
Grigni: [15]

Approximate TSP in Graphs with Forbidden

Minors

Michelangelo Grigni?

Dept. of Mathematics and Computer Science,

Emory University, Atlanta Georgia 30322, USA,

mic@mathcs.emory.edu

Keywords: graph minor, genus, separator, spanner, TSP, approximation scheme.

Abstract. Given as input an edge-weighted graph, we analyze two al-

gorithms for �nding subgraphs with low total edge weight. The �rst al-

gorithm �nds a separator subgraph with a small number of components,

and is analyzed for graphs with an arbitrary excluded minor. The second

algorithm �nds a spanner with small stretch factor, and is analyzed for

graphs in a hereditary family G(k). These results imply (i) a QPTAS

(quasi-polynomial time approximation scheme) for the TSP (traveling

salesperson problem) in unweighted graphs with an excluded minor, and

(ii) a QPTAS for the TSP in weighted graphs with bounded genus.

1 Introduction

In the traveling salesperson problem (TSP) we are given n sites and their distance
matrix, and our goal is to �nd a simple closed tour of the sites with minimum
total distance. The TSP has driven both practical and theoretical algorithm re-
search for several decades [9]. Most variants are NP-hard, and therefore much
attention is given to approximate solutions for metric TSP, where the distance
matrix is a metric (nonnegative, symmetric, and satisfying the triangle inequal-
ity). An algorithm of Christo�des [6] �nds a metric TSP solution with cost

at most 3=2 times optimal. We would prefer a polynomial time approximation
scheme (PTAS); that is, for each " > 0, we would like a polynomial time algo-
rithm which produces a solution with cost at most 1+" times optimal. However,
metric TSP is MAXSNP-hard even when all distances are one or two [12], and
so there is some positive "0 such that �nding a 1+"0 approximation is NP-hard.
Indeed, the 3=2 guarantee of Christo�des has not been improved (although in
practice, other heuristics are much better).

However, there has been recent progress in certain restricted metric spaces.
In [8] we found a PTAS for the TSP on the nodes of an unweighted planar
graph, where the metric is given by shortest path lengths in the graph. We
later generalized [4] this to allow distances de�ned by non-negative edge costs.
Arora [3] (also Mitchell [11]) gave a PTAS for the TSP and related problems

? Supported by NSF Grant number CCR-9820931.

for points in a Euclidean space of �xed dimension. Roughly speaking, all of
these results depend on the ability to �nd inexpensive and \well-connected"
separators.

In this paper we extend the methods of [4] from planar graphs to larger
graph families. This leads us to a general notion of well-connected separator
that may have other algorithmic applications. We present two subgraph �nding
algorithms; in both algorithms the goal is a light subgraph, meaning that it
has low total edge weight. In Section 3 we give an algorithm �nding a light
separator subgraph with few connected components, in graphs from any family
with a nontrivial excluded minor. In Section 4 we give an algorithm �nding a
light spanner with low stretch factor, in graphs from a family G(k), to be de�ned.
This family includes graphs of bounded genus.

Finally, in Section 5 we sketch a QPTAS (quasi-polynomial time approxi-
mation scheme) for metric TSP in two situations. First, for the shortest path
metric in an unweighted graph from a family with an excluded minor. Second,
for the shortest path metric in an edge-weighted graph from family G(k), for any
�xed k. Both schemes run in time nO(log logn).

2 Preliminaries

All graphs in this paper are undirected and simple. A graph G = (V;E) is edge-
weighted if it has a non-negative weight (or length) `(e) on each edge e 2 E; it
is vertex-weighted if it has a non-negative weight w(v) on each vertex v 2 V . A
subgraph H of G inherits these weights on its edges and vertices. The total edge
weight and vertex weight in H are denoted by `(H) and w(H), respectively. The
number of connected components in H is denoted #(H).

When G is edge-weighted, dG(u; v) denotes the minimum length `(P) of a
path P connecting endpoints u and v. This is zero when u = v, and +1 when
u and v are disconnected. G0 = (V;E0) is a spanning subgraph if it spans each
component of G. Clearly dG(u; v) � dG0(u; v); the stretch factor sf(G0; G) is the
minimum s such that dG0(u; v) � s � dG(u; v) for all u; v 2 V (it su�ces to
consider only edge pairs fu; vg 2 E). When sf(G0; G) � s, we say that G0 is an
s-spanner in G.

Given a graphG, aminor ofG is a graph resulting from some sequence of edge
deletion, vertex deletion, or edge contraction operations (denoted G� e, G� v,
and G=e respectively). Since we only consider simple graphs, we discard self-
loops and parallel edges. We say G has an H-minor (denoted H < G) if G has a
minor isomorphic to H . A hereditary graph property is a class P of graphs closed
under isomorphism, such that whenever G is in P , so are its minors. In a series
of papers, Robertson and Seymour show that every hereditary graph property
is characterized by a �nite set of forbidden minors (see [7] for an overview).
The prime example is Kuratowski's characterization of planar graphs by the
forbidden minors fK5;K3;3g.

For a subset X of vertices in G, an X-
ap is the vertex set of a connected
component of G�X . Given a vertex-weighted graph G, a separator is a subgraph

S such that every V (S)-
ap has weight at most w(G)=2. Note that separators
are usually de�ned as just a vertex set, but in this paper we are interested in a
tradeo� between `(S) and #(S).

Let V (G)�k denote the collection of sets of at most k vertices in G. A haven

of order k is a function � assigning an X-
ap to each X 2 V (G)�k, such that
�(Y) � �(X) whenever X � Y 2 V (G)�k. Given a vertex-weighted graph G
and a non-separator vertex subset X , let �w(X) denote the unique X-
ap with
weight exceeding w(G)=2. If X is a separator, let �w(X) = ;. Note that if G has
no separator of size k, then �w (restricted to V (G)�k) is a haven of order k.

3 A Well-Connected Separator

Alon, Seymour, and Thomas [1] give a polynomial time algorithm to �nd a
separator in a graph with an excluded minor. Speci�cally, given as input a vertex-
weighted graph G and a graph H , their algorithm either �nds an H-minor in
G, or it �nds a separator in G with at most h3=2n1=2 vertices, where h is the
number of vertices in H . In particular, if we �x a non-trivial hereditary graph
property P and only consider inputs G 2 P , then this algorithm �nds separators
of size O(n1=2); this generalizes the planar separator theorem [10].

They (and we) only consider the case H = Kh, since a Kh-minor implies an
H-minor. A covey is a forest C in G such that each pair of component trees is
connected by an edge of G. A covey with #(C) = h witnesses a Kh-minor.

In our application, G is also edge-weighted. We modify their algorithm to
allow a trade-o� between the total edge weight of the separator and the number
of its connected components. We claim the following:

Theorem 1. There is a polynomial time algorithm taking as input a vertex-

weighted edge-weighted graph G, a positive integer h, and a positive real " � 1,
and which produces as output either:

(a) a Kh-minor in G, or

(b) a separator S of G such that `(S) � " h `(G) and #(S) � h2=".

We use much of their algorithm unchanged, so in this abstract we simply describe
and analyze our changes. Our basic subroutine is the following slight modi�cation
of [1, Lemma 2.1]:

Lemma 2. Let G be an edge-weighted graph with m edges, let A1; : : : ; Ak be

subsets of V (G), and let " be a positive real number. There is a polynomial time

algorithm which returns either:

(i) a tree T in G such that `(T) � " `(G) and V (T)\Ai 6= ; for i = 1; : : : ; k; or
(ii) a set Z � V (G) such that jZj � (k � 1)=" and no Z-
ap intersects all of

A1; : : : ; Ak.

The proof of this lemma is essentially the same, except that we use a shortest
paths tree rather than breadth �rst search. The rest of the proof is omitted.

The algorithm is iterative. After t steps of the algorithm, we have a sub-
graph Xt and a covey Ct; initially X0 and C0 are empty. In step t of the algo-
rithm, we halt if either #(Ct�1) � h or Xt�1 is a separator. Otherwise, we let

Bt�1 = �w(Xt�1) and we invoke Lemma 2 on G[Bt�1], where the Ai's are the
neighborhoods of the component trees in Ct�1; we call this step either a T -step
or a Z-step, depending on which is returned. The returned T or Z is then used
to de�ne Xt and Ct, according to several cases as described in [1]. We have these
invariants:

1. Xt is a subgraph of Ct.
2. For each component tree C in Ct, either Xt \ C equals some T returned in

a T -step, or Xt \ C is a set of disconnected vertices contained in some Z
returned in a Z-step.

3. Bt � Bt�1; and if these are equal, then Xt � Xt�1.
4. V (Ct) and Bt are disjoint.

By the �rst invariant, Xt is the union of at most h parts of the form Xt \C.
By the second invariant and Lemma 2, each part has `(Xt \ C) � " � `(G) and
#(Xt \ C) � (k � 1)=". Therefore `(Xt) � h " `(G) and #(Xt) � h2=", as
required in Theorem 1(b).

By invariant 3 above, we see that the sequence of pairs (jBtj; jXtj) is lexico-
graphically decreasing; therefore the algorithm halts after at most n2 iterations.
In fact an improved time analysis is possible, but we omit it here.

Remark. Our algorithm (and the original) may also be useful in situations where
we have a G with no Kh-minor, but the vertex-weighting w is unknown. Observe
that w a�ects the algorithm in only two ways. First, it can tell us when to
stop because Xt is a separator. Second, when we update Xt�1, Bt�1 splits into
disjoint
aps, and w tells us which
ap to take as the next Bt. Since the Bt's
decrease, the tree of possible computations (depending on w) has at most n
leaves. The tree depth is at most the maximum number of iterations, considered
above. Therefore there is a polynomial size collection of vertex sets in G, such
that for any weighing w, one of them is a separator satisfying the conditions of
Theorem 1(b).

4 The Span Algorithm

Alth�ofer et al. [2] introduced the following greedy algorithm to �nd an s-spanner
in an edge-weighted graphG. The parameter s is at least one, and dG0(e) denotes
the length of the shortest path in G0 connecting the endpoints of edge e (the
length may be +1):

Span(G = (V;E); s):
G0 (V; ;)
for all e 2 E in non-decreasing ` order do

if s � `(e) < dG0(e) then add e to G0

return G0

In the resulting G0, we have dG0(e) � s � `(e) for every edge e 2 E; therefore G0

is an s-spanner. By comparison with Kruskal's algorithm, we see that T (G)
def

=

Span(G;n� 1) is a minimum spanning forest in G, and Span(G; s) always con-
tains T (G). The Span algorithm is idempotent in this sense: if G0 = Span(G; s),
then G0 = Span(G0; s).

e�ne the tree weight of G0 as tw(G0) = `(G0)=`(T (G0)) (note that T (G0) =
T (G)). We seek a tradeo� between sf(G0; G) and tw(G0). The algorithm has two
extremes: Span(G;n� 1) has tree weight one but may have stretch factor n� 1;
Span(G; 1) has stretch factor one but may have tree weight nearly n2=4. For
intermediate s, the following tradeo� is known [2, Thm. 2]:

Theorem 3. If s > 1 and G is planar then tw(Span(G; s)) � 1 + 2=(s� 1).

With s close to one, this theorem is a critical element of the approximation
scheme for the TSP in weighted planar graphs [5]. Motivated by this application,
we seek to extend the result to larger graph families.

De�nition 4. Suppose G is a graph, ` is an edge weighting in G, and T is a

spanning forest. De�ne:

1. gap`(e) = dG�e(e)� `(e).
2. gap(G; T) = max`(

P
e62T gap`(e))=`(T), where ` ranges over all edge weight-

ings such that T = T (G).
3. gap(G) = maxT gap(G; T), where T ranges over all spanning forests.

4. the graph class G(k) = fGj gap(G) � kg.

Remark. Given G and T , gap(G; T) is the value of a linear program; suppose `
achieves the maximum. If e is a cut edge then gap`(e) is in�nite, but it does not
matter since e 2 T (and we may set `(e) = 0). For other edges e we may assume
gap`(e) � 0, because otherwise we could improve ` by setting `(e) = dG�e(e).

Theorem 5. G(k) is a hereditary graph property.

Proof. G(k) is easily closed under isomorphism; we need to show gap(H) �
gap(G) whenever H < G. Take ` and T 0 in H such that gap(H;T 0) = gap(H).
In G we will de�ne an edge weighting (also denoted `) and a spanning forest T .
By induction it su�ces to consider these three cases:
Case H = G�e: If e connects two components of G�e, let `(e) = 0 and include
e in T so T � e = T 0. Otherwise let `(e) = dG�e(e) and T = T 0.
Case H = G� v: By deleting edges �rst, we may assume v is isolated. Then `
is unchanged, and we add the isolated v to T .
Case H = G=e: By deleting edges �rst, we may assume that no two edges in G
merge to one in G=e. Let `(e) = 0 and include e in T so that T=e = T 0.

In all cases we have constructed ` and T such that (
P

e62T gap`(e))=`(T) =
gap(H;T 0), therefore gap(G) � gap(H) as required. ut

Let g(H) denote the girth of a graph H . By considering the uniform edge
weighting ` � 1, we have:

Corollary 6. gap(G) � maxH(g(H) � 2)(jE(H)j=(jV (H)j � 1) � 1), where H
ranges over all 2-connected minors of G.

We now relate gap(G) to the Span algorithm. Let gap0`(e) denote the edge
gap in G0, that is dG0�e(e)� `(e).

Lemma 7. If G0 = Span(G; s), then `(e) < 1=(s� 1) � gap0`(e) for all e in G0.

Proof. We follow [2, Lem. 3]. Let P be the shortest path in G0�e connecting the
endpoints of e. Just before the algorithm inserts the longest edge f 2 feg [P ,
we have s � `(e) � s � `(f) < dG0�f (f) � `(P) = dG0�e(e). ut

Theorem 8. If s > 1 and G 2 G(k), then tw(Span(G; s)) � 1 + k=(s� 1).

Proof. We are given G with some weighting `. Let G0 = Span(G; s); we need to
show tw(G0) � 1 + k=(s � 1). Theorem 5 implies gap(G0) � k. Let T = T (G0).
By the de�nition of gap(G0),

P
e62T gap0`(e) � k`(T). By the lemma we haveP

e62T `(e) � k=(s� 1)`(T), and the result now follows. ut

Remark. Theorem 3 is proved by showing G(2) contains all planar graphs. Al-
though not stated in this way, they construct a feasible point in a linear program
dual to the de�nition of gap(G; T) (it is feasible even if we drop the T = T (G)
constraint).

Lemma 6 implies thatKh is a forbidden minor in G(h=2�1�"); we conjecture
a converse relation.

Conjecture 9. There is a function f(�) such that G(f(h)) contains all graphs with
no Kh-minor.

Absent this conjecture, we o�er weaker evidence that G(k) is interesting:
Lemma 10. Suppose G has genus g; that is, G may be drawn without crossings

on an orientable surface with g handles. Then G 2 G(12g � 4).

Proof. (Sketch.) Suppose G is drawn in an orientable surface with g handles.
Choose a spanning tree T such that gap(G; T) = gap(G). For edges e; f 62 T ,
say they are equivalent if the cycles in e + T and f + T are homotopic. If we
take T and all the edges of one equivalence class, we get a planar subgraph
of G. Suppose there are h equivalence classes; then G is the union of h planar
subgraphs G1; : : : ; Gh with a common spanning tree T . By De�nition 4 we see
gap(G; T) �Ph

i=1
gap(Gi; T), and this is at most 2h.

It now su�ces to show h � 6g � 2. We contract T to a point p, so the arcs
become non-crossing non-homotopic loops based at p. We pick one loop of each
class, and consider the faces de�ned by these h loops. We may assume that each
face is a 2-cell, otherwise we could add another loop. Since no two loops are
homotopic, no face has two sides. There may be one face bounded by one loop
e, but then the other side of e has at least four sides; all other faces have at least
three sides. Therefore 2e =

P
� j�j � 3f � 1, where e is the number of loops, f

is the number of faces, and j�j is the number of sides of face �. Combining this
with Euler's formula v � e+ f = 2� 2g gives our bound (here v = 1). A simple
construction shows h = 6g � 2 is achievable for g � 1. ut

5 The Approximation Schemes

We will reuse the methods introduced for planar graphs [8, 4], and only sketch
them here. We are given as input a connected graph G, and a parameter " > 0.
Our goal is to �nd a circuit in the graph visiting each vertex at least once, and
with length within 1 + " times the minimum (this is equivalent to the original
metric TSP formulation). The minimum lies between `(T (G)) and 2`(T (G)), so
it su�ces to �nd a solution with additive error at most "`(T (G)). We need to
handle these two cases:
Case G is unweighted and has no Kh-minor: We introduce the uniform edge
weighting ` � 1. By Mader's Theorem [7, 8.1.1] there is a constant K such that
`(G) � K`(T (G)) (the best K is �(h

p
logh) [14]).

Case G is weighted and in G(k): We replace G by Span(G; 1 + "=4); this sub-
stitution introduces at most ("=2)`(T (G)) additive error. Theorem 8 implies
`(G) � K`(T (G)), where K = 1 + 4k=". Also by Lemma 6 we know G contains
no Kh-minor, for h � 2(k + 1).

Now in either case we know that G has noKh-minor, and that `(G) � K`(T).
We now need to �nd a circuit within ("=2)`(T (G)) of optimal in time nO(log logn),
where the hidden constant depends on ", h, and K.

Given a separator S of G, it is easy to �nd a separation: that is a triple
(S;A1; A2) such that S is a subgraph, A1 [A2 = V (G), A1 \ A2 = V (S), there
are no edges between A1 � S and A2 � S, and each Ai � S has vertex weight at
most (2=3)w(G). So by Theorem 1, we have:

Corollary 11. Suppose G is an edge-weighted graph with no Kh-minor, and

� � 1 is a positive real number. Then there is a polynomial time algorithm

�nding a separation (S;A1; A2) of G such that `(S) � � `(G) and #(S) � h3=�.

We give G a uniform vertex-weighting w. We will build a linear size decom-
position tree T of G, by repeated application of Corollary 11 with the parameter
� =
"= logn, where
 > 0 is a constant to be determined.

If a weighted graph F in T has less than �(��2) vertices, then it is a leaf.
Otherwise, we apply Corollary 11 to �nd a separation (SF ; A1; A2) in F . For
each Ai we let Fi denote the graph that results from F [Ai] by contracting each
component of SF to a point; F1 and F2 are the children of F in T . We call the
new contracted points portal points, and give them (for now) zero weight. Note
that Fi may also inherit portal points from F , and that each edge of F appears
in at most one child.

Since w(Fi) � 2=3w(F), the depth of T is O(logn). We introduce at most
f = h3=� new portals in each split, so every graph in T has at most p portals,
where p = O(f logn) = O(h3(log2 n)="). Since each original edge of G appears
at most once in a level of T , the edges of all SF contracted in a single level have
total weight at most � `(G). Summing over all levels, the total weight of all the
contracted spanners is O("`(G)). By a suitable choice of
 = �(1=K), we may
ensure that this is at most ("=4)`(T (G)).

Consider the optimum circuit � inG. After performing the splits and contrac-
tions, � has an image �F in each graph F of T ; �F enters and leaves F through

its portals in some order, de�ning a sequence of portal-terminated paths within
F , covering its vertices. Furthermore, by a simple patching argument [4, Lemma
3.2], we may rearrange � (without changing its cost) so that each �F uses each
portal of F at most twice as an endpoint.

Therefore, we are led to the following problem, which we will solve approx-
imately by dynamic programming in the tree T . Given a graph F 2 T and an
sequence � of its portals where each portal appears at most twice in �, a �-tour
of F is a sequence of paths covering F , with path endpoints as speci�ed by the
list �. For each �, we want to �nd a near-optimal �-tour in F .

If F is a leaf in T , then we exactly solve each such problem in 2O(1=�) time,
using the ordinary minor separator theorem [1]. If F has children, then after
we have solved all such problems for F1 and F2, we may solve them for F as
follows. Consider all pairings of a �1-tour in F1 and a �2-tour in F2; if they are
compatible, their paths patch together to give us some �-tour in F . For each �,
we record the cheapest combination obtained; we then recover a true �-tour in
F by \uncontracting" the edges of SF and charging each uncontracted edge at
most twice.

As shown above, the total weight of all these charged edges (over all of T) is
at most ("=4)`(T (G)), therefore the total additive error in these contributed by
this uncontraction is ("=2)`(T (G)). We can show that this is the only source of
additive error in our solution, so we have the promised approximation scheme.

The time of the above algorithm is roughly the number of dynamic program-
ming subproblems, which is nO(1)pO(p). With our previous bound for p, this is
nO((Kh3=") logn log logn). In fact we can do better; by using the portal weighing
scheme of [8], we can ensure that each graph in T has at most p = 6f portals,
while T still has O(logn) depth. With this improvement, our time bound is

nO((Kh3=") log logn).

6 Open Problems

Of course proving Conjecture 9 would help unify our present results.
We would prefer a true polynomial time approximation scheme, rather than

quasi-polynomial. Our obstacle is the number of portal orderings � that we must
consider for each F . In the case of planar graphs [4], we overcame the obstacle
by observing that we only needed to consider those �-tours corresponding to
non-crossing paths in an embedding of F on a sphere with O(1) holes. This
observation reduces the number of � considered to a simple exponential 2O(p),
and consequently the total time is polynomial in n. In the present situation, a
bound like the above is unknown, but it is at least plausible. This is because
graphs with a forbidden minor are characterized [13] in terms of blocks that can
be \nearly drawn" on a 2-manifold with a bounded genus and number of holes.

We would also like to solve the Steiner version of the problem, where along
with G we are given a set of \terminal" vertices, and we want to �nd a minimum
length tour visiting all the terminals. The remark at the end of Section 3 is a
preliminary step in that direction.

Acknowledgment: We thank Robin Thomas for help with Lemma 10.

References

1. N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for graphs with an

excluded minor and its applications. In Proc. 22nd Symp. Theory of Computing,

pages 293{299. Assoc. Comput. Mach., 1990.

2. I. Alth�ofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners

of weighted graphs. Discrete Comput. Geom., 9(1):81{100, 1993. An early version

appeared in SWAT'90, LNCS V. 447.

3. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman

and other geometric problems. Journal of the ACM, 45(5):753{782, Sept. 1998.

4. S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time

approximation scheme for weighted planar graph TSP. In Proceedings of the Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 33{41, San Fran-

cisco, California, 25{27 Jan. 1998.

5. S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time

approximation scheme for weighted planar graph TSP. In 9th Annual ACM-SIAM

Symp. on Discrete Algorithms, pages 33{41, Jan. 1998.

6. N. Christo�des. Worst-case analysis of a new heuristic for the traveling salesman

problem. In J. F. Traub, editor, Symposium on New Directions and Recent Results

in Algorithms and Complexity, page 441, NY, 1976. Academic Press. Also CMU

Tech. Report CS-93-13, 1976.

7. R. Diestel. Graph theory. Springer-Verlag, New York, 1997. Translated from the

1996 German original.

8. M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation scheme for

planar graph TSP. In 36th Annual Symposium on Foundations of Computer Sci-

ence (FOCS'95), pages 640{645, Los Alamitos, Oct. 1995. IEEE Computer Society

Press.

9. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The

Traveling Salesman Problem. Wiley, 1985, 1992.

10. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36:177{189, 1979.

11. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple

polynomial-time approximation scheme for geometric TSP, k-MST, and related

problems. SICOMP: SIAM Journal on Computing, 28, 1999.

12. C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with

distances one and two. Mathematics of Operations Research, 18:1{11, 1993.

13. N. Robertson and P. D. Seymour. Graph minors XVII: Excluding a non-planar

graph. Submitted.

14. A. Thomason. An extremal function for contractions of graphs. Math. Proc.

Cambridge Philos. Soc., 95(2):261{265, 1984.

