Real Function Exercises

Try to solve the problems below. The IMC problems are from Chapter 7 of Daas' book; the remaining problems are from the Putnam. Unless stated otherwise, all variable and function values are real.

- **1.** [7.42, IMC 2006] Let $f: \mathbb{R} \to \mathbb{R}$ be a surjective non-decreasing function. Show f is continuous.
- **2.** [7.36, IMC 2000] Let $f : [0,1] \to [0,1]$ be a strictly increasing function (not necessarily continuous). Show there exists some $x \in [0,1]$ so that f(x) = x. What if f is strictly decreasing?
- **3.** [7.30, IMC 1996] Let $f: [0,1] \to [0,1]$ be a continuous function. Consider any sequence given by $x_{n+1} = f(x_n)$. Show that (x_n) converges if and only if $\lim_{n\to\infty} (x_{n+1} x_n) = 0$.
- **4.** [7.33, IMC 1998] Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function satisfying f(0) = 2, f'(0) = -2, and f(1) = 1. Prove that there exists some $c \in (0,1)$ such that $f(c) \cdot f'(c) + f''(c) = 0$.
- **5.** [7.39, IMC 2004] Let $f,g:[a,b] \to [0,\infty)$ be continuous and non-decreasing functions such that for each $x \in [a,b]$, we have $\int_a^x \sqrt{f(t)} \ dt \le \int_a^x \sqrt{g(t)} \ dt$, with equality for x=b. Prove that $\int_a^b \sqrt{1+f(t)} \ dt \ge \int_a^b \sqrt{1+g(t)} \ dt$.
- **6.** [Putnam 2014 B2] Suppose that f is a function on the interval [1,3] such that $-1 \le f(x) \le 1$ for all x and $\int_1^3 f(x) dx = 0$. How large can $\int_1^3 \frac{f(x)}{x} dx$ be?
- 7. [Putnam 2013 B2] Let $C = \bigcup_{N=1}^{\infty} C_N$, where C_N denotes the set of those 'cosine polynomials' of the form

$$f(x) = 1 + \sum_{n=1}^{N} a_n \cos(2\pi nx)$$

for which: (i) $f(x) \ge 0$ for all real x, and (ii) $a_n = 0$ whenever n is a multiple of 3. Determine the maximum value of f(0) as f ranges through C, and prove that this maximum is attained.

- **8.** [Putnam 2012 B1] Let S be a class of functions from $[0,\infty)$ to $[0,\infty)$ that satisfies:
 - (i) The functions $f_1(x) = e^x 1$ and $f_2(x) = \ln(x+1)$ are in S;
 - (ii) If f(x) and g(x) are in S, the functions f(x) + g(x) and f(g(x)) are in S;
- (iii) If f(x) and g(x) are in S and $f(x) \ge g(x)$ for all $x \ge 0$, then the function f(x) g(x) is in S.

Prove that if f(x) and g(x) are in S, then the function f(x)g(x) is also in S.

9. [Putnam 2018 A5] Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function satisfying f(0) = 0, f(1) = 1, and $f(x) \ge 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer n and a real number x such that $f^{(n)}(x) < 0$.