
Countering Feedback Sparsity and Manipulation
in Reputation Systems

Li Xiong
Department of Mathematics and Computer Science

Emory University
lxiong@mathcs.emory.edu

Ling Liu, Mustaque Ahamad
College of Computing

Georgia Institute of Technology
{lingliu, mustaq}@cc.gatech.edu

Abstract—Reputation systems provide a promising way for
building trust through social control in collaborative communities
by harnessing the community knowledge in the form of feedback.
However, reputation systems also introduce vulnerabilities due
to potential manipulations by dishonest or malicious players.
In this paper, we focus on two closely related problems -
feedback sparsity and potential feedback manipulations - and
propose a feedback similarity based inference framework. We
perform extensive evaluations of various algorithmic components
of the framework and evaluate their effectiveness on countering
feedback sparsity in the presence of feedback manipulations.

I. I NTRODUCTION

Reputation systems [19] provide attractive techniques for
building trust in a variety of collaborative communities and
web applications. By harnessing the community knowledge
in the form of feedback, they help participants decide who
(what) to trust, encourage trustworthy behavior, and deter
dishonest participation [27]. Many electronic markets and
online communities have reputation systems built in, such
as eBay1, resellerratings2, Yahoo! Auction3, and Slashdot
(Karma4). Most of them aggregate users’ feedback into a
reputation score through a summation or average over a
period of time. Reputation systems with more sophisticated
aggregation methods have been proposed recently for peer-to-
peer communities [1], [10], [22], [32], [24], [34], [6], [25],
[12] and the (semantic) web [28], [15].

Feedback Sparsity and Feedback Manipulation.Reputation
systems rely on historical transaction and feedback data to
derive a reputation score for entities. In large scale peer-to-
peer communities, each peer may have interacted with only a
small number (percentage) of peers and hence has insufficient
feedback about and from other peers. When the feedback is
sparse, the system can not evaluate the trust value of most
peers or the evaluations suffer from lack of accuracy. In
addition, a piece of feedback is simply a statement from a
user about another user, typically, the service (or information)
consumer about the service (or information) provider. There
is no mechanism to guarantee that the statement is honest.

1http://pages.ebay.com/help/feedback/
2http://www.resellerratings.com/
3http://help.yahoo.com/l/us/yahoo/auctions/general/agen-07.html
4http://slashdot.org/faq/com-mod.shtml#cm700

Malicious users may manipulate the feedback data in order to
benefit themselves or damage the system.

Surprisingly, while there is work dedicated to each of
the problems, very few have studied the feedback sparsity
problem with potential manipulations of feedback. Our pri-
mary viewpoint in this paper is that the two problems are
closely related. Feedback sparsity concerns with the quantity
of feedback. Feedback manipulation concerns with the quality
of feedback and affects the quantity of good feedback. As
a result, the two problems may have a magnifying effect on
each other. When adversaries pollute the feedback data, the
valid or usable feedback becomes sparse, which makes sparsity
problem worse. On the other hand, when feedback is sparse,
feedback manipulation attacks may be magnified and have a
more detrimental effect.

Current Techniques and Research Challenges.Some studies
have been dedicated to dishonest feedback along with other
vulnerabilities in reputation systems such as fake transactions
and dynamic behaviors [22], [32], [30]. A main technique
that has been proposed to cope with dishonest feedback is
to associate a credibility weight with each peer (as versus
the service reliability of the peer). A peer who has consis-
tently provided honest feedback should be associated with a
higher credibility weight so the system can differentiate honest
feedback from dishonest ones. Collaborative filtering systems
[3] suggested user similarity (based on previous ratings about
common items) as an effective measure in identifying users
with similar interests and predicting a user’s rating abouta
certain item. User similarity (based on previous feedback about
common peers) has been also used as a personalized credibility
measure in reputation systems against certain attacks including
collusion among a group of peers who provide good ratings
within the group and bad ratings outside the group [32].
Unfortunately this does not solve but rather exacerbates the
spartiy problem: in addition to the limited personal feedback,
common set of peers that two users have both interacted with
is likely small which will result in poor similarity quality.

Research in trust inference [33], [5], [31], [14], [20], [13]
addresses trust propagation of initial trust relationships assum-
ing certain transitivity of trust. They differ with reputation
systems in that they assume the initial trust relationshipsare
predefined among nodes and use graph theoretic models or

matrix operations to propagate the initial trust. Some recent
works adopted inference techniques in reputation systems.A
notable work EigenTrust [22] derives initial trust based on
personal feedback and performs a global trust propagation
till it finds the eigenvector of the initial trust matrix. How-
ever, by treating the service trust the same as credibility for
propagation, the model is vulnerable to front peer attacks
where adversaries exploit the trust transitivity propertyby
creating false trust links [24]. There also has been research on
collaborative filtering systems [3] that addresses the sparsity
or cold start problem by graph theoretic approaches [4], [29],
[18]. However, they did not consider the potential feedback
manipulations.

While these works shed light on the potential adoption of
inference techniques to address sparsity issues in reputation
systems, a few research challenges remain. First, what initial
relationships among nodes do we use to perform inference?
Second, how do we design the inference model and select
the right parameters such as depth of inference and inference
functions to deal with sparse data while on the other hand to
avoid unnecessary cost. Finally, how does the inference model
cope with potential feedback manipulations?

Contributions and Organizations. Bearing these questions in
mind, we propose a similarity inference framework and study
experimentally how different inference parameters perform
in countering feedback sparsity and feedback manipulation.
The paper makes a number of unique contributions. First,
we show there are important relationships between feedback
sparsity and feedback manipulation. We explore different
attack strategies related to feedback manipulation and quantify
the sparsity problem (Section II). Second, we extend our
earlier work on using similarity as credibility measures [32]
and apply inference on the credibility to cope with the spar-
sity problem in the potential presence of dishonest feedback
(Section III). While the inference scheme builds on general
graph-based inference techniques, there are two key ideas
that extend existing work: 1) the initial trust relationship is
derived from the similarity based credibility as opposed to
personal feedback. We argue that propagating similarity based
trust (credibility) avoids the attacks introduced by propagating
personal feedback based trust (service reliability), and 2) the
propagation is performed in a local manner. Finally, we study
experimentally how variant algorithmic components of the
framework such as inference function and depth of inference
perform in coping with sparsity in the presence of feedback
manipulation (Section IV). We conclude the paper by a review
of the related work, a summary and a brief discussion of future
research (Section VI).

II. PROBLEM STATEMENT

We first define certain terms that will facilitate our discus-
sion and comparison of various reputation schemes. We then
examine the problem space for feedback sparsity and feedback
manipulation.

A. Terms and Definitions

A peer-to-peer communityconsists ofN peers who perform
transactions with each other such as eBay. It can be also
generalized into a community that consists ofN users and
M service (or information) providers such as in resellerrat-
ings.com. Eachtransactionhas a client (service consumer) and
a server (service provider). A peer may serve as a client in one
transaction and as a server in another. Atransaction feedback
is a statement issued by the client about the quality of service
(or information) provided by the server in a single transaction.
A personal feedbackis a user’s general impression about a
service provider based on its personal experiences with the
server. It can be derived from all previous transaction withthe
server such as the percentage of positive transactions. We can
represent all the personal feedback in the network as a user-
user feedback matrix, where each cell represents a personal
feedback from a given user about a given server. The goal
of a reputation system is to compute areputation trustor
trustworthinessvalue for a given service provider. We refer
to the evaluating user assourceand the user to be evaluated
as target. Without loss of generality, we define the reputation
trust as a combination of the user’s personal feedback and an
aggregation of the community feedback.Credibility of a usera
indicates how crediblea is in providing feedback. In contrast,
trustworthiness indicates how reliablea is in providing service.
Some works use trustworthiness as a general notion. We
argue that feedback trustworthiness (credibility) shouldbe
differentiated from service trustworthiness (reliability) as user
b may trust usera for its ratings but not necessarily its service
and vice versa.

B. Threat Model

In a common feedback manipulation attack, malicious users
provide false feedback to boost their own ratings or decrease
the ratings of other peers so they will be chosen by other
peers even when their services are unsatisfactory. We consider
various dimensions of this type of attacks in this section5.

Attack Goals. We consider two different attack goals depend-
ing on the target.

• Random attacks: malicious users try to reduce the overall
performance of a system as a whole and do not target any
particular users.

• Target attacks: malicious users try to force the ratings of
a target user to a particular target reputation value. For
example, in a push (nuke) attack, the goal is to force
all predicted ratings of targeted users to the maximum
(minimum) rating.

Attack Models. We also consider two attack models depend-
ing on whether malicious users collude with each other.

• Non-collusive model: individual malicious users do not
know each other and each do something bad, hoping it
will affect the system.

5Other attack incentives such as free riding [2], [21] and dynamic behaviors
[30] are not considered in this paper.

• Collusive model: multiple malicious peers may form a
group and collude with each other in order to achieve
their goal that is typically targeted towards boosting the
ratings of the whole or part of the group.

A related attack where an individual user creates multiple
fake profiles that act as a collusive group can be modeled
similarly. We do assume adversaries have to pay a cost to
create a profile so it is not feasible to create large number of
false profiles. The goal of designing a robust algorithm is to
maximize the noise level it can tolerate so an adversary has
to pay a high cost in order to achieve their malicious goal.

Attack Strategies. Some collusive attacks may be specifically
designed to exploit a particular weakness in a specific algo-
rithm or class of algorithms. For example, for systems that do
not differentiate service trust (reliability) and feedback trust
(credibility), one simple strategy is to have part of the peers
act as front peers or moles [24]. These peers always cooperate
with other peers in order to increase their reputation and then
provide misinformation to promote other malicious peers.

Differentiating reliability and credibility helps reputation
systems to avoid front peer attacks and are more robust
to dishonest feedbacks. Our previous work PeerTrust [32]
studied dishonest feedback attacks in a non-collusive and a
naive collusive model with dense feedback data. In this paper,
we will study more sophisticated attack strategies targeted
specifically at similarity based models inspired by the shill
attack designs in recommender systems [23].

• Collusive: a straightforward strategy is for collusive users
to rate each other with the maximum rating and rate other
peers with a minimum rating. The hope is that as they
boost their own ratings, they also decrease other peers’
ratings or damage the performance of the reputation
system. However, they may end up with low similarity
to the normal users and in turn their ratings will not be
counted as much.

• Collusive Random: another way is for collusive users to
rate each other with the maximum rating and rate other
peers randomly. The hope is that as they boost their own
ratings, they are also somewhat similar to other users
and they also damage the performance of the reputation
system by providing random ratings.

• Collusive Camouflage: a more sophisticated strategy is for
collusive users to rate each other with maximum rating
but rate other peers honestly so that they will be similar
to more honest users, and thus, have a larger effect on
boosting their own ratings. Hypothetically, this strategy
will allow adversaries to mount a more detrimental attack
and boost their ratings by camouflaging as honest users.

C. Sparsity Problem

Now we consider the sparsity problem for using a similarity
based trust scheme [32]. A source peera computes the
reputation of a target peerj as a weighted average ofj’s
ratings from other peers, where the weight is a personalized
similarity measure between source peera and each other peer

b who gives a rating aboutj. We model the feedback bya
and b over a common set of peers for which botha and b
have rated as two vectors and compute the similarity between
the two vectors. When feedback is sparse, two given peers
may have a very limited number of or zero co-rated peers and
the similarity can not be derived. The reputation can not be
computed if the similarity can not be derived for all the users
who have rated the target peer.

Formally, the probability of an undefined trust computation
is the probability that all of the users who have rated target
peerj do not have co-rated peers witha such that the similarity
cannot be computed. LetN denote the number of peers in
the community, andr be the average number of ratings each
user receives, the reputation computation coverage is given by

Equation 1 where
(N−r

r)
(N

r)
models the probability of two peers

not having co-rated peers.

Coverage(N, r) = 1− (

(

N−r

r

)

(

N

r

))r (1)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of ratings per users (r)

C
ov

er
ag

e

N=100
N=1000
N=10000
N=100000

Fig. 1: Sparsity Problem

While N , the number of users, could be of the order of
thousands,r, the number of ratings per user, could be very
small, and the resulting coverage can be very low. Figure
1 plots Equation 1 with varying total number of users and
average number of ratings per user. When a new user joins
the community, it does not have many ratings about or from
other users. This is also referred to as cold start problem in
recommender systems [4], [29].

III. A S IMILARITY INFERENCEFRAMEWORK

In this section, we propose a framework that uses similarity
as credibility weight and an inference scheme based on sim-
ilarity weight to provide sparsity resilience with presence of
dishonest feedback.

A. Overview

We first model our problem in a graph theoretic way.
Suppose each peer is represented as a node in the graph.
A personal feedback by peerd about peere is represented
by a directed link fromd to e. Each peer then has a set of
outgoing links representing the ratings it has given to other
peers and a set of incoming links representing the ratings it
has received from other peers. If we treat all the ratings each
peer has given to others as a vector, we can derive similarity
between users in terms of their feedback filing and use this

as a personalized credibility measure. Figure 2 illustrates a
partial personal rating matrix and a corresponding graph with
solid links representing personal feedback and dashed links
representing similarity between users.

xx

xx

a b c d e f …

a

b

c

d

e

f

…

a

c

b

d

f

a

c

b

Fd,e eCra,d

Fc,e

1-Hop
neighbors

2-Hop
neighbors

Source
Peer

Target
Peer

Fig. 2: Similarity Inference: Illustration

When the feedback data is sparse, it is not always possible
to derive the direct similarity between users (recall Section
II-C). This motivates us to explore the transitive associations
of similarity. If a usera is similar to b, b is similar to d, a
should be somewhat similar tod. The indirect similarity link
is represented as double dashed link in Figure 2.

The task of a reputation system is to evaluate the trustwor-
thiness of a target peere by aggregating its incoming links
for a source peera. The framework uses feedback similarity
as a personalized credibility weight in feedback aggregation
and uses a similarity inference scheme to compute the weight
for indirect neighbors. The main steps are: 1) compute initial
trust (personal ratings matrix) based on personal experience,
2) compute direct similarity based on the ratings matrix, 3)
find indirect neighbors and compute indirect credibility, and
4) aggregate user feedback (possibly from a selected neigh-
borhood of users) based on the credibility of the users. While
the inference scheme builds on general graph-based inference
techniques [28] and is not completely novel, there are two
key ideas: 1) the initial trust relationship is derived fromthe
similarity based credibility as opposed to personal feedback,
and 2) the propagation is performed in a local manner. We
explain each of the steps in subsequent subsections and discuss
the implications of various algorithmic components in the
setting we consider.

B. Computing Credibility using Similarity

We first derive the weight of direct links between two users
a andb. Assuming the personal feedbackFa,i is derived as an
average of all the transaction feedback (satisfaction) from a to
i in previous transactions. Complex measures can be also used
to handle strategic oscillating behaviors of nodes [30] or to
include transaction contexts such as various transaction types
and sizes [32]. If we treat the ratings each peer has provided
in the past about other peers as a vector, we can compute
similarity between the rating vectors of two users, denoted
as Ia and Ib. It is worth mentioning that the rating vectors
used to compute similarity need to be in the same service
context. Several different similarity measures have been used
in collaborative filtering systems. We adopt the following three
measures in our framework.

• Pearson correlation. Pearson correlation is the most
widely used and computes the degree of linear relation-
ship between two variables.

Cra,b =

∑

i∈Ia∩Ib
(Fa,i − F̄a)(Fb,i − F̄b)

√

∑

i∈Ia∩Ib
(Fa,i − F̄a)2(Fb,i − F̄b)2

(2)

• Vector cosine similarity. The vector similarity is another
widely used measure and is calculated as the cosine of the
angle between the two corresponding vectors (normalized
inner product):

Cra,b =

∑

i∈I Fa,iFb,i
√

∑

i∈Ia
F 2

a,i

√

∑

i∈Ib
F 2

b,i

(3)

• Euclidean distance. The Euclidean distance between the
two feedback vectors can be also used for deriving the
similarity measure [32].

Cra,b =

√

∑

i∈Ia∩Ib

(Fa,i − Fb,i)2 (4)

An inherent difference between the Euclidean distance and
the other two is that it does not perform a normalization of the
feedback. Intuitively, normalization of feedback will minimize
the effect of user bias. For instance, one user may always
give high ratings for all other users while another may always
give low ratings. When the feedback is normalized, it is the
relative ratings that matter and these two users will have a high
similarity despite their bias. On the other hand, the Euclidean
distance will treat these two users as dissimilar.

Other potential measures include Spearman correlation
which takes the ranks of the two variables and computes a
ranked version of Pearson correlation. Existing collaborating
filtering literature [7], [16] has reported that Pearson correla-
tion and Spearman correlation yield comparable and slightly
better accuracy than vector cosine similarity in recommender
systems typically evaluated by movie rating datasets. However,
Pearson correlation has a potential drawback as it assumes an
approximate Gaussian distribution of the data and may not
be robust with respect to outliers. We will study experimen-
tally how these measures perform in our context with sparse
feedback and potential feedback manipulations in Section IV.

C. Similarity Inference

We refer to all users who have a direct similarity weight
defined with a as a’s direct similarity neighbors. Whena
needs to evaluate the trustworthiness of another peere, it asks
its neighbors for their opinions aboute and aggregates their
opinions. (We will discuss neighborhood selection techniques
later in this section). When the input data is sparse, each peer
may have very limited number of direct neighbors and thus
the chance increases that none of its direct neighbors has an
opinion about a given target peer (recall Equation 1). In this
section, we present algorithms to find indirect neighbors of
a given user and propagate the similarity weight between the

user and indirect neighbors.

Discovering Indirect Neighbors. We can model the problem
as a transitive closure problem to find all nodes that are
reachable by nodea by at least one path (note here that the
path consists of only similarity links). Intuitively, a user may
be only willing to take the opinions of other users that are
within certain distance. An indirect neighbor that is too far
away on a similarity path stops being useful even if each node
is perfectly similar to their immediate neighbors on the path.
So we bound the path by a maximum path lengthL meaning
we only consider the indirect neighbors withinL hops of the
source usera. If a node is reachable bya by at leastl hops,
we call the nodea’s l-hop neighbor.a’s 1-hop neighbors are
also a’s direct neighbors. Figure 2 shows an illustration of
the similarity based neighbors. Since we have a maximum
path length bound, we do not need a full transitive closure
algorithm. Instead, for each node, similar to the single source
transitive closure problem, we can use a standard breath first
graph search algorithm to find all the indirect neighbors that
are withinL hops.

Computing Indirect Weights. For a’s indirect neighbors, we
need to compute an indirect weight. For al-hop neighborb,
we consider alll-length paths froma to b and compute an
indirect weight based on these paths.

Formally, for each path, we infer an indirect weight for this
path as a product of the direct weights on individual links. We
can also add in a decaying factor at each step such that the
similarity decays at each step and essentially a path decays
to 0 if it is too long. Since we have bounded the path length
by a maximum length in finding neighbors, we set the decay
factor to 1 in our implementations.

There are some important implications in propagating sim-
ilarity as a trust relationship. Using production as the path
concatenation function assumes a pessimistic behavior. One
particular situation is when nodea distrustsb andb distrustsc
because of a low similarity,a will choose to further distrusts
c. Alternatively, distrust could be propagated separately from
trust with different functions [14].

If there are multiple paths of lengthl from nodea to node
b, we need a function to select or combine the inferred values
from the paths into a single value. We consider three such
functions: maximum, minimum, and average [28].

• Maximum. Maximum function assumes an optimistic
behavior of the user and selects maximum similarity value
of the multiple paths. This is consistent with performing a
generalizedor operation over [0,1] valued beliefs in fuzzy
logic. Useru will believe another userj to an extent with
which at least one of its closer neighbors believesj. This
will also potentially help balance the pessimistic property
of the production propagation on a single path.

• Minimum. Minimum function assumes a pessimistic be-
havior of the user and selects minimum similarity values
of the multiple paths. This is consistent with performing
a generalizedand operation in fuzzy logic. Usera will
only believe another userb to an extent with which all

its closer neighbors believeb.
• Average. Average function computes an average of the

similarity values of the multiple paths. Intuitively, this
may give us the best of maximum and minimum function.
However, average function is not associative so it is
harder to implement using standard algorithms and we
will discuss the implementation later in this section.

Neighbor Selection. Once the neighbors are discovered and
their indirect weights are computed, some of them may turn
out to have a very low similarity with the source user.
It has been observed in collaborative filtering systems that
the neighbors with low correlations will greatly affect the
prediction accuracy [7]. So we can use neighborhood selection
techniques suggested in collaborative filtering systems toselect
a subset of neighbors, namely, threshold based selection that
selects neighbors with absolute similarity greater than a certain
threshold, andk nearest neighbor selection.

When such schemes are used, the threshold or thek value
can be also built into the neighborhood discovery process so
that the neighbors who have a low weight will be pruned early
on and the algorithm will be more efficient.

Matrix Representation. If we represent the similarity graph
by an adjacency matrixM with each cell representing the
similarity weight, assuming the weight is normalized for each
user, we can also use matrix productionM l to compute the
indirect weight within l hops. It essentially corresponds to
using production as the path concatenation function and using
weighted average as the path combination function. We can
also interpret the similarity inference problem as a stochastic
transition process similar to the random walker model in
PageRank [26] and EigenTrust [22]. Imagine the source user
a is trying to find similar neighbors, at each step, it hops
to a neighbor according to the given probability (normalized
similarity with the neighbor). The difference between our
approach and web of trust or EigenTrust is that usera stops
when it reaches the maximum path length while in the latter
approach a user’s personal beliefs can be diluted by the infinite
aggregation of other users’ beliefs and result in a global trust
vector.

It is worth mentioning, however, if we normalize the simi-
larity weight by each user, the similarity value does not have
the semantic meaning any more but only a relative rank. So
the threshold based neighbor selection will not work with
normalized similarity butk nearest neighbor selection will.

Implementation and Practical Implications. We implement
a breath first search based algorithm of the above conceptual
model in our first prototype. Algorithm 1 depicts a sketch of
the algorithm that is executed at nodea. It can be conveniently
plugged into existing reputation system architectures such as
that in [32]. A nodea first initializes its neighbor listNa

by adding itself into the list. Then at iteration stepl, it gets
all the l-hop neighbors and computes their indirect weights
based on the given path combination functionf . The algorithm
terminates after it retrieves all theL-hop neighbors. We can
also adopt spreading activation algorithms [9], [8] for more

efficient implementations, for example, the branch and bound
algorithm, if the path combination functions are associative
(out of the functions we considered, maximum and minimum
are associative but average is not).

Since the algorithm runs for a bounded number of hops (we
show laterL=2 is sufficient for many settings), the added cost
of computation and communication is minimal considering the
sparsity of the network. This is very important for a system that
has to deal with dynamic environments including continuously
changing user feedback, similarities, and neighbors. Other
techniques such as the fading memory scheme developed in
our earlier work [30] can be also deployed to summarize and
maintain the transaction feedback in an incremental manner
and further optimize the implementation.

Algorithm 1 Local Algorithm for Discovering Indirect Neigh-
bors and Computing Indirect Weights Executed at Nodea

Input: L, f
Output: Neighborsa - a list of (node, similarity) pairs
Neighborsa.add((a,1))
l← 1
while l ≤ L do

NewNeighbors← φ;
for all b ∈ Neighborsa do

for all c ∈ direct neighbors ofb do
Cra,c ← Cra,b ∗ Crb,c

if c /∈ NewNeighbors then
NewNeighbors.add (c, Cra,c)

else
NewNeighbors.update (c, f (N .get(c), Cra,c))

end if
end for

end for
Neighborsa.add(NewNeighbors)
l ← l + 1

end while

IV. EXPERIMENTAL EVALUATIONS

We performed an extensive set of simulations to empiri-
cally study the performance of the framework under different
sparsity levels and threat models with various algorithm pa-
rameters. We show its benefit compared to PeerTrust [32] in
countering sparsity and feedback manipulations. We did not
include comparisons with other reputation systems becausethe
advantage of PeerTrust in terms of resisting front peer attacks
over reputations systems that do not differentiante service trust
and feedback trust has been demonstrated earlier [32], [24].
As a common practice for peer-to-peer reputation systems, we
use simulations on synthetic data to cover a broad range of
attack scenarios and sparsity levels. It would be interesting to
perform experiments on real world peer-to-peer rating datasets
such as Epinions web-of-trust data6 if it becomes publically
available.

6http://www.epinions.com/help/faq/?show=faqwot

A. Experimental Design

In the first set of experiments, we study how various
algorithmic parameters of the system handle sparse feedback
when there is no feedback manipulation. In the second set of
experiments, we study how the scheme performs at a fixed low
sparsity against feedback manipulation using various attack
strategies as described in Section II-B. Table I summarizes
the main experimental parameters with their default values
used for the experiments. Table II summarizes the behaviorsof
malicious peers in different attack models. All results reported
are averaged over 10 runs.

TABLE I: Experiment Parameters

Parameter Description Default

N # of peers 100
s Feedback density 5%
k % of malicious peers 0

Similarity Measure Euclidean
L Maximum Path Length 2

Path combination function Average
Crmin Neighbor selection threshold0

TABLE II: Attack Models

Attack Service Feedback
Models Quality Quality

Non-Collusive Low Random
Target rating (in group)

Collusive Low Random (otherwise)
Collusive Target rating (in group)
Camouflage Low Honest (otherwise)

Evaluation Metrics. We evaluate accuracy and coverage of
the reputation evaluation.Accuracymeasures how the system’s
computed reputation values for a peer differ from the peer’s
assigned reliability value. We report Root Mean Square Error
for the accuracy. For collusive threat models, the goal of the
collusive malicious users is to boost their own ratings. So in
addition to the error for the whole population of users, we
also measure the error for malicious users which will reflect
how they achieve their malicious goal. We refer to this erroras
target error. Coveragemeasures the percentage of a test set of
peers that the reputation system is able to compute reputation
value for.

B. Countering Sparsity

We first study how various algorithmic components in our
scheme handle feedback sparsity when there is no feedback
manipulation. We vary the personal feedback matrix density
and measure the error and coverage of our inference scheme.
The density is defined as the percentage of ratings over the
total number of matrix entries and is varied between 2% to
10% for our population size. The selection of these parameters
is based on observations in recommender systems and e-
commerce data [17] as well as our analysis in Figure 1.

0.02 0.04 0.06 0.08 0.1
0.05

0.1

0.15

0.2

Rating Matrix Density

E
rr

or
Euclidean Distance
Pearson Correlation
Vector Similarity

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Rating Matrix Density

C
ov

er
ag

e

Euclidean Distance
Pearson Correlation
Vector Similarity

Error Coverage

Fig. 3: Effect of Similarity Measure

Similarity measures. Figure 3 shows the trust computation
error and coverage with different similarity measures with
respect to varying sparsity levels. The three similarity mea-
sures give comparable accuracy and coverage. A noticeable
difference is that Pearson correlation has a marginally higher
error rate than the other two, due to its assumption of the
underlying data distribution. It also suffers from a slightly
lower coverage because it can only be computed when two
users have commonly rated peers.

0.02 0.04 0.06 0.08 0.1
0.05

0.1

0.15

0.2

Rating Matrix Density

E
rr

or

1−Hop
2−Hop
3−Hop
4−Hop

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Rating Matrix Density

C
ov

er
ag

e 1−Hop
2−Hop
3−Hop
4−Hop

Error Coverage

Fig. 4: Effect of Maximum Path Length

Maximum Path Length. Figure 4 shows the trust computation
error and coverage with different maximum path lengths under
different sparsity levels. Note that 1-Hop algorithm (maximum
path length= 1) represents PeerTrust scheme that does not
perform trust inference [32]. We can make a few interesting
observations. First, the 2-Hop algorithm provides significantly
better accuracy and coverage than the 1-Hop algorithm. The
performance gain is most significant when the input data is
extremely sparse. It shows that considering indirect neighbors
is important in countering sparse data. It reflects the intuition
that one needs to talk to people outside her close circle to get
the best information. Second, 3-Hop and 4-Hop algorithms
do not show a significant improvement over 2-Hop algorithm.
This can be explained by the small world effect wherein most
peers may be connected by a small number of hops (2 in our
scenario). It reiterates the observation that limited reputation
sharing or a local reputation scheme is desired to avoid
the unnecessary computation costs [24]. It is worth noting
however that a formal analytical study is needed to determine
the optimal maximum path length for a given sparsity and
distribution of the community.

0.02 0.04 0.06 0.08 0.1
0.05

0.1

0.15

0.2

Rating Matrix Density

E
rr

or

Maximum
Minimum
Average

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Rating Matrix Density

C
ov

er
ag

e

Maximum
Minimum
Average

Error Coverage

Fig. 5: Effect of Path Combination Functions

Path Combination Function. Figure 5 illustrates the trust
computation error and coverage of the three path combination
functions with varying sparsity levels. Interestingly, the max-
imum function has the lowest error rate with varying sparsity
levels. This shows that by assuming an optimistic behavior
(taking the maximum similarity value among multiple paths)
peers can achieve better reputation accuracy given a sparse
feedback input. Different path combination functions do not
have any effect on the computation coverage.

0.02 0.04 0.06 0.08 0.1
0.05

0.1

0.15

0.2

Rating Matrix Density

E
rr

or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Rating Matrix Density

C
ov

er
ag

e

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

Error Coverage

Fig. 6: Effect of Neighbor Selection Threshold

Neighbor Selection Threshold. Figure 6 illustrates the trust
computation error and coverage using different threshold val-
ues with varying sparsity levels. Interestingly, setting different
threshold values does not have a significant impact on the trust
accuracy in this case (no feedback manipulation). Having a
threshold value of 0.75 increases the accuracy marginally but
suffers a lower coverage.

C. Effect of Feedback Manipulation

Now we study how the scheme copes with feedback sparsity
in the presence of feedback manipulations. We consider each
of the attack strategies we described in Section IV-A. The
computation coverage graphs for collusive models are similar
to those of non-collusive model and thus are omitted due to
space restrictions.
Similarity Measure. Figure 7 shows the trust computation
error using different similarity measures under differentat-
tack models. In the non-collusive model, the three similarity
measures have the same trend in computation error which
increases as the percentage of malicious users increases.
Pearson correlation and Euclidean distance give slightly better

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Non−Collusive)

E
rr

or
Euclidean Distance
Pearson Correlation
Vector Similarity

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

% of Malicious Users (Non−Collusive)

C
ov

er
ag

e

Euclidean Distance
Pearson Correlation
Vector Similarity

Error Coverage
(a) Non-Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

E
rr

or

Euclidean Distance
Pearson Correlation
Vector Similarity

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

T
ar

ge
t E

rr
or

Euclidean Distance
Pearson Correlation
Vector Similarity

Error Target Error
(b) Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

E
rr

or

Euclidean Distance
Pearson Correlation
Vector Similarity

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

T
ar

ge
t E

rr
or

Euclidean Distance
Pearson Correlation
Vector Similarity

Error Target Error
(c) Collusive Camouflage Model

Fig. 7: Effect of Similarity Measures

accuracy than vector similarity. This can be contributed tothe
fact that vector similarity assigns a default 0 value (potential
error) for missing feedback when comparing two users as well
as the fact that it normalizes the ratings.

In the collusive models, we observe that by colluding with
each other, the malicious users are able to increase the trust
evaluation error to a larger extent. This is even more so with
target error, indicating that malicious users are able to increase
their own ratings to the target rating. Among the different
similarity measures, Pearson correlation is slightly moreresis-
tant to malicious users and vector similarity suffers the most.
Another interesting phenomenon is that by using a collusive
camouflage strategy, the malicious users are able to increase
the target error slightly compared to the collusive model even
though marginal. But on the other hand, the general error is
decreased because the camouflaged malicious users provide
honest ratings which actually make good contributions to the
community feedback.

While the trend of increasing error with increasing percent-

age of malicious users may not be surprising nor interesting,
our goal is to increase the tolerance level of feedback noise
or in other words delay the trend. And it is worth noting that
the system manages to be effective until over 50% (majority)
of the users are malicious even in the worst collusive model.

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Non−Collusive)

E
rr

or

1−Hop
2−Hop
3−Hop
4−Hop

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

% of Malicious Users (Non−Collusive)

C
ov

er
ag

e

1−Hop
2−Hop
3−Hop
4−Hop

Error Coverage
(a) Non-Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

E
rr

or

1−Hop
2−Hop
3−Hop
4−Hop

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

T
ar

ge
t E

rr
or

1−Hop
2−Hop
3−Hop
4−Hop

Error Target Error
(b) Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

E
rr

or

1−Hop
2−Hop
3−Hop
4−Hop

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

T
ar

ge
t E

rr
or

1−Hop
2−Hop
3−Hop
4−Hop

Error Target Error
(c) Collusive Camouflage Model

Fig. 8: Effect of Maximum Path Length

Maximum Path Length. Figure 8 shows the trust com-
putation error and coverage using various maximum path
length under different attack models. The key observations
are as follows. First, the 2-Hop algorithms and above provide
significantly better accuracy and coverage than the 1-Hop
algorithm (PeerTrust algorithm). This shows that considering
indirect neighbors is important in countering sparse data and as
a result it also provides a better resilience to the manipulation
of feedback by malicious users. Second, we see a similar
trend for collusive and collusive camouflage model as in
the non-collusive model but to a larger extent. The collusive
camouflage model slightly increases the trust computation
error for the malicious group.

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Non−Collusive)

E
rr

or
Maximum
Minimum
Average

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

% of Malicious Users (Non−Collusive)

C
ov

er
ag

e

Maximum
Minimum
Average

Error Coverage
(a) Non-Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

E
rr

or

Maximum
Minimum
Average

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

T
ar

ge
t E

rr
or

Maximum
Minimum
Average

Error Target Error
(b) Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

E
rr

or

Maximum
Minimum
Average

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

T
ar

ge
t E

rr
or

Maximum
Minimum
Average

Error Target Error
(c) Collusive Camouflage Model

Fig. 9: Effect of Path Combination Functions

Path Combination Function. Figure 9 shows that the three
path combination functions have a similar effect on the trust
evaluation error which increases as the percentage of malicious
users increases. The minimum function performs slightly
worse than the other two similar to what we have observed in
the case without feedback manipulation. The collusive models
show a similar trend as in the non-collusive model but to a
larger extent.
Neighbor Selection Threshold. Finally, Figure 10 shows the
trust computation error and coverage using different neighbor
selection threshold. In contrast to the case without feedback
manipulation (Figure 6), we observed that when increasing
the threshold, the accuracy of the algorithm increases witha
significant extent. This means that a higher threshold helpsto
filter out malicious peers when aggregating opinions. However,
as we expected, it also decreases the coverage of the reputation
computation (coverage graphs for the collusive models are
omitted).

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Non−Collusive)

E
rr

or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

% of Malicious Users (Non−Collusive)

C
ov

er
ag

e

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

Error Coverage
(a) Non-Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

E
rr

or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive)

T
ar

ge
t E

rr
or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

Error Target Error
(b) Collusive Model

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

E
rr

or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

% of Malicious Users (Collusive Camouflage)

T
ar

ge
t E

rr
or

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75

Error Target Error
(c) Collusive Camouflage Model

Fig. 10: Effect of Neighbor Selection Threshold

V. RELATED WORK

A number of reputation systems have been proposed re-
cently for collaborative applications [1], [10], [11], [22], [32],
[24], [34], [6], [25], [12], [19]. A few of them use inference
schemes to propagate trust through network by assuming
certain transitivity of trust relationships [22], [28], [14]. They
either assume the recommendation trust is predefined by users
[28], [14], or use service trust [22] and are susceptible to front
peers attacks. A few proposals advocating the differentiation of
credibility from service trust [10], [34], however, the credibil-
ity weights of malicious peers only get updated (downgraded)
after their dishonest feedback incurs a transaction between a
malicious peer and an honest peer. Plus they did not consider
sparsity issues.

Research on collaborative filtering systems [3] provides
important techniques that apply to reputation systems. It is not
surprising that similarity measures can be used as a defensive
measure against dishonest feedbacks. In addition, Lam et al.

[23] experimentally studied several types of shilling attacks on
collaborative filtering systems. We benefited from their attack
designs and modeled and analyzed feedback manipulation
attacks on reputation systems. There has also been some
research [4], [29], [18] that attempted to alleviate the sparsity
problem in collaborative filtering but most of them did not
consider the potential vulnerabilities of the system.

VI. CONCLUSION

We presented a similarity based inference scheme for coun-
tering feedback sparsity with potential feedback manipulations
in reputation systems. The key conclusion is that by utilizing
the similarity measure as a baseline and a similarity inference
of a small number of hops, the framework showed promising
resilience against feedback sparsity even with feedback ma-
nipulation. Other interesting findings are that Euclidean and
Pearson correlation win over Vector similarity which is in
fact consistent with findings in general collaborative filter-
ing context [16]. The maximum path combination functions
provide more resilience because of its optimistic behaviorin
combining the beliefs. A higher threshold in neighborhood
selection provides a stronger resilience but at the cost of lower
coverage.

Our work continues along several directions. We are con-
ducting a formal study to analyze the effect of different
attacks and different algorithmic parameters. In addition, we
are working with PlanetMath.org7, an online collaborative
encyclopedia on Mathematics, to deploy the proposed system
for rating the authors and entries.

ACKNOWLEDGEMENT

This research is partially supported by an Emory URC
Grant from the first author, and grants from NSF CSR, NSF
CyberTrust, NSF ITR, AFOSR, IBM Faculty Award, and an
IBM SUR grant from the second author. Our thanks are also
due to the reviewers for their comments and suggestions that
helped improving the paper.

REFERENCES

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-to-peer
information system. InACM CIKM, 2001.

[2] E. Adar and B. A. Hubeman. Free riding on gnutella.First Monday,
5(10), 2000.

[3] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE transactions on knowledge and data engineering,
17(6), 2005.

[4] C. C. Aggarwal, J. L. Wolf, K. Wu, and P. S. Yu. Horting hatches an
egg: A new graph-theoretic approach to collaborative filtering. In ACM
KDD Conference, 1999.

[5] T. Beth, M. Borcherding, and B. Klein. Valuation of trustin open
networks. In 3rd European Symposium on Research in Computer
Security (ESORICS), 1994.

[6] R. Boutaba and A. Marshall. Management in peer-to-peer systems:
Trust, reputation and security.Computer Networks, 50(4), 2006.

[7] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In14th Conference on
Uncertainly in Artificial Intelligence, 1998.

7http://www.planetmath.org

[8] H. Chen and D. T. Ng. An algorithmic approach to concept exploration
in a large knowledge network (automatic thesaurus consultation): sym-
bolic branch-and-bound search vs. connectionist hopfield net activation.
Journal of American Society of Information Science, 46(5), 1995.

[9] A. M. Collins and E. F. Loftus. A spreading activation theory of semantic
processing.Psychology Review, 82(6), 1975.

[10] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Choosing reputable servents in a p2p network. In 11th
International Conference on World Wide Web, 2002.

[11] E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati, and F. Violante.
A reputation-based approach for choosing reliable resources in peer-to-
peer networks. InCCS, 2002.

[12] Z. Despotovic and K. Aberer. P2p reputation management: Probabilistic
estimation vs. social networks.Computer Networks, 50(4):485–500,
2006.

[13] J. A. Golbeck. Computing and applying trust in web-based social
networks. PhD thesis, College Park, MD, USA, 2005. Chair-James
Hendler.

[14] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust
and distrust. In13th International Conference on World Wide Web, 2004.

[15] Z. Gyongyi and H. Garcia-Molina. Combating web spam with trustrank.
In 30th International conference on Very Large Databases (VLDB),
2004.

[16] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. InSIGIR, 1999.

[17] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating
collaborative filtering recommender systems.ACM Transactions on
Information Systems, 22(1), 2004.

[18] Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering.
ACM Transactions in Information Systems, 22(1), 2004.

[19] A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision.Decis. Support Syst., 43(2):618–
644, 2007.

[20] A. Josang and S. Pope. Semantic constraints for trust transitivity.
In APCCM ’05: Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling, pages 59–68, Darlinghurst, Australia, Australia,
2005. Australian Computer Society, Inc.

[21] S. Jun and M. Ahamad. Feedex: Collaborative exchange ofnews feeds.
In 15th International conference on World Wide Web, 2006.

[22] S. Kamvar, M. Scholsser, and H. Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In12th International
Conference on World Wide Web, 2003.

[23] S. K. Lam and J. Riedl. Shilling recommender systems forfun and
profit. In 13th International Conference on World Wide Web, 2004.

[24] S. Marti and H. Garcia-Molina. Limited reputation sharing in peer-to-
peer systems. InACM Electronic Commerce Conference, 2004.

[25] S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p
reputation systems.Computer Networks, 50(4), 2006.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, 1998.

[27] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation
systems.Communications of the ACM, 43(12), 2000.

[28] M. Richardson, R. Agrawal, and P. Domingos. Trust management for
the semantic web. In2nd International Semantic Web Conference, 2003.

[29] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Application of
dimensionality reduction in recommender systems: A case study. In
WebKDD workshop at ACM SIGKDD, 2000.

[30] M. Srivatsa, L. Xiong, and L. Liu. Trustguard: countering vulnerabilities
in reputation management for decentralized overlay networks. In 14th
International conference on World Wide Web, 2005.

[31] V. Swarup and J. T. Fabrega. Trust: Benefits, models, andmechanisms.
In Secure Internet Programming: Security Issues for Mobile and Dis-
tributed Objects, Lecture Notes in Computer Science. 1999.

[32] L. Xiong and L. Liu. Peertrust: supporting reputation-based trust in
peer-to-peer communities.IEEE Transactions on Knowledge and Data
Engineering (TKDE), 16(7), 2004.

[33] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure
systems–A distributed authentication perspective. InIEEE Computer
Society Symposium on Research in Security and Privacy, 1993.

[34] B. Yu, M. P. Singh, and K. Sycara. Developing trust in large peer-to-
peer systems. InFirst IEEE Symposium on Multi-Agent Security and
Survivability, 2004.

