algorithm for outputting maximal frequent
patterns. We examined the output of our mining to look for
meaningful patterns of activity.

We collected four 1 minute traces, summarized in Table 2,
from a machine running version 2.5.7 of the Linux Kernel,
patched with version 0.9.5 of the Linux Trace Toolkit. Two traces
were conducted while the gtik applet version 2.0, the version
known to induce systemic problems, was running: The first trace,
ltt_gtik_20_isolated, contained one minute of trace activity with
no interactive applications running and no user activity. The
second trace, ltt_gtik_20_noisy, was conducted while a user surfed
the web using FireFox and edited a document in OpenOffice. The
next two traces, ltt_gtik_26_isolated and ltt_gtik_26_noisy, were
collected under similar circumstances, but with an improved
version of the gtik applet running, version 2.6. The newer version
reduced the number of high-impact X programming calls, but the
program still communicated with the X server very frequently—a
phenomenon we saw in our mining results.

3.3 Mining Results
We first present a set of results showing clear patterns that can be
used to identify the problematic gtik process. The frequent itemset
output from our system, along with its corresponding
experimental configuration, is illustrated in Figure 4. The output
was exceptionally clear. It consisted of only 2 frequent itemsets,
with itemset 2 directly pointing to the systemic problem on the
trace machine. In the itemset the pairing of gtik’s writes and
XFree86’s reads, and the two processes’ complementary allocs
and frees of memory suggest that gtik is responsible for much of
the XFree86’s work. itemset 1 reveals no non-obvious
information—we expect the XFree86 server, which is responsible
for all graphic display on the system, will be making almost
constant system calls.

We also conducted experiments across all attributes with no
data filtering and in each of our traces we were able to detect
frequent itemsets pointing to the gtik and X server interaction.
Even with an interactive load that consumed 40 percent of CPU,
meaning the presence of considerable noise for our data mining
algorithm to contend with, the gtik and X11 interaction was
clearly visible in our output.

Figure 4. Experimentation Input/Output

Table 2. Experiment Traces

Trace Gtik Interactive App.
ltt_gtik_20_isolated Buggy No
ltt_gtik_20_noisy Buggy Yes
ltt_gtik_26_isolated Fixed No
ltt_gtik_26_noisy Fixed Yes

Experimental Configuration
 input: ltt_gtik_20_noisy; minimum support: .5
 fold-slice-window period: 25,000 (microseconds)
 filters: *,FS,OPEN,*,*; *,FS,CLOSE,*,*;
 ,FS,READ,,*; *,FS,WRITE,*,* ;
 ,MEM,,*,*; *,SCHED,*,*,*;

Output
 itemset 1:
 XFree86, FS, WRITE
 XFree86, FS, READ
 XFree86, MEM, FREE
 Xfree86, MEM, ALLOC

itemset 2:
gtik2_applet_2, MEM, ALLOC
gtik2_applet_2, MEM, FREE
gtik2_applet_2, FS, WRITE
XFree86, FS, READ
XFree86, MEM, FREE
XFree86, MEM, ALLOC

3.4 Parameter Effects on Mining Quality
To test the durability of our system we also performed an
extensive set of experiments over a range of mining parameters.
We investigated the effects of two important mining parameters,
fold-slice-window and minimum support. We detail results for
the ltt_gtik_20_noisy trace in this section because it contains the
noisiest data and accordingly presents the greatest challenge to
our mining system.

We conducted each of our experiments using fold-slice-window
periods varying from 10,000 microseconds to 1 second at discrete
intervals. At each of these intervals we looked for maximal
frequent itemsets with minimum supports between .1 and .9. We
report 4 possible outcomes for each of these experiments: Present
in single itemset—only 1 frequent itemset was reported and it
contained the problematic interaction, Present in multiple
itemsets—the pattern appeared in at least one frequent of the
itemsets reported and no itemset contained events generated by
processes other than gtik or XFree86, Present with interference—
the pattern was present in an itemset that also contained noise
from processes not involved in the systemic problem, Not
present—the problematic inter-process pattern was not reported in
any itemset.

Figure 5 presents the mining outcomes with varying fold-slice-
window periods and varying minimum supports; darker cells
contain more useful information or knowledge. For all windows
ranging from 25,000 microseconds to 250,000 microseconds we
could detect the problematic inter-process interaction. Minimum
support played a significant role in determining result quality
where the signal was strong. Where the fold-slice-window period
was long—and the problem interaction between gtik and XFree86
was nearly guaranteed to be reported in every window—the high
minimum support value pruned noise from other processes out of
the output itemsets.

At the opposite end of the spectrum, where the problem
interaction was present in only a few of the short windows, a high
minimum support value pruned away the interaction from the
results.

We performed additional experiments to determine the effects
of attribute filtering on our system. We found filtering along
certain attributes resulted in more readable output. Results from
these experiments are omitted because of space limitations;
interested readers can refer to [9] for details.

4. RELATED WORK
Pattern mining in time series data has been an emerging technique
applied in a variety of applications [5, 21]. We briefly review in
this section the most relevant works that apply data mining for
operating systems.

In developing a kernel-wide data-mining system, we consider
research outcomes for systems targeting each of an operating
system’s constituent subsystems. Research has been conducted to
develop better data pre-fetching at the disk and network level [3,
4]. [3] exploited an existing sequence mining algorithm for data
placement optimizations. As systems become increasingly
distributed and complex, mining will play an increasingly
important role in evaluation and optimization. Already, traditional
file-system benchmarking applications are inadequate for
meaningful performance evaluation in large-scale storage area
networks (SANs) [18, 20]. Mining has also been shown to be
useful when optimizing data placement and prefetching from disks
[13]. The tools we developed for mining kernel trace data could be
adapted to analyze multiple time-sequence logs from different
components of a SAN or other distributed system.

Tracking operating system activity for intrusion detection is a
mature area of research [7, 8, 11, 13]. This work usually focuses
on tracking individual users and processes. Mining-based
approaches for system security are emerging as responsive and
resilient strategies for system security [11, 12]. Mining
techniques have also been successfully used for profiling and
detecting mal-ware [19, 6], and for detecting operating system
bugs introduced by copying and pasting of kernel source code
[14].

Our work differs from above in that it is the first general-
purpose solution that allows for mining for patterns across
multiple subsystems in kernel traces to detect systemic problems.

Finally, directly related to the performance of our system is
work on maximal frequent itemset mining [1] and sequence
mining [16, 17, 23]. For future adaptations of our systems, stream
mining of frequent itemsets is a key area of interest [10].

5. CONCLUSIONS AND FUTURE WORK
We developed a framework for mining kernel trace data. We
translate the task of mining kernel trace data into frequent itemset
mining. We experimentally show that our system detects
excessive inter-process communication. Our system detects these
patterns for a range of parameters and in noisy data. Furthermore,
our mining system detects problem inter-processes interactions
through a single analysis step—something that is impossible using
existing system analysis tools.

While our work is a convincing proof-of-concept there are
several components of our system we would like to measure more
precisely. First, we would like to determine how much, if any,
loss is introduced by our window-slicing approach versus an
approach that uses overlapping windows. We would also like to
measure how much performance improvement is achieved
through our data filtering method.

Our research continues along several directions. While our
experimental results gave guidelines in selecting parameters for
yielding the most interesting patterns, we are exploring the idea of
learning and building a library of normal execution (house
keeping) patterns on a normal running system. These patterns

Figure 5. Variations in Mine Quality

would be used for filtering mining results to generate less-noisy,
interesting patterns. In addition, tighter coupling between our
tools and the kernel’s tracing facilities would improve
performance and make for a more seamless user experience.
Closer integration also would eliminate the need for much of the
post-processing we perform on kernel trace logs after trace
collection, before mining. Tighter integration with the operating
system would make real-time, stream-based analysis of a system
possible. Finally, we would like to apply other mining algorithms
to kernel data to see if they can be used to discover additional
meaningful patterns or deliver results faster.

6. REFERENCES

[1] Burdick, D., Calimlim, M., Flannick, J., and Yiu, T. 2005.
MAFIA: A Maximal Frequent Itemset Algorithm. IEEE
Transactions on Knowledge and Data Engineering 17, 11, 1490–
1504.
[2] Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. 2004.
Dynamic instrumentation of production systems. In Proceedings
of the USENIX Annual Technical Conference 2004, 15–28.

[3] Cao, P., Felten, E. W., Karlin, A. R., and Li, K. 1995. A study
of integrated prefetching and caching strategies. In Proceedings of
the 1995 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
'95/PERFORMANCE '95), 188–197.
[4] Griffioen, J. and Appleton, R. 1994. Reducing file system
latency using a predictive approach. In Proceedings of the
USENIX Summer 1994 Technical Conference, 197–207.
[5] Han, J. and Kamber, M. 2006. Data Mining: Concepts and
Techniques, 2nd ed.. Morgan Kaufmann Publishers, San Francisco,
CA.

[6] Kolter, J. Z. and Maloof, M. A. 2004. Learning to detect
malicious executables in the wild. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD '04), 470–478.
[7] Lane, T. and Brodley, C. E. 1997. Sequence matching and
learning in anomaly detection for computer security. In AAAI
Workshop: AI approaches to Fraud Detection and Risk
Management, 43–49.

[8] Lane, T. and Brodley, C. E. 1998. Temporal sequence learning
and data reduction for anomaly detection. In Proceedings of the
5th ACM Conference on Computer and Communications Security
(CCS '98), 150–158.
[9] LaRosa, C., Xiong, L., and Mandelberg, K. 2007. Frequent
Pattern Mining for Kernel Trace Data. Technical Report TR-
2007-022, Department of Mathematics and Computer Science,
Emory University, Atlanta, GA.

[10] Lee, D. and Lee, W. 2005. Finding Maximal Frequent
Itemsets over Online Data Streams Adaptively. In Proceedings of
the Fifth IEEE International Conference on Data Mining (ICDM
'05), 266–273.

[11] Lee, W. Stolfo, S., and Chan, P.K. 1997. Learning Patterns
from Unix Process Execution Traces for Intrusion Detection. In
AAAI Workshop: AI Approaches to Fraud Detection and Risk
Management, 50–56.

 [12] Lee, W. Stolfo, S., and Mok, K. 1999. A Data Mining
Framework for Building Intrusion Detection Models. In
Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 120–132.

[13] Lee, W., Stolfo, S. J., and Mok. K. W. 2000. Artificial
Intelligence Review 14, 6, Kluwer Academic Publishers, 533–567.
[14] Li, Z., Chen, Z., Srinivasan, S. M., and Zhou, Y. 2004. C-
Miner: Mining Block Correlations in Storage Systems. In
Proceedings of the 3rd USENIX Conference on File and Storage
Technologies (FAST '07), 173–186.
[15] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. 2004. CP-Miner: a
tool for finding copy-paste and related bugs in operating system
code. In Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6 (OSDI
'04), 289–302.
[16] Mannila, H., Toivonen, H., and Inkeri Verkamo, A. 1997.
Discovery of Frequent Episodes in Event Sequences, Data Mining
and Knowledge Discovery 1, 3, 259–289.
[17] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q.,
Dayal, U., and Hsu, M-C. PrefixSpan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth. In Proceedings of
the 17th International Conference on Data Engineering (ICDE
'01), 215–224.
[18] Ruwart, T. M. 2001. File System Benchmarks, Then, Now,
and Tomorrow. In Proceedings of the Eighteenth IEEE
Symposium on Mass Storage Systems and Technologies (MSS
'01), 117.
[19] Schultz, M. G., Eskin, E., Zadok, E., and Stolfo, S. J. Data
Mining Methods for Detection of New Malicious Executables.
2001. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy (SP '01), 178–184.
[20] Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-
Malek, M., Lopez, J., and Ganger, G. R. 2006. Stardust: tracking
activity in a distributed storage system. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS '06), 3–14.
[21] Wang, W. and Yang, J. 2005. Mining Sequential Patterns
from Large Data Sets (The Kluwer International Series on
Advances in Database Systems). Springer-Verlag, New York, Inc.
[22] Yaghmour, K. and Dagenais, M. R. 2000. Measuring and
characterizing system behavior using kernel-level event logging.
In Proceedings of the Annual Technical Conference on 2000
USENIX Annual Technical Conference, 13–26.
[23] Yan, X., Han, J., and Afshar, R. 2003. CloSpan: Mining
Closed Sequential Patterns in Large Datasets, In Proceedings of
the 2003 SIAM International Conference on Data Mining (SDM
'03).

