
Towards Application-Oriented Data Anonymization∗†

Li Xiong‡ Kumudhavalli Rangachari§

Abstract

Data anonymization is of increasing importance for allow-

ing sharing of individual data for a variety of data anal-

ysis and mining applications. Most of existing work on

data anonymization optimizes the anonymization in terms

of data utility typically through one-size-fits-all measures

such as data discernibility. Our primary viewpoint in this

paper is that each target application may have a unique

need of the data and the best way of measuring data util-

ity is based on the analysis task for which the anonymized

data will ultimately be used. We take a top-down analy-

sis of typical application scenarios and derive application-

oriented anonymization criteria. We propose a prioritized

anonymization scheme where we prioritize the attributes for

anonymization based on how important and critical they are

to the application needs. Finally, we present preliminary re-

sults that show the benefits of our approach.

1 Introduction

Data privacy and identity protection is a very important
issue in this day and age when huge databases contain-
ing a population’s information need to be stored and
distributed for research or other purposes. For exam-
ple, the National Cancer Institute initiated the Shared
Pathology Informatics Network (SPIN)1 for researchers
throughout the country to share pathology-based data
sets annotated with clinical information to discover and
validate new diagnostic tests and therapies, and ulti-
mately to improve patient care. However, individually
identifiable health information is protected under the
Health Insurance Portability and Accountability Act
(HIPAA)2. The data have to be sufficiently anonymized
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before being shared over the network.

These scenarios can be generalized into the problem of
privacy preserving data publishing where a data cus-
todian needs to distribute an anonymized view of the
data that does not contain individually identifiable in-
formation to data recipient(s) for various data analy-
sis and mining tasks. Privacy preserving data publish-
ing has been extensively studied in recent years and a
few principles have been proposed that serve as criteria
for judging whether a published dataset provides suffi-
cient privacy protection [40, 34, 43, 3, 32, 53, 35, 37].
Notably, the earliest principle, k-anonymity [40], re-
quires a set of k records (entities) to be indistin-
guishable from each other based on a quasi-identifier
set, and its extension, l-diversity [34], requires every
group to contain at least l well-represented sensitive
values. A large body of work contributes to transform-
ing a dataset to meet a privacy principle (dominantly
k-anonymity) using techniques such as generalization,
suppression (removal), permutation and swapping of
certain data values while minimizing certain cost met-
rics [20, 50, 36, 9, 2, 17, 10, 59, 29, 30, 31, 49, 27, 51, 58].

Most of these methods aim to optimize the data util-
ity measured through a one-size-fitsall cost metric such
as general discernibilty or information loss. Few works
have considered targeted applications like classification
and regression [21, 50, 17, 31] but do not model other
kinds of applications nor provide a systematic or adap-
tive approach for handling various needs.

Contributions. Our primary viewpoint in this paper
is that each target application may have a unique need
of the data and the best way of measuring data utility
is based on the analysis task for which the anonymized
data will ultimately be used. We aim to adapt existing
methods by incorporating the application needs into the
anonymization process, thereby increasing its utility to
the target applications.

The paper makes a number of contributions. First,
we take a top-down analysis of potential application
scenarios and devise models and schemes to represent
application requirements in terms of relative attribute



importance that can be specified by users or learned
from targeted analysis and mining tasks. Second, we
propose a prioritized anonymization scheme where we
prioritize the attributes for anonymization based on
how important and critical they are to the application
needs. We devise a prioritized cost metric that allows
users to assign different weights to different attributes
and adapt existing generalization-based anonymization
methods in order to produce an optimized view for
the user applications. Finally, we present preliminary
results that show the benefits of our approach.

2 Related Work

Our research is inspired and informed by a number of
related areas. We discuss them briefly below.

Privacy Preserving Access Control and Statisti-
cal Databases. Previous work on multilevel secure re-
lational databases [22] provides many valuable insights
for designing a fine-grained secure data model. Hip-
pocratic databases [7, 28, 5] incorporate privacy pro-
tection within relational database systems. Byun et
al. presented a comprehensive approach for privacy
preserving access control based on the notion of pur-
pose [14]. While these mechanisms enable multilevel
access of sensitive information through access control
at a granularity level up to a single attribute value for a
single tuple, micro-views of the data are desired where
even a single value of a tuple attribute may have dif-
ferent views [13]. Research in statistical databases has
focused on enabling queries on aggregate information
(e.g. sum, count) from a database without revealing
individual records [1]. The techniques developed have
focused only on aggregate queries and relational data
types.

Privacy Preserving Data Mining. One data shar-
ing model is the mining-as-a-service model, in which
individual data owners submit the data to a data col-
lector for mining or a data custodian outsources mining
to an untrusted service provider. The main approach
is random perturbation that transforms data by adding
random noise in a principled way [8, 48]. The main
notion of privacy studied in this context is data un-
certainty as versus individual identifiability. There are
studies focusing on specific mining tasks such as deci-
sion tree [8, 12], association rule mining [39, 15, 16], and
on disclosure analysis [26, 19, 42, 12]. A main advantage
of data anonymization as opposed to data perturbation
is that the released data remain ”truthful”, though at a
coarse level of granularity. This allows various analysis

to be carried out using the data, including selection.

Another related area is distributed privacy preserving
data sharing and mining that deals with data sharing
for specific tasks across multiple data sources in a dis-
tributed manner [33, 44, 23, 25, 46, 56, 45, 4, 6, 47,
24, 54, 11, 55]. The main goal is to ensure data is
not disclosed among participating parties. Common ap-
proaches include data approach that involves data per-
turbation and protocol approach that applies random-
response techniques.

Data Anonymization The work in this paper has
its closest roots in data anonymization that provides
a micro-view of the data while preserving privacy of in-
dividuals. The work in this area can be classified into
a number of categories. The first one aims at devis-
ing generalization principles in that a generalized table
is considered privacy preserving if it satisfies a gener-
alization principle [40, 34, 43, 3, 32, 53, 35, 37]. Re-
cent work[52] also considered personalized anonymity
to guarantee minimum generalization for every individ-
ual in the dataset. Another large body of work con-
tributes to the algorithms for transforming a dataset
to one that meets a generalization principle and min-
imizes certain quality metrics. Several hardness re-
sults [36, 2] show that computing the optimal gener-
alized table is NP-hard and the result suffers severe in-
formation loss when the number of quasi-identifier at-
tributes are high. Optimal solutions [9, 29] enumerate
all possible generalized relations with certain constraints
using heuristics to prune the search space. Greedy so-
lutions [20, 50, 17, 10, 59, 30, 31, 49] are proposed to
obtain a suboptimal solution much faster. A few works
are suggesting new approaches in addition to general-
ization, such as releasing marginals [27], anatomy tech-
nique [51], and permutation technique [58], to improve
the utility of the published dataset. Another thread of
research is focused on disclosure analysis [35]. A few
works considered targeted classification and regression
applications [20, 50, 17, 31].

Our work builds on top of the existing generaliza-
tion principles and anonymization techniques and aims
to adapt existing solutions for application-oriented
anonymization that provides an optimal view for tar-
geted applications.

3 Privacy Model

Among the many identifiability based privacy princi-
ples, k-anonymity [41] and its extension l-diversity [34]



are the two most widely accepted and serve as the basis
for many others, and hence, will be used in our dis-
cussions and illustrations. Our work is orthogonal to
these privacy principles. Below we introduce some ter-
minologies and illustrate the basic ideas behind these
principles.

In defining anonymization, attributes of a given re-
lational table T , are characterized into three types.
Unique identifiers are attributes that identify individ-
uals. Known identifiers are typically removed entirely
from released micro-data. Quasi-identifier set is a
minimal set of attributes (X1, ..., Xd) that can be
joined with external information to re-identify individ-
ual records. We assume that a quasi-identifier is recog-
nized based on domain knowledge. Sensitive attributes
are those attributes that an adversary should not be per-
mitted to uniquely associate their values with a unique
identifier.

Table 1: Illustration of Anonymization: Original Data
and Anonymized Data

Name Age Gender Zipcode Diagnosis

Henry 25 Male 53710 Influenza
Irene 28 Female 53712 Lymphoma
Dan 28 Male 53711 Bronchitis
Erica 26 Female 53712 Influenza

Original Data

Name Age Gender Zipcode Disease

∗ [25− 28] Male [53710-53711] Influenza
∗ [25− 28] Female 53712 Lymphoma
∗ [25− 28] Male [53710-53711] Bronchitis
∗ [25− 28] Female 53712 Influenza

Anonymized Data

Table 1 illustrates an original relational table of personal
information. Among the attributes, Name is considered
as an identifier, (Age, Gender, Zipcode) is considered as
a quasi-identifer set, and Diagnosis is considered as a
sensitive attribute. The k-anonymity model provides an
intuitive requirement for privacy in stipulating that no
individual record should be uniquely identifiable from a
group of k with respect to the quasi-identifier set. The
set of all tuples in T containing identical values for the
quasi-identifier set X1, ..., Xd is referred to as an Equiv-
alence Class. T is k-anonymous with respect to X1, ...,
Xd if every tuple is in an equivalence class of size at
least k. A k-anonymization of T is a transformation
or generalization of the data T such that the transfor-
mation is k-anonymous. The l-diversity model provides
a natural extension to incorporate a nominal sensitive
attribute S. It requires that each equivalence class also
contains at least l well-represented distinct values for

S. Typical techniques to transform a dataset to sat-
isfy k-anonymity include data generalization, data sup-
pression, and data swapping. Table 1 also illustrates
one possible anonymization with respect to a quasi-
identifier set (Age, Gender, Zipcode) using data gener-
alization that satisfies 2-anonymity and 2-diversity.

4 Application-Oriented Anonymization

Our key hypothesis is that by considering important ap-
plication requirements, the data anonymization process
will achieve a better tradeoff between general data util-
ity and application-specific data utility. We first take a
top-down analysis of typical application scenarios and
analyze what requirements and implications they pose
to the anonymization process. We then present our pri-
oritized optimization metric and anonymization tech-
niques that aim to prioritize the anonymization for in-
dividual attributes based on how important they are to
target applications.

4.1 Anonymization Goals There are different
types of target applications for sharing anonymized
data including: 1) query applications supporting ad-hoc
queries, 2) applications with a specific mining task such
as classification or clustering, and 3) exploratory appli-
cations without a specific mining task. We consider two
typical scenarios of these applications on anonymized
medical data and analyze their implications on the
anonymization algorithms.

Scenario 1. Disease-specific public health study. In
this study, researchers select a subpopulation of certain
health condition (e.g. Diagnosis = ”Lymphoma”), and
study their geographic and demographic distribution,
reaction to certain treatment, or survival rate. An
example is to identify geographical patterns for the
health condition that may be associated with features
of the geographic environment.

Scenario 2. Demographic / population study. In
this study, researchers may want to study a certain
demographic subpopulation (e.g. Gender = Male and
Age > 50), and perform exploratory analysis or learn
classification models based on demographic information
and clinical symptoms to predict diagnosis.

The data analysis for the mentioned applications is typ-
ically conducted in two steps: 1) subpopulation identifi-
cation through a selection predicate, and 2) analysis on
the identified subpopulation including mining tasks such



as clustering or classification of the population with re-
spect to certain class labels. Given such a two-step pro-
cess, we identify two requirements for optimizing the
anonymization for applications: 1) maximize precision
and recall of subpopulation identification, and 2) max-
imize quality of the analysis.

We first categorize the attributes with respect to the
applications on the anonymized data and then explain
how the application requirement and optimization goal
transform to concrete criteria for application-oriented
anonymization. Given an anonymized relational table,
each attribute can be characterized by one of the
following types with respect to the target applications.

• Selection attributes are those attributes used to
identify a subpopulation (e.g. Diagnosis in Sce-
nario 1 and Gender and Age in Scenario 2).

• Feature attributes are those attributes used to
perform analysis such as classifying or clustering
data (e.g. Zipcode in Scenario 1 for geographic
location based analysis).

• Target attributes are the class label or attributes
for which the classification or prediction are trying
to predict (e.g. Diagnosis in Scenario 2). Tar-
get attributes are not applicable for unsupervised
learning tasks such as clustering.

Given the above categorization and the goals in opti-
mizing anonymization for target applications, we derive
a set of generalization criteria for the different types of
attributes in our anonymization model.

• Discernibility of selection attributes or predicates.
If a selection attribute is part of the quasi-identifier
set and is subject to generalization, it may result
in an imprecise query selection. For example, if
the Age attribute is generalized into ranges of
[0 − 40] and [40 above], the selection predicate
Age > 50 in Scenario 2 will result in an imprecise
subpopulation. In order to maximize the precision
of the population identification, the generalization
of the selection attributes should be minimized or
adapted to the selection predicates so that the
discernibility of selection attributes or predicates
are maximized.

• Discernibility of feature attributes. For most mining
tasks, the anonymized dataset needs to maintain
as much information about feature attributes as

possible, in order to derive accurate classification
models or achieve high quality clustering. As a
result, the discernibility of feature attributes needs
to be maximized in order to increase data utility.

• Homogeneity of target attributes. For classifica-
tion tasks, an additional criterion is to produce
homogeneous partitions or equivalence classes of
class labels. The few works specializing on op-
timizing anonymization for classification applica-
tions [21, 50, 17, 31] are mainly focused on this
objective. However, it is important to note that
if the class label is a sensitive attribute, this crite-
rion is conflicting with the goal of l-diversity and
other principles that attempts to achieve a guaran-
teed level of diversity in sensitive attributes and the
question certainly warrants further investigation to
achieve best tradeoff.

4.2 Attribute Priorities Based on the above dis-
cussion and considering the variety of applications, the
first idea we explored is to represent the application
requirements using a list of attribute and weight pairs
where each attribute is associated with a priority weight
based on how important it is to the target applications.
We envision that these priority weights can be either
explicitly specified by users or implicitly learned by the
system based on a set of sample queries and analysis.
If the target applications can be fully specified by the
users with feature attributes, target attributes, or se-
lection attributes, they can be assigned a higher weight
than other attributes in the quasi-identifer set. For in-
stance, in Scenario 1, the attribute-weight list can be
represented as (Age, 0), (Gender, 0), (Zipcode, 1) where
Zipcode is the feature attribute for the location-based
study.

Alternatively, the attribute priorities can be learned im-
plicitly from sample queries and analysis. For exam-
ple, statistics can be collected from query loads on at-
tribute frequencies for projection and selection. In many
cases, the attributes in the SELECT clause (projection)
correspond to feature attributes while attributes in the
WHERE clause (selection) correspond to the selection
attributes. The more frequently an attribute is queried,
the more important it is to the application, and the
less it should be generalized. Attributes can be then
ordered by their frequencies where the weight is a nor-
malized frequency. Another interesting idea is to use a
min-term predicate set derived from query load and use
that in the anonymization process similar to the data
fragmentation techniques in distributed databases. This
is on our future research agenda.



4.3 Anonymization Metric Before we can devise
algorithms to optimize the solution for the application,
we first need to define the optimization objective or the
cost function. When the query and analysis seman-
tics are known, a suitable metric for the subpopulation
identification process is the Precision of the relevant
subpopulation similar to the precision of relevant docu-
ments in Information Retrieval. Note that a generalized
dataset will often produce a larger result set than the
original table does with respect to a set of predicates
consisting of quasi-identifiers. This is similar to the im-
precision metric defined in [31]. For analysis tasks, ap-
propriate metrics for specific analysis tasks should be
used as the ultimate optimization goal. This includes
accuracy for classification applications and intra-cluster
similarity and inter-cluster dissimilarity for clustering
applications. The majority metric [25] is a class-aware
metric introduced to optimize a dataset for classification
applications.

When the query and analysis semantics are not speci-
fied, we need a general metric that measures the data
utility. Intuitively, the anonymization process should
generalize the original data as little as is necessary to
satisfy the given privacy principle. There are mainly
three cost metrics that have been used in the litera-
ture [38], namely, general loss metric, majority metric,
and discernibility metric. Among the three, the dis-
cernibility metric, denoted by CDM , is most commonly
used and is defined based on the size of equivalence
classes E:

(4.1) CDM =
∑
m

|Em|2

To facilitate the application-oriented anonymization,
we devise a prioritized cost metric that allows users
to incorporate attribute priorities in order to achieve
more granularity for more important attributes. Given
a quasi-identifier Xi, let |Em

Xi
| denote the size of the

mth equivalent class with respect to Xi, let weighti
denote attribute priority associated with attribute Xi,
the metric is defined as follows:

(4.2) CWDM =
∑

i

weighti ∗
∑
m

|Em
Xi
|2

Consider our example Scenario 1, if given an
anonymized dataset such as in Table 1, the discerni-
bility of equivalent classes along attribute Zipcode will

be penalized more than the other two attributes because
of the importance of geographic location. This metric
corresponds well with our weighted attributed list repre-
sentation of the application requirements. It provides a
general judgement of the anonymization for exploratory
analysis when there is some knowledge about attribute
importance in applications but not sufficient knowledge
about specific subpopulation or applications.

4.4 Anonymization A large number of algorithms
have been developed for privacy preserving data
anonymization. They can be roughly classified into
top-down and bottom-up approaches and single dimen-
sional and multidimensional approaches. Most of the
techniques take a greedy approach and rely on cer-
tain heuristics at each step or iteration for selecting an
attribute for partitioning (top-down) or generalization
(bottom-up). In this study, we adapt the greedy top-
down Mondrian multidimensional approach [30] and in-
vestigate heuristics for adapting it based on our prior-
itized optimization metric. It is on our future research
agenda to explore various anonymization approaches
and investigate systematic ways for adapting them to-
wards application-oriented anonymization.

The Mondrian algorithm (based on k-anonymity prin-
ciple) uses greedy recursive partitioning of the (multi-
dimensional) quasi-identifer domain space. In order to
obtain approximately uniform partition occupancy, it
recursively chooses the split attribute with the largest
normalized range of values, referred to as spread, and
(for continuous or ordinal attributes) partitions the data
around the median value of the split attribute. This
process is repeated until no allowable split remains,
meaning that a particular region cannot be further di-
vided without violating the anonymity constraint, or
constraints imposed by value generalization hierarchies.

The key of the algorithm is to select the best attribute
for splitting (partitioning) during each iteration. In
addition to using the spread (range) of the values of
each attribute i, denoted as spreadi, in the original
algorithm, our approach explores additional metrics.

Attribute priority. Since our main generalization cri-
teria is to maximize the discernibility of important
attributes including selection attributes, feature at-
tributes and class attributes for target applications, we
use the attribute priority weight for attribute i, de-
noted by weighti, as an important selection criteria.
Attributes with a larger weight will be selected for par-
titioning so that important attributes will have a more



precise view in the anonymized data.

Information gain. When target applications are well
specified a priori, another important generalization cri-
terion for classification applications is to maximize the
homogeneity of class attributes within each equivalence
class. This is reminiscent of decision tree construction
where each path of the decision tree leads to a homoge-
neous group of class labels [18]. Similarly, information
gain can be used as a scoring metric for selecting the
best attribute for partitioning in order to produce equiv-
alence classes of homogeneous class labels. The informa-
tion gain for a given attribute i, denoted by infogaini,
is computed as the weighted entropy of the resultant
partitions based on the split of attribute i:

(4.3) infogaini =
∑

P ′
(
|P ′|
|P |

∑

c∈Dc

−p(c|P ′)logp(c|P ′))

where P denotes the current partition, P ′ denotes the
set of resultant partitions of the iteration, p(c|P ′) is the
fraction of tuples in P ′ with class label c, and Dc is the
domain of the class variable c.

The attribute selection criteria for each iteration selects
the best attribute based on an overall scoring metric
determined by an aggregation of the above metrics. In
this study, we use a linear combination of the individual
metrics, denoted by Oi for attribute i:

(4.4) Oi =
∑

j

(wj ∗metricj
i )/

∑

j

wj

where metricj
i ∈ {spreadi, infogaini, weighti}, and wj

is the weight of the individual metric j (wj >= 0).

5 Experiments

We performed a set of preliminary experiments evaluat-
ing our approach. The main questions we would like to
answer are: 1) does the prioritized anonymization met-
ric (weighted discernibility metric) correlate with good
data utility from applications point of view? 2) does the
prioritized anonymization scheme provide better data
utility than general approaches?

We implemented a prioritized anonymization algorithm
based on the Mondrian algorithm [30]. It uses a com-

bined heuristic of the spread and attribute priorities
(without information gain) and aims to minimize the
prioritized cost metric (instead of the general discerni-
bility metric). We conducted two sets of experiments for
exploratory and classification applications respectively.

5.1 Exploratory Applications For exploratory ap-
plications, we used the Adults dataset from UC Irvine
Machine Learning Repository configured as in [30]. We
considered a simple application scenario that requires
precise information on a single demographic attribute
(Age and Sex respectively) and hence it is assigned with
a higher weight than other attributes in the experiment.
The dataset were anonymized using the Mondrian and
prioritized approach respectively and we compare the
weighted discernibility as well as general discernibility
of the two anonymized datasets.
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Figure 1: Adult Dataset (Sex-Prioritized)
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Figure 2: Adult Dataset (Age-Prioritized)

Figure 1 and 2 compare the prioritized approach and
the Mondrian approach in terms of general discernibil-
ity and weighted discernibility with respect to differ-
ent value of k for Sex-prioritized and Age-prioritized
anonymization respectively. We observe that even
though the prioritized approach has a comparable gen-
eral discernibility with the Mondrian, it achieves a much
improved weighted discernibility in both cases, which is
directly correlated with the user-desired data utility (i.e.
having a more fine-grained view for Age attribute or Sex
attribute for exploratory query or mining purposes).
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(a) Discernibility
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(b) Weighted Discernibility
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(c) Classification Accuracy

Figure 3: Japanese Credit Screening Dataset - Classification
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(a) Discernibility
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(b) Weighted Discernibility
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(c) Prediction Accuracy

Figure 4: Japanese Credit Screening Dataset - Prediction (A3)

5.2 Classification Applications For classification
applications, we used the Japanese Credit Screening
dataset, also from the UCI Machine Learning Repos-
itory. The dataset consists of 653 instances, 15 at-
tributes and a 2-valued class attribute (A16) that cor-
responds to a positive/negative (+/-) credit. The miss-
ing valued instances were removed and the experiments
were carried out considering only the continuous at-
tributes (A2, A3, A8, A11, A14 and A15). The dataset
was anonymized using the prioritized approach and the
Mondrian approach and the resultant anonymized data
as well as the original data were used for classification
and prediction. The Weka implementation of the sim-
ple Naive-Bayes classifier was used for the classification,
with 10 fold cross-validation for classification accuracy
determination.

For classification, the class attribute was recoded as
1.0/0.0. Different feature attributes were selected and
given varying weights (both arbitrary or assuming user
knowledge) to examine their effect on classification
accuracy. For prediction, attributes other than the
class attribute were recoded into ranges using equi-
width3 approach. A target attribute is selected as the
prediction attribute and the rest of the attributes are
anonymized and used to predict the target attribute.

We assume the users have some domain knowledge of
which attributes will be used as feature attributes for

3Equal spread ranges for the recoded attributes.

their classification and we then assigned higher priority
weights for these attributes. In addition, we also
experimented with a set of single-attribute classification
by selecting one feature attribute each time and assigned
weights for the attributes based on their classification
accuracy. The results are similar and we report the first
set of results below.

Figure 3(a) and 3(b) compare the prioritized and
Mondrian approach in terms of general discernibility
and weighted discernibility of the anonymized dataset
respectively. Figure 3(c) compares the anonymized
datasets as well as the original dataset in terms of accu-
racy for the class attribute. Similarly, Figure 4 presents
the results for prediction of attribute A3. We observe
that the prioritized approach performs better than the
Mondrian for both classification and prediction in terms
of accuracy and achieves a comparable accuracy as the
original dataset. In addition, a comparison of the dis-
cernibility metrics and the classification accuracy shows
that the weighted discernibility metric corresponds well
to the application-oriented data utility, i.e. the classifi-
cation accuracy.

6 Conclusion and Discussions

We presented an application-oriented approach for data
anonymization that takes into account the relative at-
tribute importance for target applications. We derived



a set of generalization criteria for application-oriented
data anonymization and presented a prioritized gen-
eralization approach that aims to minimize the prior-
itized cost metric. Our initial results show that the
prioritized anonymization metric correlates well with
application-oriented data utility and the prioritized ap-
proach achieves better data utility than general ap-
proaches from application point of view.

There are a few items on our research agenda. First, the
presented anonymization technique uses a special gener-
alization algorithm and a simple weighted heuristic. We
will study different heuristics and generalize the result
to more advanced privacy principles and anonymization
approaches. Second, while it is not always possible for
users to specify the attribute priorities before hand, we
will study how to automatically learn attribute priori-
ties from sample queries and mining tasks and further
devise models and presentations that allow application
requirements to be incorporated. In addition, a more
in-depth and longer-term issue that we will investigate
is the notion of priorities, in particular, the interaction
between what data owners perceive and what the data
users (applications) perceive. Finally, it is important to
note that there are inference implications of releasing
multiple anonymized views where multiple data users
may collude and combine their views to breach data pri-
vacy. While there is work beginning investigating the
inference problem [57], the direction certainly warrants
further research.
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