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Abstract—Reputation systems provide a promising way for Malicious users may manipulate the feedback data in order to
building trust through social control in collaborative communities  penefit themselves or damage the system.

by harnessing the community knowledge in the form of feedbdc - . . .
However, reputation systems also introduce vulnerabilites due Surprisingly, while there is work dedicated to each of

to potential manipulations by dishonest or malicious playes. the problems, very few have studied the feedback sparsity
In this paper, we focus on two closely related problems - problem with potential manipulations of feedback. Our pri-

feedback sparsity and potential feedback manipulations - e mary viewpoint in this paper is that the two problems are
propose a feedback similarity based inference framework. & closely related. Feedback sparsity concerns with the éyant

perform extensive evaluations of various algorithmic compnents : : . .
of the framework and evaluate their effectiveness on counteng  ©! feedback. Feedback manipulation concerns with the guali

feedback sparsity in the presence of feedback manipulatian of feedback and affects the quantity of good feedback. As
a result, the two problems may have a magnifying effect on
|. INTRODUCTION each other. When adversaries pollute the feedback data, the

valid or usable feedback becomes sparse, which makestgparsi
Reputation systems [19] provide attractive techniques fproblem worse. On the other hand, when feedback is sparse,
building trust in a variety of collaborative communitiesdanfeedback manipulation attacks may be magnified and have a
web applications. By harnessing the community knowledgeore detrimental effect.

in the form of feedback, they help participants decide who ] )
(what) to trust, encourage trustworthy behavior, and detgprrent Techniques and Research ChallengesSome studies

dishonest participation [27]. Many electronic markets arfgfve been dedicated to dishonest feedback along with other
online communities have reputation systems built in, suMylnerabilities in reputation systems such as fake traesz

as eBay, resellerratings Yahoo! Auctiorf, and Slashdot and dynamic behaviors [22], [32], [_30]- A main technlque_

(Karma). Most of them aggregate users’ feedback into ®at has been proposed to cope with dishonest feedback is
reputation score through a summation or average overl®a@ssociate a credibility weight with each peer (as versus
period of time. Reputation systems with more sophisticatéd Service reliability of the peer). A peer who has consis-

aggregation methods have been proposed recently for peert_g_ntly provigle_(_j hon_est feedback should be_associ_ated with a
peer communities [1], [10], [22], [32], [24], [34], [6], [35 higher credibility weight so the system can differentiabaést
[12] and the (semantic) web [28], [15]. feedback from dishonest ones. Collaborative filtering eayst

i ) i ) [3] suggested user similarity (based on previous ratingaiib
Feedback Sparsity and Feedback ManipulationReputation .5mmon items) as an effective measure in identifying users

systems rely on historical transaction and feedback data,{gn similar interests and predicting a user's rating abaut
derive a reputation score for entities. In large scale PBer-certain item. User similarity (based on previous feedbédua
peer communities, each peer may have interacted with only. gy mon peers) has been also used as a personalized ctgdibili
small number (percentage) of peers and hence has '”SUﬁ'C'ﬁ’féasure in reputation systems against certain attacksding
feedback about and from other peers. When the feedback.isjsion among a group of peers who provide good ratings
sparse, the system can not evaluate the trust value of meshin the group and bad ratings outside the group [32].
peers or the evaluations suffer from lack of accuracy. Wnfortunately this does not solve but rather exacerbates th
addition, a piece of feedback is simply a statement from @iy problem: in addition to the limited personal feetiha

user about another user, typically, the service (or infaiond  -ommon set of peers that two users have both interacted with
consumer about the service (or information) provider. €hejg likely small which will result in poor similarity quality

is no mechanism to guarantee that the statement is honeshesearch in trust inference [33], [5], [31], [14], [20], [13

it/ b helo/feedback/ addresses trust propagation of initial trust relationslaigsum-
p://pages.ebay.com/help/feedbac . . L . .
2http:/www. resellerratings.com/ ing certain transitivity of trust. They differ with reputan

3http://help.yahoo.com/l/us/yahoo/auctions/genegelta07.html SyStems in that they assume the initial trust relati_onShi’m
“http://slashdot.org/fag/com-mod.shtml#cm700 predefined among nodes and use graph theoretic models or



matrix operations to propagate the initial trust. Some meceA. Terms and Definitions

works adopted i_nference techniqugs in.r(.e_putation systéms. , peer-to-peer communitonsists ofV peers who perform
notable work EigenTrust [22] derives initial trust based Of,nsactions with each other such as eBay. It can be also

personal feedback and performs a global trust propagatigiheralized into a community that consists &fusers and
till it finds the eigenvector of the initial trust matrix. HowW /- gervice (or information) providers such as in resellerrat-
ever, by treating the service trust the same as credibility i, o5 com . Eaciransactionhas a client (service consumer) and
propagation, th? model IS vulnerable to fr_opt peer attacksgeryer (service provider). A peer may serve as a clientén on
Wherg adversaries .explon the trust transitivity propebly ansaction and as a server in anothetransaction feedback
creating fa_LIse trust links [24]. There also has been requc is a statement issued by the client about the quality of servi
collaborative filtering systems [3] that addresses thesiyar or information) provided by the server in a single traniact
or cold start problem by graph theoretic approaches [4]L [2% personal feedbacis a user's general impression about a
[18]. However, they did not consider the potential feedbadltyice provider based on its personal experiences with the
manipulations. server. It can be derived from all previous transaction it
While these works shed light on the potential adoption Qkrver such as the percentage of positive transactionsawe ¢
inference techniques to address sparsity issues in réputatepresent all the personal feedback in the network as a user-
systems, a few research challenges remain. First, whaliniyser feedback matrix, where each cell represents a personal
relationships among nodes do we use to perform inferengggdpack from a given user about a given server. The goal
Second, how do we design the inference model and selggty reputation system is to computergputation trustor
the right parameters such as depth of inference and inferefgstworthinessvalue for a given service provider. We refer
functions to deal with sparse data while on the other hand ¢9 the evaluating user aourceand the user to be evaluated
avoid unnecessary cost. Finally, how does the inferenceemogs target Without loss of generality, we define the reputation
cope with potential feedback manipulations? trust as a combination of the user’s personal feedback and an

Contributions and Organizations. Bearing these questions in@dgregation of the community feedbackedibility of a usera
mind, we propose a similarity inference framework and studg}dicates how credible is in providing feedback. In contrast,
experimentally how different inference parameters pmfortrustworthiness indicates howlreliatmlés in providing ser\{ice.

in countering feedback sparsity and feedback manipulatiopPMe works use trustworthiness as a general notion. We
The paper makes a number of unique contributions. Firdfgue that feedback trustworthiness (credibility) shohkl

we show there are important relationships between feedb&tfterentiated from service trustworthiness (relialgllias user
sparsity and feedback manipulation. We explore diﬁerehtmay_trust user for its ratings but not necessarily its service
attack strategies related to feedback manipulation andtifjya @nd vice versa.

the sparsity problem (Section Il). Second, we extend oyr

earlier work on using similarity as credibility measure2][3 B’ Threat Model
and apply inference on the credibility to cope with the spar- In a common feedback manipulation attack, malicious users
sity problem in the potential presence of dishonest feeklbaerovide false feedback to boost their own ratings or deereas
(Section Ill). While the inference scheme builds on generile ratings of other peers so they will be chosen by other
graph-based inference techniques, there are two key id@&ers even when their services are unsatisfactory. We aemsi
that extend existing work: 1) the initial trust relationshis various dimensions of this type of attacks in this section
derived from the similarity based credibility as opposed tattack Goals. We consider two different attack goals depend-
personal feedback. We argue that propagating similarisgtha ing on the target.

trust (credibility) avoids the attacks introduced by prggiing
personal feedback based trust (service reliability), anthe
propagation is performed in a local manner. Finally, we ytud
experimentally how variant algorithmic components of the
framework such as inference function and depth of inference’
perform in coping with sparsity in the presence of feedback
manipulation (Section 1V). We conclude the paper by a review
of the related work, a summary and a brief discussion of &tur
research (Section VI).

« Random attackamalicious users try to reduce the overall
performance of a system as a whole and do not target any
particular users.
Target attacksmalicious users try to force the ratings of
a target user to a particular target reputation value. For
example, in a push (nuke) attack, the goal is to force
all predicted ratings of targeted users to the maximum
(minimum) rating.
Attack Models. We also consider two attack models depend-
ing on whether malicious users collude with each other.

« Non-collusive modelindividual malicious users do not
know each other and each do something bad, hoping it
will affect the system.

Il. PROBLEM STATEMENT

We first define certain terms that will facilitate our discus-
sion and comparison of various reputation schemes. We then
exam'ne the problem space for feedback sparsity and fekdbacsOther attack incentives such as free riding [2], [21] andaigit behaviors
manlpulatlon. [30] are not considered in this paper.



« Collusive model multiple malicious peers may form ab who gives a rating about. We model the feedback by
group and collude with each other in order to achievend b over a common set of peers for which bathand b
their goal that is typically targeted towards boosting thieave rated as two vectors and compute the similarity between
ratings of the whole or part of the group. the two vectors. When feedback is sparse, two given peers

A related attack where an individual user creates multipfgay have a very limited number of or zero co-rated peers and
fake profiles that act as a collusive group can be modelBi¢ Similarity can not be derived. The reputation can not be
similarly. We do assume adversaries have to pay a costc@mputed if the similarity can not be derived for all the sser
create a profile so it is not feasible to create large number\$R0 have rated the target peer.
false profiles. The goal of designing a robust algorithm is to Formally, the probability of an undefined trust computation
maximize the noise level it can tolerate so an adversary Hasthe probability that all of the users who have rated target

to pay a high cost in order to achieve their malicious goal. Peer;j do not have co-rated peers witisuch that the similarity
. . ... _.cannot be computed. Le¥V denote the number of peers in
Attack Strategies Some collusive attacks may be speC|f|caII¥ : .
X . . . . he community, ana be the average number of ratings each
designed to exploit a particular weakness in a specific algo-

rithm or class of algorithms. For example, for systems thoat ser r_ecewes, the(Lqe;Jtat|on computation c.(?verage indiye
not differentiate service trust (reliability) and feedkacust EQuation 1 where—== models the probability of two peers
(credibility), one simple strategy is to have part of the rgeenot having co-rated peers.
act as front peers or moles [24]. These peers always coeperat Ny
with _other.p_eers in (_)rder to increase their reputation aed th Coverage(N,r) = 1 — (( r ))r 1)
provide misinformation to promote other malicious peers.
Differentiating reliability and credibility helps reputan
systems to avoid front peer attacks and are more robust
to dishonest feedbacks. Our previous work PeerTrust [32] ,
studied dishonest feedback attacks in a non-collusive and a N /
naive collusive model with dense feedback data. In this pape ““ :
we will study more sophisticated attack strategies tadjete 8
specifically at similarity based models inspired by the Ishil N
attack designs in recommender systems [23].

« Collusive a straightforward strategy is for collusive users i
to rate each other with the maximum rating and rate other
peers with a minimum rating. The hope is that as they Fig. 1: Sparsity Problem

boost their own ratings, they also decrease other peersWhile N, the number of users, could be of the order of

ratings or damage the performance of the reputati@mousandsy, the number of ratings per user, could be very

system. However, they may end up with low similaritsmall, and the resulting coverage can be very low. Figure

to the normal users and in turn their ratings will not be plots Equation 1 with varying total number of users and

counted as much. average number of ratings per user. When a new user joins
« Collusive Randomanother way is for collusive users tothe community, it does not have many ratings about or from

rate each other with the maximum rating and rate othether users. This is also referred to as cold start problem in

peers randomly. The hope is that as they boost their owscommender systems [4], [29].

ratings, they are also somewhat similar to other users

and they also damage the performance of the reputation ~ !ll. A SIMILARITY INFERENCEFRAMEWORK

system by providing random ratings. In this section, we propose a framework that uses similarity
+ Collusive Camouflage more sophisticated strategy is folas credibility weight and an inference scheme based on sim-

collusive users to rate each other with maximum ratingarity weight to provide sparsity resilience with presencf
but rate other peers honestly so that they will be similgfishonest feedback.

to more honest users, and thus, have a larger effect on

boosting their own ratings. Hypothetically, this strategf. Overview

will allow adversaries to mount a more detrimental attack We first model our pr0b|em in a graph theoretic way.

and boost their ratings by camouflaging as honest usegyppose each peer is represented as a node in the graph.

A personal feedback by peer about peere is represented

by a directed link fromd to e. Each peer then has a set of
Now we consider the sparsity problem for using a similaritgutgoing links representing the ratings it has given to othe

based trust scheme [32]. A source peercomputes the peers and a set of incoming links representing the ratings it

reputation of a target peer as a weighted average gfs has received from other peers. If we treat all the rating eac

ratings from other peers, where the weight is a personalizeeer has given to others as a vector, we can derive similarity

similarity measure between source peand each other peerbetween users in terms of their feedback filing and use this

C. Sparsity Problem



as a personalized credibility measure. Figure 2 illustrate o Pearson correlation Pearson correlation is the most
partial personal rating matrix and a corresponding gragh wi widely used and computes the degree of linear relation-
solid links representing personal feedback and dashed link ship between two variables.

representing similarity between users.

Zielamlb (Fa,i - Fa)(Fb7i — Fb)

P~ Crap = F )2 )2 @)
\ \\ Ppp— P—
Source /«‘\\ / \\ Target \/ZiGIaﬂlb (Fa’l Fa) (Fb,z Fb)
Peer .7 \
@:4:{% . « Vector cosine similarityThe vector similarity is another
d x| *\ P widely used measure and is calculated as the cosine of the
: \ N4 angle between the two corresponding vectors (normalized
LHop  2Hop inner product):
neighbors neighbors
Sier Failb i
Fig. 2: Similarity Inference: lllustration Crap = 1612 - (3
\/Ziela Fa,i\/Zielb Fb,i

When the feedback data is sparse, it is not always possible
to derive the direct similarity between users (recall Secti « Euclidean distanceThe Euclidean distance between the

II-C). This motivates us to explore the transitive assdoiet two feedback vectors can be also used for deriving the

of similarity. If a usera is similar tob, b is similar tod, a similarity measure [32].

should be somewhat similar # The indirect similarity link

is represented as double dashed link in Figure 2. Crop = Z (Fui— Fpi)? (4)
The task of a reputation system is to evaluate the trustwor- i€l,NIy

thiness of a target peer by aggregating its incoming I-|nk.s An inherent difference between the Euclidean distance and
for a source peet.. The framework uses feedback similarity,

as a personalized credibility weight in feedback aggreguatithe other two is that it does not perform a normalization ef th

e .f%(?dback. Intuitively, normalization of feedback will nmimize
and uses a similarity inference scheme to compute the wei

for indirect neighbors. The main steps are: 1) computeaihiti € effect of user bias. For instance, one user may always

. : ._give high ratings for all other users while another may akvay
trust (personal ratings matrix) based on personal expezien ive low ratings. When the feedback is normalized, it is the
2) compute direct similarity based on the ratings matrix, gs. '

find indirect neighbors and compute indirect credibilitpda relative ratings that matter and these two users will havigia h

4) aggregate user feedback (possibly from a selected neishrpllarlty despite their bias. On the other hand, the Eecid

borhood of users) based on the credibility of the users. &/hi istance wil ”ef'“ these two users as dissimilar. .
, . . Other potential measures include Spearman correlation
the inference scheme builds on general graph-based imferen

techniques [28] and is not completely novel, there are tWv%/)hlch takes the ranks of the two variables and computes a

key ideas: 1) the initial trust relationship is derived frane ranked version of Pearson correlation. Existing collatioga

similarity based credibility as opposed to personal feekibaf!ltermg literature [7], [16] has reported that Pearsonrelar:

and 2) the propagation is performed in a local manner. Vggn and Spearman correlation yield comparable and slightl

. ; . ._Deétter accuracy than vector cosine similarity in recomneend
explain each of the steps in subsequent subsections anslisc . : :
R ; R : systems typically evaluated by movie rating datasets. krewe
the implications of various algorithmic components in th . . .
. . earson correlation has a potential drawback as it assumes a
setting we consider.

approximate Gaussian distribution of the data and may not

be robust with respect to outliers. We will study experimen-

tally how these measures perform in our context with sparse
We first derive the weight of direct links between two userfgedback and potential feedback manipulations in Sechbn |

a andb. Assuming the personal feedbagk ; is derived as an o

average of all the transaction feedback (satisfactionpfaco C- Similarity Inference

1 in previous transactions. Complex measures can be also used/e refer to all users who have a direct similarity weight

to handle strategic oscillating behaviors of nodes [30]@r tefined witha as a’s direct similarity neighbors. Whem

include transaction contexts such as various transacfipest needs to evaluate the trustworthiness of another paeasks

and sizes [32]. If we treat the ratings each peer has providésl neighbors for their opinions aboutand aggregates their

in the past about other peers as a vector, we can compaopénions. (We will discuss neighborhood selection techai

similarity between the rating vectors of two users, denotdater in this section). When the input data is sparse, eaeh pe

as I, and I,. It is worth mentioning that the rating vectorsmay have very limited number of direct neighbors and thus

used to compute similarity need to be in the same servittee chance increases that none of its direct neighbors has an

context. Several different similarity measures have bessdu opinion about a given target peer (recall Equation 1). Ig thi

in collaborative filtering systems. We adopt the followihgee section, we present algorithms to find indirect neighbors of

measures in our framework. a given user and propagate the similarity weight between the

B. Computing Credibility using Similarity



user and indirect neighbors. its closer neighbors believe

Discovering Indirect Neighbors We can model the problem ¢ Average Average function computes an average of the
as a transitive closure problem to find all nodes that are Similarity values of the multiple paths. Intuitively, this
reachable by node by at least one path (note here that the =~ May give us the best of maximum and minimum function.
path consists of only similarity links). Intuitively, a usmay However, average function is not associative so it is
be only willing to take the opinions of other users that are harder to implement using standard algorithms and we
within certain distance. An indirect neighbor that is too fa Wil discuss the implementation later in this section.
away on a similarity path stops being useful even if each nobleighbor Selection Once the neighbors are discovered and
is perfectly similar to their immediate neighbors on thehpattheir indirect weights are computed, some of them may turn
So we bound the path by a maximum path lenfjtmeaning out to have a very low similarity with the source user.
we only consider the indirect neighbors withinhops of the It has been observed in collaborative filtering systems that
source user. If a node is reachable by by at leastl hops, the neighbors with low correlations will greatly affect the
we call the nodeu's I-hop neighbora’s 1-hop neighbors are prediction accuracy [7]. So we can use neighborhood selecti
also a's direct neighbors. Figure 2 shows an illustration ofechniques suggested in collaborative filtering systerselect
the similarity based neighbors. Since we have a maximumsubset of neighbors, namely, threshold based selectan th
path length bound, we do not need a full transitive closugelects neighbors with absolute similarity greater thaertain
algorithm. Instead, for each node, similar to the singlers®u threshold, and: nearest neighbor selection.

transitive closure problem, we can use a standard breath firsswhen such schemes are used, the threshold ok thedue
graph search algorithm to find all the indirect neighborg thaan be also built into the neighborhood discovery process so
are within L hops. that the neighbors who have a low weight will be pruned early

Computing Indirect Weights. For a's indirect neighbors, we O @nd the algorithm will be more efficient.

need to compute an indirect weight. Foi-Aop neighbob, Matrix Representation. If we represent the similarity graph
we consider alli-length paths fronu to b and compute an by an adjacency matrix}/ with each cell representing the
indirect weight based on these paths. similarity weight, assuming the weight is normalized foclea
Formally, for each path, we infer an indirect weight for thisiser, we can also use matrix productidff to compute the
path as a product of the direct weights on individual link® Wndirect weight within/ hops. It essentially corresponds to
can also add in a decaying factor at each step such that tising production as the path concatenation function antjusi
similarity decays at each step and essentially a path decagighted average as the path combination function. We can
to O if it is too long. Since we have bounded the path lengtiso interpret the similarity inference problem as a stetiba
by a maximum length in finding neighbors, we set the dec#sansition process similar to the random walker model in
factor to 1 in our implementations. PageRank [26] and EigenTrust [22]. Imagine the source user
There are some important implications in propagating sim-is trying to find similar neighbors, at each step, it hops
ilarity as a trust relationship. Using production as thehpato a neighbor according to the given probability (normalize
concatenation function assumes a pessimistic behavice. Gaimilarity with the neighbor). The difference between our
particular situation is when nodedistrustsb andb distrustse  approach and web of trust or EigenTrust is that usstops
because of a low similarity; will choose to further distrusts when it reaches the maximum path length while in the latter
c. Alternatively, distrust could be propagated separatedynf approach a user’s personal beliefs can be diluted by thatinfin
trust with different functions [14]. aggregation of other users’ beliefs and result in a glohsttr
If there are multiple paths of lengthfrom nodea to node Vvector.
b, we need a function to select or combine the inferred valueslt is worth mentioning, however, if we normalize the simi-
from the paths into a single value. We consider three sultity weight by each user, the similarity value does notenav
functions: maximum, minimum, and average [28]. the semantic meaning any more but only a relative rank. So
« Maximum Maximum function assumes an optimistic,the threshold based neighbor selection will not work with

behavior of the user and selects maximum similarity valjwrmalized similarity but nearest neighbor selection will.

of the multiple paths. This is consistent with performing émplementation and Practical Implications. We implement
generalizedr operation over [0,1] valued beliefs in fuzzya breath first search based algorithm of the above conceptual
logic. Useru will believe another usef to an extent with model in our first prototype. Algorithm 1 depicts a sketch of
which at least one of its closer neighbors belieyeEhis the algorithm that is executed at noddt can be conveniently

will also potentially help balance the pessimistic propertplugged into existing reputation system architectured ac

of the production propagation on a single path. that in [32]. A nodeaq first initializes its neighbor listV,

o Minimum Minimum function assumes a pessimistic beby adding itself into the list. Then at iteration stépit gets
havior of the user and selects minimum similarity valuesll the I-hop neighbors and computes their indirect weights
of the multiple paths. This is consistent with performindpased on the given path combination functjorThe algorithm
a generalizedand operation in fuzzy logic. Uset will terminates after it retrieves all the-hop neighbors. We can
only believe another usérto an extent with which all also adopt spreading activation algorithms [9], [8] for mor



efficient implementations, for example, the branch and douA. Experimental Design
algorithm, if the path combination functions are assoetati |, the first set of experiments, we study how various

(out of the functions we considered, maximum and miniMumqqrithmic parameters of the system handle sparse fekdbac
are associative but average is not). when there is no feedback manipulation. In the second set of
Since the algorithm runs for a bounded number of hops (W& periments, we study how the scheme performs at a fixed low
show later/.=2 is sufficient for many settings), the added cos{yarsity against feedback manipulation using variouschatta
of computation and communication is minimal considerirg thyategies as described in Section 11-B. Table | summarizes
sparsity of the network. This is very important for a systéatt he main experimental parameters with their default values
has to deal with dynamic environments including continlpus,;seq for the experiments. Table Il summarizes the behasfors

changing user feedback, similarities, and neighbors. IOthgaicious peers in different attack models. All resultsaied
techniques such as the fading memory scheme developed,ig averaged over 10 runs.

our earlier work [30] can be also deployed to summarize and
maintain the transaction feedback in an incremental manner TABLE I: Experiment Parameters
and further optimize the implementation.

| Parameter Description | Default |
Algorithm 1 Local Algorithm for Discovering Indirect Neigh- N ﬁofd%eerl;sd - é(())/o
bors and Computing Indirect Weights Executed at Nade 5 eedback density °
Input. L, f k % of malicious peers 0
Output: Neighbors, - a list of (node, similarity) pairs Similarity Measure Euclidean
Neighbors,.add(@,1)) L Maximum Path Length 2
l—1 Path combination function | Average
while | < L do Crmin Neighbor selection threshold 0
NewNetghbors — ¢;
for all b € Neighbors, do TABLE II: Attack Models
forCaII ce (grect :gghbors ob do Attack Service| Feedback
Ta,c < UTq Tb,c . .
if ¢ ¢ NewNﬁighbol;s then Models Quality | Quality
NewNeighbors.add ¢, Cry ) Non-Collusive| Low Random
else ' L Target rating (in group
NewNeighbors.update ¢ f(N.gete), Cra..)) CoIIus!ve Low Random (_othe_rW|se)
end if ' Collusive Target rating (in group
end for Camouflage | Low Honest (otherwise)
end for _ .
Neighbors,.add(NewN eighbors) Evaluation Metrics. We evaluate accuracy and coverage of
l—1+1 the reputation evaluatioAccuracymeasures how the system'’s
end while computed reputation values for a peer differ from the peer’s

assigned reliability value. We report Root Mean Square rErro
for the accuracy. For collusive threat models, the goal ef th
IV. EXPERIMENTAL EVALUATIONS collusive malicious users is to boost their own ratings. 150 i

We performed an extensive set of simulations to empir"f‘-ddition to the error for the whc_)le population_of users, we
cally study the performance of the framework under differefi‘lso measure the error fOT T“a"c'ous users which V.V'” reflect
sparsity levels and threat models with various algorithm pHOW they achieve their malicious goal. We refer to this ea®r
rameters. We show its benefit compared to PeerTrust [32]tﬁ{get error. Coveragemeasures the percentage of a test set of

countering sparsity and feedback manipulations. We did gers that the reputation system is able to compute repatati

include comparisons with other reputation systems bedaesevalue for.

advantage of PeerTrust in terms of resisting front peecksta g, countering Sparsity
over reputations systems that do not differentiante senvicst
and feedback trust has been demonstrated earlier [32], [24
As a common practice for peer-to-peer reputation systeras,
use simulations on synthetic data to cover a broad range
attack scenarios and sparsity levels. It would be intergst
perform experiments on real world peer-to-peer ratingskita
such as Epinions web-of-trust déti it becomes publically
available.

We first study how various algorithmic components in our
heme handle feedback sparsity when there is no feedback
na?nipulation. We vary the personal feedback matrix density
and measure the error and coverage of our inference scheme.
The density is defined as the percentage of ratings over the
total number of matrix entries and is varied between 2% to
10% for our population size. The selection of these paramete

is based on observations in recommender systems and e-
Shttp://www.epinions.com/help/fag/?show=fagot commerce data [17] as well as our analysis in Figure 1.
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Similarity measures Figure 3 shows the trust computatiorPath Combination Function. Figure 5 illustrates the trust
error and coverage with different similarity measures witbomputation error and coverage of the three path combimatio
respect to varying sparsity levels. The three similarityamefunctions with varying sparsity levels. Interestinglyetmax-
sures give comparable accuracy and coverage. A noticeapieim function has the lowest error rate with varying sparsit
difference is that Pearson correlation has a marginallfpérig levels. This shows that by assuming an optimistic behavior
error rate than the other two, due to its assumption of tifgaking the maximum similarity value among multiple paths)
underlying data distribution. It also suffers from a slight peers can achieve better reputation accuracy given a sparse
lower coverage because it can only be computed when tfgedback input. Different path combination functions dd no
users have commonly rated peers. have any effect on the computation coverage.
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Maximum Path Length. Figure 4 shows the trust computatiorNeigthf Selection Threshold Figure 6 illustrates the trust
error and coverage with different maximum path lengths undeédmputation error and coverage using different threshald v
different sparsity levels. Note that 1-Hop algorithm (nmawim  Ues with varying sparsity levels. Interestingly, settiriffedent
path length= 1) represents PeerTrust scheme that does nBfeshold values does not have a significant impact on tisé tru
perform trust inference [32]. We can make a few interestirfcuracy in this case (no feedback manipulation). Having a
observations. First, the 2-Hop algorithm provides sigaifity threshold value of 0.75 increases the accuracy marginatly b
better accuracy and coverage than the 1-Hop algorithm. THéffers a lower coverage.

performance gain is most significant when the input data is ) ,
extremely sparse. It shows that considering indirect risigh C. Effect of Feedback Manipulation

is important in countering sparse data. It reflects the tiotoi Now we study how the scheme copes with feedback sparsity
that one needs to talk to people outside her close circletto gethe presence of feedback manipulations. We consider each
the best information. Second, 3-Hop and 4-Hop algorithno$ the attack strategies we described in Section IV-A. The
do not show a significant improvement over 2-Hop algorithneomputation coverage graphs for collusive models are aimil
This can be explained by the small world effect wherein mots those of non-collusive model and thus are omitted due to
peers may be connected by a small number of hops (2 in @pace restrictions.

scenario). It reiterates the observation that limited tafion Similarity Measure. Figure 7 shows the trust computation
sharing or a local reputation scheme is desired to avaddror using different similarity measures under differamt

the unnecessary computation costs [24]. It is worth notirigck models. In the non-collusive model, the three sintifari
however that a formal analytical study is needed to detegmimeasures have the same trend in computation error which
the optimal maximum path length for a given sparsity anidcreases as the percentage of malicious users increases.
distribution of the community. Pearson correlation and Euclidean distance give slighgtieb



—=— Euclidean Distance

~~~~~~ ST age of malicious users may not be surprising nor interesting
06 % Vetor Simarty : our goal is to increase the tolerance level of feedback noise
or in other words delay the trend. And it is worth noting that
the system manages to be effective until over 50% (majority)
of the users are malicious even in the worst collusive model.
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accuracy than vector similarity. This can be contributethi Error _ Target Error
fact that vector similarity assigns a default O value (ptiéén (c) Collusive Camouflage Model

error) for missing feedback when comparing two users as well
as the fact that it normalizes the ratings.
In the collusive models, we observe that by colluding with Fig. 8: Effect of Maximum Path Length
each other, the malicious users are able to increase the trus
evaluation error to a larger extent. This is even more so withaximum Path Length. Figure 8 shows the trust com-
target error, indicating that malicious users are able ¢ogiase putation error and coverage using various maximum path
their own ratings to the target rating. Among the differengngth under different attack models. The key observations
similarity measures, Pearson correlation is slightly mesés- are as follows. First, the 2-Hop algorithms and above pmvid
tant to malicious users and vector similarity suffers thesimo significantly better accuracy and coverage than the 1-Hop
Another interesting phenomenon is that by using a collusigggorithm (PeerTrust algorithm). This shows that consiagr
camouflage strategy, the malicious users are able to ireregrlirect neighbors is important in countering sparse dathas
the target error slightly compared to the collusive modelnev a result it also provides a better resilience to the manimuia
though marginal. But on the other hand, the general errords feedback by malicious users. Second, we see a similar
decreased because the camouflaged malicious users prowigied for collusive and collusive camouflage model as in
honest ratings which actually make good contributions & thhe non-collusive model but to a larger extent. The collisiv
community feedback. camouflage model slightly increases the trust computation
While the trend of increasing error with increasing pereenerror for the malicious group.
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Path Combination Function. Figure 9 shows that the three V. RELATED WORK

path combination functions have a similar effect on thettrus A number of reputation systems have been proposed re-
evaluation error which increases as the percentage ofimagic cently for collaborative applications [1], [10], [11], [R432],
users increases. The minimum function performs slight{p4], [34], [6], [25], [12], [19]. A few of them use inference
worse than the other two similar to what we have observeddghemes to propagate trust through network by assuming
the case without feedback manipulation. The collusive f®deertain transitivity of trust relationships [22], [28],41L They
show a similar trend as in the non-collusive model but to gither assume the recommendation trust is predefined by user
larger extent. [28], [14], or use service trust [22] and are susceptibladotf
Neighbor Selection Threshold Finally, Figure 10 shows the peers attacks. A few proposals advocating the differeatiadf

trust computation error and coverage using different nedgh credibility from service trust [10], [34], however, the dibil-
selection threshold. In contrast to the case without feeklbaty weights of malicious peers only get updated (downgraded
manipulation (Figure 6), we observed that when increasiidter their dishonest feedback incurs a transaction betveee
the threshold, the accuracy of the algorithm increases avithmalicious peer and an honest peer. Plus they did not consider
significant extent. This means that a higher threshold helpssparsity issues.

filter out malicious peers when aggregating opinions. Heaxev Research on collaborative filtering systems [3] provides
as we expected, it also decreases the coverage of the ieputdamportant techniques that apply to reputation systems. hiit
computation (coverage graphs for the collusive models aerprising that similarity measures can be used as a deéensi
omitted). measure against dishonest feedbacks. In addition, Lam et al



[23] experimentally studied several types of shilling elkson
collaborative filtering systems. We benefited from theiacitt

(8]

designs and modeled and analyzed feedback manipulation

H. Chen and D. T. Ng. An algorithmic approach to concepilesation
in a large knowledge network (automatic thesaurus congrja sym-
bolic branch-and-bound search vs. connectionist hopfietcactivation.
Journal of American Society of Information Sciendé(5), 1995.

attacks on reputation systems. There has also been sofeeA. M. Collins and E. F. Loftus. A spreading activation g of semantic

research [4], [29], [18] that attempted to alleviate thersipa
problem in collaborative filtering but most of them did no
consider the potential vulnerabilities of the system.

fo

[11]
VI. CONCLUSION

We presented a similarity based inference scheme for col!
tering feedback sparsity with potential feedback manijore
in reputation systems. The key conclusion is that by utifizi [13]
the similarity measure as a baseline and a similarity imege
of a small number of hops, the framework showed promisingy,
resilience against feedback sparsity even with feedback ma
nipulation. Other interesting findings are that Euclidead a [°]
Pearson correlation win over Vector similarity which is in
fact consistent with findings in general collaborative filte [16]
ing context [16]. The maximum path combination functionaﬂ
provide more resilience because of its optimistic behairior
combining the beliefs. A higher threshold in neighborhood
selection provides a stronger resilience but at the cosiveéi (18]
coverage.

Our work continues along several directions. We are coin9]
ducting a formal study to analyze the effect of different
attacks and different algorithmic parameters. In addjtwa [
are working with PlanetMath.ofg an online collaborative
encyclopedia on Mathematics, to deploy the proposed system
for rating the authors and entries. 21
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