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ABSTRACT 
Operating systems engineers have developed tracing tools that log 
details about process execution at the kernel level. These tools 
make it easier to understand the actual execution that takes place 
on real systems. Unfortunately, uncovering certain types of useful 
information in kernel trace data is nearly impossible through 
manual inspection of a trace log. To detect interesting inter-
process communication patterns and other recurring runtime 
execution patterns in operating system trace logs, we employ data 
mining techniques, in particular, frequent pattern mining. We 
present a framework for mining kernel trace data, making use of 
frequent pattern mining in conjunction with special considerations 
for the temporal characteristics of kernel trace data. We report our 
findings using our framework to isolate processes responsible for 
systemic problems on a LINUX system and demonstrate our 
framework is versatile and efficient.  

Categories and Subject Descriptors 
D.4.8 [Operating Systems]: Performance – measurements, 
monitors, operational analysis, stochastic analysis; D.2.5 
[Software Engineering]: Testing and Debugging – tracing; G.3 
[Probability and Statistics]: time series analysis; H.2.8 
[Database Applications]: data mining. 

General Terms 
Measurement, design, performance, experimentation. 

Keywords 
Frequent pattern mining, sequential pattern mining, kernel tracing.   
 

1. INTRODUCTION 
The introduction of low-impact kernel-level tracing tools allows 
for comprehensive and transparent reporting of process and 
operating system activity.  An operating system trace log provides 
detailed, explicit information about which processes use which 
system resources at what time. This time series data contains 
underlying knowledge, such as common execution patterns. This 
information can assist in many systems-related tasks: application 
debugging, security enforcement, performance optimization, 
operating system debugging, and dynamic reconfiguration. 
However, while kernel trace collection tools have advanced and 
matured, there remains a lack of trace analysis tools for extracting 
useful knowledge from raw trace logs. 

  Motivation and Goals. Most current trace collection tools, such 
as the Linux Trace Toolkit (LTT) [22] and Solaris’s dTrace [2], 
provide powerful mechanisms for collecting data. Unfortunately 
for their users, the tools provide limited or no functionality for 
analyzing the data collected. Neither LTT nor dTrace provide 
analysis functionality beyond simple aggregations, which must be 
specified before a trace can begin. Neither tool provides a 
mechanism to look for patterns either during a trace or after a 
trace is completed.  

The lack of proper kernel trace analysis tools motivates us to 
build a framework that applies data mining techniques to analyze 
kernel trace data. The framework is designed to discover 
information in trace logs that could not be detected with existing 
system tools like top or ps or be found through manual inspection 
of a kernel trace log. We study the pre-processing and data mining 
techniques that can be used to identify interesting recurring inter-
process patterns in noisy kernel trace data. These execution 
patterns can potentially help a variety of users including system 
administrators, application programmers, operating systems 
engineers, and security analysts.  

In the systems area, data mining techniques have been 
successfully used in the past for profiling and detecting mal-ware 
[19], optimizing data placement and prefetching for fast retrieval 
[14], and detecting operating system bugs introduced by copying 
and pasting of kernel source code [15]. To our knowledge, this is 
the first effort for a general-purpose solution that mines across 
multiple kernel subsystems and the first attempt to tackle the task of 
mining kernel trace logs. 

 

Issues and Challenges. While data mining techniques [5, 10] 
have been successfully applied to mine time-series data in a 
variety of applications, mining kernel trace data presents a unique 
set of challenges.   
   The complex and voluminous data generated by kernel tracing 
tools create our first mining challenge.  A typical kernel tracing 
tool, the Linux Trace Toolkit (LTT), can report thousands of 
kernel-event records every second. Each kernel event is a multi-
attribute tuple containing, a record of which process caused the 
event, the sub-system of the operating system involved with 
executing the event, the event type, the address or descriptor for 
any resource accessed during the event, and the time at which the 
event occurred. Sample values for these attributes are shown in 
Table 1.  
   Further adding to the challenge is our desire to detect complex 
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Table 1. Trace Attributes with Sample Values 
 

Attribute Sample Values 
process Firefox, staroffice, xFree86 
subsystem file system, memory, syscall, sched 
Event open, alloc, syscall entry 
descriptor bookmarks.html, gettimeofday 

2 (file descriptor), 2531 (process ID) 
 



patterns in multiple attribute data. To uncover systemic problems 
we cannot focus our attention on one subsystem or application. 
For example, isolating a memory allocation problem would 
necessitate looking at information in the event attribute that shows 
when a log entry involves the memory subsystem and the process 
attribute that indicates which program generated the event.  
  Another important consideration for mining a kernel trace is 
appropriate treatment of a trace’s time-series data. The 
timestamp attribute allows us to find more interesting patterns 
using data mining techniques than we could obtain by computing 
event aggregations for data in kernel trace logs. In addition, the 
unique scheduling characteristics of the operating system make 
the kernel trace mining task not a straightforward application of 
existing sequence mining algorithms.  
   Finally we must consider a way to interpret the results of our 
mining system. A main concern is that events related to systemic 
problems could appear in the logs with relatively low frequencies 
compared to normal events that appear with very high 
frequencies. Our system needs to identify not-too-frequent event 
patterns that indicate problems and report those patterns in its 
output. In addition, we should provide efficient ways to hide very 
frequent patterns that do not indicate problems.  

 

Contributions and Organization. Bearing the above issues in 
mind, we design a framework for effectively and efficiently 
mining kernel trace logs and implement a suite of trace mining 
tools to test the design. Our framework makes a number of unique 
contributions.  First, we transform the problem of kernel trace data 
pattern mining to maximal frequent itemset mining. We provide 
special treatment for the unique temporal characteristics of kernel 
trace data and propose a combined approach of window folding 
and window slicing to group trace events into itemsets using their 
timestamp as a measure of temporal proximity (Section 2.1). 
Second, we develop a set of data preprocessing techniques 
including bit packing and data filtering that allow efficient and 
flexible cross-attribute pattern mining (Section 2.2).  Finally, we 

perform experimental studies to detect systemic problems on real 
systems. We test our tools with a range of algorithmic parameters, 
showing the feasibility and effectiveness of the approach (Section 
3). We conclude the paper with a review of related work (Section 
4), a brief summary, and a discussion of futures directions for our 
research (Section 5). 

2. KERNEL TRACE MINING FRAMEWORK 
Kernel trace logs are massive, ordered records of events that occur 
inside the operating system. Our goal is to find common execution 
patterns so that we can better understand the execution that is 
taking place on a machine. In this section, we present an overview 
of our framework and show how we model kernel trace mining.  

We present a conceptual diagram of our framework for mining 
kernel data in Figure 1. In our system, un-modified processes 
make requests of the operating system in the form of system calls. 
A trace module inside the operating system transparently monitors 
these calls and other internal activity. The trace monitor writes a 
detailed, time-series record of these events to a log file. The 
preprocessing utilities in our suite harvest the time-series data 
from a log and translate it into itemset data for frequent itemset 
mining. The preprocessor output is passed into a frequent itemset 
mining tool and the output patterns are passed to a program for 
display and analysis. 

 
2.1 Frequent Itemset Mining 
Finding frequently occurring patterns in ordered or time-series 
data like our trace logs is a mining task commonly referred to as 
Sequential Pattern Mining [5].  Given an ordered series of events, 
S, and a minimum support, min_sup, mining for frequent 
sequences involves finding the set of all ordered series of events, 
F, that occur at least min_sup times in S. For example, with 
min_sup = 2 and S = <A, C, B, A, B> we have the frequent 
sequences F = <A, B>, <A>, <B>. These frequent subsequences 
are referred to as serial episodes.  

Additional constraints may be placed on the sequential mining 
problem. Constraining the interval i puts an upper limit on the 
maximum time that can have elapsed between any two 
consecutive items in a serial episode. On an integral timescale an 
interval of 0 requires all serial events to have no intervening 
events. With our original S, min_sup=2, i=0, only the single event 
series <A> and <B> would be reported as frequent series; there 
would be no multi-itemsets in our results for this example. 

Kernel trace logs have unique temporal characteristics due to 
the partially ordered execution resulting from OS scheduling. We 
discuss below why we need a special treatment of the kernel trace 
data compared to typical time-series data. We propose two 
important techniques for the treatment, namely, window folding 
and window slicing. Window folding creates a series of parallel 
events and window slicing creates a sequence database. Together 
these steps create a database of parallel events.  As a result, we 
treat the parallel events as unordered and reduce the problem of 
sequential pattern mining to frequent itemset mining.   

 

Window Folding. For the purposes of examining system trace 
data we need to maintain a sufficiently large interval to account 
for sequence gaps and re-orderings introduced by the operating 
system’s scheduler. On any modern OS the scheduler will 
regularly suspend the execution of a process so that other 
processes may execute. The maximum period for which a process 
may execute uninterrupted by the scheduler is referred to as the 
timeslice. Intervals used by our mining algorithms need to be  

 

Figure 1. System Architecture 



sufficiently long to detect patterns that exist across multiple 
timeslices. Certainly if we hope to find inter-application patterns 
we need to consider more than one process at a time. Furthermore, 
because the scheduler does not guarantee any ordering of process 
execution to processes, detecting common process interactions 
requires relaxing the definition of sequence mining further to 
allow for changes in ordering.  

To illustrate this challenge, suppose jobs j1 and j2 require 
inter-process communication among processes A, B, and C. A and 
B’s execution can happen in any order. Furthermore, C is 
dependent on B having completed its work. The two similar jobs 
j1, j2 could be completed according to either of the execution 
schedules shown in Figure 2. Both sequences illustrate the same 
pattern of collaborative work being done by the same processes 
but in different orders of execution. Unless we relax the strict 
ordering constraint enforced in traditional sequence mining, we 
will fail to generate any sequences demonstrating the interesting 
interaction between processes A, B, and C.  

Relaxing the ordering constraint means that we can loose 
potentially useful information, such as event ordering information 
for frequently occurring deadlock situations. However, relaxing 
ordering allows us to discover problem interactions both where 
ordering is an issue and where ordering is not a factor. Our system 
could be adapted to recover lost ordering information by 
employing an approach presented in [16], which first identifies 
frequent parallel episodes and then recovers ordering information 
for the parallel episodes to establish frequent serial episodes.  

In order to expose all potentially interesting inter-process 
interactions on timeshared systems we relax the ordering 
requirement to consider events occurring within a certain temporal 
distance to be parallel events. The temporal distance is referred to 
as a folding window.  
 

Window Slicing. Our task now becomes finding frequent parallel 
episodes—frequently occurring sets of temporally proximal 
events. Unfortunately, representing a list of all groups of parallel 
events with a folding window size w for a sequence with N items 
leads to a growth of data O(w*N). Although this growth is 
constant, for the w values used in our experiments storing every 
parallel event window would require several hundred to several 
thousand times more storage and processing than the original 
trace representation. To avoid expanding our dataset we adopt a 
technique called window slicing.  

Window slicing is introduced in [14] as an effective technique 
to perform sequence mining of an  extended sequence. Window 
slicing converts an extended sequence into a sequence database, a 
collection of relatively shorter sequences. The non-overlapping 
version of window slicing technique divides time-series data using 
a window period. Events that take place in the same window are 

treated as a single sequence record in the event database. We 
adapt this form of window slicing to our data while 
simultaneously performing window folding using the same period. 
This slice-and-fold step gives us an unordered database of parallel 
events.  

Without loss of generality, we consider LTT logs where 
timestamps are recorded as the number of microseconds elapsed 
since the UNIX epoch. We define a parameter w, the fold-slice-
window period in microseconds. Using w we calculate a window 
ID for each log entry, Lx, using the formula: 

 

 
Any two log entries that share a window ID  are treated as parallel 
events. The window ID serves as an itemset ID for our frequent 
itemset mining. 

Clearly, for a window of size w, some event sequences of size w 
will not be included in our sequence database using this window 
slicing method (Figure 3). However by using a window long 
enough to capture frequent patterns at least once in most windows, 
we minimize the disruptive effects of window slicing. Our 
experimentation confirms previous work in [14] that shows window 
slicing will not adversely affect the effectiveness of our mining for 
sufficiently large windows.  

 

Frequent Itemset Mining. By combining the window folding 
and window slicing methods, we can treat the parallel events as 
unordered and so our task of mining trace data has been reduced 
to frequent itemset mining.  

Specifically we look for maximal frequent itemsets, the 
elements of which comprise common maximal execution patterns 
in the original trace. We use maximal frequent itemset mining 
(MFI) in favor of frequent closed itemset mining (FCI) and 
frequent itemset (FI) mining because the volume of MFI output is 
much lower than that produced by FCI and FI mines. This is 
important because we want our output to be human-readable. 
Furthermore frequent closed itemset mining introduces noise into 
our results because slightly different supports for items in a 
maximal frequent itemset, which exists as a result of window-
slicing and scheduling, cause multiple frequent closed itemsets to 
be reported—none of which provide any more insight than the 
single maximal frequent itemset.  

 
2.2 Data Preprocessing 
Our kernel trace mining system includes a series of C++ and perl 
data preprocessing tools that transform time-series trace logs into 
a series of integers for frequent itemset mining.  

Our preprocessing tools work together to perform the 
following tasks in the listed order: resolve operating system 
descriptors to file and executable names, create uniform 
dictionaries for attribute representation, convert log entries to 
normalized integer representations. We also have a tool that filters 
data using a pass-through filter that discards records that do not 

 
Figure 2. Alternative Scheduling of a Single Load 

 
 

Figure 3. Windowing Slicing Error for Event SCHED 452 



match any rule in a user-specified list. Our rules are a series of 
formatted strings adhering to our attribute format proc-subsystem-
call-descriptor-size. We allow wildcard matching for an attribute 
with the asterisk character. For example, the rule *,MEM,*,*,* 
allows any call to the memory subsystem to pass into the dataset 
we use for mining.  

 
3. EXPERIMENTATION 
We performed a set of experiments evaluating the feasibility, 
effectiveness and cost of our proposed framework.  Our goal is to 
answer the following important questions: 1) Can kernel trace 
mining help system users in system-related tasks such as 
performance tuning and systems debugging? 2) How do different 
algorithmic parameters in our framework affect the mining 
results?  

In this section, we report findings from a case study with our 
system. We use our framework to detect a known problem 
program, the GNOME applet gtik. We describe the problem and 
our experiment setup for the GNOME applet, present the mining 
results, and illustrate the effects of different algorithmic 
components and parameters of the mining framework. We also 
implemented our framework on Solaris using dTrace and 
conducted a separate case study that confirmed our findings from 
the LINUX and LTT case study. Interested readers can find 
details about our implementation and experience mining kernel 
traces on Solaris in [9]. 

 
3.1 Problem Scenario  
The GNOME stock ticker applet gtik version 2.0 is a process now 
known to induce systemic problems because of the number of 
high-impact X programming calls it generates. However, 
identifying this process as a heavy consumer of system resources 
presents a challenge.   

Because much of the work being created by the gtik applet 
takes place inside the X server, detecting the applet as the source 
of system overhead using traditional tools such as top is 
impossible.  A recent study [2] used dTrace to identify the applet 
on a multi-processor Solaris system. The study used the output of 
mpstat, a tool for monitoring processor activity, as a starting point 
for writing a series of dScripts. dScripts provide control and 
analysis functionality for Solaris’ dTrace kernel tracing 
mechanism. In all, five ad-hoc dScripts were necessary to trace 
the suspicious activity reported by mpstat back to gtik. These 
scripts required not only knowledge of X programming calls, but 
also implementation knowledge of an X server. Furthermore this 
solution using dTrace and custom dScripts was only possible 
because of the clues provided at the onset by mpstat’s cross call 
report, a feature that is not available on single processor machines.  

Given this problem scenario, we study how the proposed 
kernel trace mining system can help in detecting the problematic 
process through pattern discovery in kernel traces. 

 
3.2 Experiment Setup 
Using the LINUX Trace Toolkit we collected traces of kernel 
level activity, including system calls. We mined the traces 
collected using our suite of data preprocessing tools and MFI 
mining. For MFI mining we adopt MAFIA [1], which uses a 
highly efficient algorithm for outputting maximal frequent 
patterns. We examined the output of our mining to look for 
meaningful patterns of activity. 

We collected four 1 minute traces, summarized in Table 2,  
from a machine running version 2.5.7 of the Linux Kernel, 
patched with version 0.9.5 of the Linux Trace Toolkit. Two traces 
were conducted while the gtik applet version 2.0, the version 
known to induce systemic problems, was running: The first trace, 
ltt_gtik_20_isolated, contained one minute of trace activity with 
no interactive applications running and no user activity. The 
second trace, ltt_gtik_20_noisy, was conducted while a user surfed 
the web using FireFox and edited a document in OpenOffice. The 
next two traces, ltt_gtik_26_isolated and ltt_gtik_26_noisy, were 
collected under similar circumstances, but with an improved 
version of the gtik applet running, version 2.6. The newer version 
reduced the number of high-impact X programming calls, but the 
program still communicated with the X server very frequently—a 
phenomenon we saw in our mining results.  
 
3.3 Mining Results 
We first present a set of results showing clear patterns that can be 
used to identify the problematic gtik process. The frequent itemset 
output from our system, along with its corresponding 
experimental configuration, is illustrated in Figure 4. The output 
was exceptionally clear. It consisted of only 2 frequent itemsets, 
with itemset 2 directly pointing to the systemic problem on the 
trace machine. In the itemset the pairing of gtik’s writes and 
XFree86’s reads, and the two processes’ complementary allocs 
and frees of memory suggest that gtik is responsible for much of 
the XFree86’s work. itemset 1 reveals no non-obvious 
information—we expect the XFree86 server, which is responsible 
for all graphic display on the system, will be making almost 
constant system calls.  

We also conducted experiments across all attributes with no 
data filtering and in each of our traces we were able to detect 
frequent itemsets pointing to the gtik and X server interaction.  
Even with an interactive load that consumed 40 percent of CPU, 
meaning the presence of considerable noise for our data mining 
algorithm to contend with, the gtik and X11 interaction was 
clearly visible in our output.  

 

 

Figure 4. Experimentation Input/Output 

Table 2. Experiment Traces 
 

Trace Gtik Interactive App.  
ltt_gtik_20_isolated Buggy No 
ltt_gtik_20_noisy Buggy Yes 
ltt_gtik_26_isolated Fixed No 
ltt_gtik_26_noisy Fixed Yes 

 

Experimental Configuration 
  input: ltt_gtik_20_noisy; minimum support: .5 
  fold-slice-window period: 25,000 (microseconds) 
  filters:  *,FS,OPEN,*,*;  *,FS,CLOSE,*,*; 
 *,FS,READ,*,*; *,FS,WRITE,*,* ; 
 *,MEM,*,*,*; *,SCHED,*,*,*; 
   

Output 
 itemset 1:  
 XFree86, FS, WRITE 
 XFree86, FS, READ 
 XFree86, MEM, FREE 
 Xfree86, MEM, ALLOC 
 

itemset 2: 
gtik2_applet_2, MEM, ALLOC 
gtik2_applet_2, MEM, FREE 
gtik2_applet_2, FS, WRITE 
XFree86, FS, READ 
XFree86, MEM, FREE 
XFree86, MEM, ALLOC 

 



3.4 Parameter Effects on Mining Quality 
To test the durability of our system we also performed an 
extensive set of experiments over a range of mining parameters. 
We investigated the effects of two important mining parameters, 
fold-slice-window and minimum support.  We detail results for 
the ltt_gtik_20_noisy trace in this section because it contains the 
noisiest data and accordingly presents the greatest challenge to 
our mining system.  

We conducted each of our experiments using fold-slice-window 
periods varying from 10,000 microseconds to 1 second at discrete 
intervals. At each of these intervals we looked for maximal 
frequent itemsets with minimum supports between .1 and .9. We 
report 4 possible outcomes for each of these experiments: Present 
in single itemset—only 1 frequent itemset was reported and it 
contained the problematic interaction, Present in multiple 
itemsets—the pattern appeared in at least one frequent of the 
itemsets reported and no itemset contained events generated by 
processes other than gtik or XFree86, Present with interference—
the pattern was present in an itemset that also contained noise 
from processes not involved in the systemic problem, Not 
present—the problematic inter-process pattern was not reported in 
any itemset.  

Figure 5 presents the mining outcomes with varying fold-slice-
window periods and varying minimum supports; darker cells 
contain more useful information or knowledge. For all windows 
ranging from 25,000 microseconds to 250,000 microseconds we 
could detect the problematic inter-process interaction. Minimum 
support played a significant role in determining result quality 
where the signal was strong. Where the fold-slice-window period 
was long—and the problem interaction between gtik and XFree86 
was nearly guaranteed to be reported in every window—the high 
minimum support value pruned noise from other processes out of 
the output itemsets.  

At the opposite end of the spectrum, where the problem 
interaction was present in only a few of the short windows, a high 
minimum support value pruned away the interaction from the 
results. 

We performed additional experiments to determine the effects 
of attribute filtering on our system. We found filtering along 
certain attributes resulted in more readable output. Results from 
these experiments are omitted because of space limitations; 
interested readers can refer to [9] for details. 

 
 

4. RELATED WORK 
Pattern mining in time series data has been an emerging technique 
applied in a variety of applications [5, 21].  We briefly review in 
this section the most relevant works that apply data mining for 
operating systems.   

In developing a kernel-wide data-mining system, we consider 
research outcomes for systems targeting each of an operating 
system’s constituent subsystems. Research has been conducted to 
develop better data pre-fetching at the disk and network level [3, 
4]. [3] exploited an existing sequence mining algorithm for data 
placement optimizations. As systems become increasingly 
distributed and complex, mining will play an increasingly 
important role in evaluation and optimization. Already, traditional 
file-system benchmarking applications are inadequate for 
meaningful performance evaluation in large-scale storage area 
networks (SANs) [18, 20]. Mining has also been shown to be 
useful when optimizing data placement and prefetching from disks 
[13]. The tools we developed for mining kernel trace data could be 
adapted to analyze multiple time-sequence logs from different 
components of a SAN or other distributed system.   

Tracking operating system activity for intrusion detection is a 
mature area of research [7, 8, 11, 13]. This work usually focuses 
on tracking individual users and processes. Mining-based 
approaches for system security are emerging as responsive and 
resilient strategies for system security [11, 12].  Mining 
techniques have also been successfully used for profiling and 
detecting mal-ware [19, 6], and for detecting operating system 
bugs introduced by copying and pasting of kernel source code 
[14]. 

Our work differs from above in that it is the first general-
purpose solution that allows for mining for patterns across 
multiple subsystems in kernel traces to detect systemic problems.  

Finally, directly related to the performance of our system is 
work on maximal frequent itemset mining [1] and sequence 
mining [16, 17, 23]. For future adaptations of our systems, stream 
mining of frequent itemsets is a key area of interest [10].  

 
5. CONCLUSIONS AND FUTURE WORK 
We developed a framework for mining kernel trace data. We 
translate the task of mining kernel trace data into frequent itemset 
mining. We experimentally show that our system detects 
excessive inter-process communication. Our system detects these 
patterns for a range of parameters and in noisy data. Furthermore, 
our mining system detects problem inter-processes interactions 
through a single analysis step—something that is impossible using 
existing system analysis tools.  

While our work is a convincing proof-of-concept there are 
several components of our system we would like to measure more 
precisely. First, we would like to determine how much, if any, 
loss is introduced by our window-slicing approach versus an 
approach that uses overlapping windows. We would also like to 
measure how much performance improvement is achieved 
through our data filtering method.  

Our research continues along several directions. While our 
experimental results gave guidelines in selecting parameters for 
yielding the most interesting patterns, we are exploring the idea of 
learning and building a library of normal execution (house 
keeping) patterns on a normal running system. These patterns 

 
Figure 5. Variations in Mine Quality 

 



would be used for filtering mining results to generate less-noisy, 
interesting patterns. In addition, tighter coupling between our 
tools and the kernel’s tracing facilities would improve 
performance and make for a more seamless user experience. 
Closer integration also would eliminate the need for much of the 
post-processing we perform on kernel trace logs after trace 
collection, before mining. Tighter integration with the operating 
system would make real-time, stream-based analysis of a system 
possible.  Finally, we would like to apply other mining algorithms 
to kernel data to see if they can be used to discover additional 
meaningful patterns or deliver results faster. 
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