
B-Surprise Putnam Problems
Each problem below is selected from the B session of the Putnam exam, from 2016 to 2019. These were not the

easiest problems; rather they were 2nd or 3rd easiest, measured by the number of full-credit solutions received. See if
you can make progress on any of these. These problems, solutions, and rankings are all from the Putnam Archive.

Problems:

2015 B–2. Given a list of the positive integers 1,2,3,4, . . . , take the first three numbers 1,2,3 and their sum 6 and
cross all four numbers off the list. Repeat with the three smallest remaining numbers 4,5,7 and their sum 16.
Continue in this way, crossing off the three smallest remaining numbers and their sum, and consider the sequence
of sums produced: 6,16,27,36, . . . . Prove or disprove that there is some number in the sequence whose base 10
representation ends with 2015.

2016 B–2. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the
nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to
2016 is 452 = 2025 and 2025−2016 = 9 is a perfect square. (Of the positive integers between 1 and 10, only 6
and 7 are not squarish.)

For a positive integer N, let S(N) be the number of squarish integers between 1 and N, inclusive. Find positive
constants α and β such that

lim
N→∞

S(N)

Nα
= β ,

or show that no such constants exist.

2017 B–3. Suppose that f (x) = ∑
∞
i=0 cixi is a power series for which each coefficient ci is 0 or 1. Show that if

f (2/3) = 3/2, then f (1/2) must be irrational.

2018 B–2. Let n be a positive integer, and let fn(z) = n+(n−1)z+(n−2)z2 + · · ·+ zn−1. Prove that fn has no roots
in the closed unit disk {z ∈ C : |z| ≤ 1}.

2019 B–5. Let Fm be the mth Fibonacci number, defined by F1 = F2 = 1 and Fm = Fm−1 +Fm−2 for all m ≥ 3. Let
p(x) be the polynomial of degree 1008 such that p(2n+1) = F2n+1 for n = 0,1,2, . . . ,1008. Find integers j and
k such that p(2019) = Fj −Fk.
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Solutions:

2015 B–2. We will prove that 42015 is such a number in the sequence. Label the sequence of sums s0,s1, . . . , and let
an,bn,cn be the summands of sn in ascending order. We prove the following two statements for each nonnegative
integer n:

(a)n The sequence
a3n,b3n,c3n,a3n+1,b3n+1,c3n+1,a3n+2,b3n+2,c3n+2

is obtained from the sequence 10n+1, . . . ,10n+10 by removing one of 10n+5,10n+6,10n+7.

(b)n We have

s3n = 30n+6,
s3n+1 ∈ {30n+15,30n+16,30n+17},
s3n+2 = 30n+27.

These statements follow by induction from the following simple observations:

• by computing the table of values
n an bn cn sn
0 1 2 3 6
1 4 5 7 16
2 8 9 10 27

we see that (a)0 holds;

• (a)n implies (b)n;

• (a)n and (b)1, . . . , (b)n together imply (a)n+1.

To produce a value of n for which sn ≡ 2015 (mod 10000), we take n = 3m+ 1 for some nonnegative inte-
ger m for which s3m+1 = 30m+ 15. We must also have 30m ≡ 2000 (mod 10000), or equivalently m ≡ 400
(mod 1000). By taking m = 1400, we ensure that m ≡ 2 (mod 3), so sm = 10m+ 7; this ensures that sn does
indeed equal 30m+15 = 42015, as desired.

Remark: With a bit more work, we can give a complete description of sn, and in particular find the first term in
the sequence whose decimal expansion ends in 2015.

2016 B–2. We prove that the limit exists for α = 3
4 , β = 4

3 .

For any given positive integer n, the integers which are closer to n2 than to any other perfect square are the ones
in the interval [n2 − n− 1,n2 + n]. The number of squarish numbers in this interval is 1+ ⌊

√
n−1⌋+ ⌊

√
n⌋.

Roughly speaking, this means that

S(N)∼
∫ √

N

0
2
√

xdx =
4
3

N3/4.

To make this precise, we use the bounds x−1 ≤ ⌊x⌋ ≤ x, and the upper and lower Riemann sum estimates for
the integral of

√
x, to derive upper and lower bounds on S(N):

S(N)≥
⌊
√

N⌋−1

∑
n=1

(2
√

n−1−1)

≥
∫ ⌊

√
N⌋−2

0
2
√

xdx−
√

N

≥ 4
3
(
√

N −3)3/2 −
√

N
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S(N)≤
⌈
√

N⌉

∑
n=1

(2
√

n+1)

≤
∫ ⌈

√
N⌉+1

0
2
√

xdx+
√

N +1

≤ 4
3
(
√

N +2)3/2 +
√

N +1.

2017 B–3. Suppose by way of contradiction that f (1/2) is rational. Then ∑
∞
i=0 ci2−i is the binary expansion of a

rational number, and hence must be eventually periodic; that is, there exist some integers m,n such that ci = cm+i
for all i ≥ n. We may then write

f (x) =
n−1

∑
i=0

cixi +
xn

1− xm

m−1

∑
i=0

cn+ixi.

Evaluating at x = 2/3, we may equate f (2/3) = 3/2 with

1
3n−1

n−1

∑
i=0

ci2i3n−i−1 +
2n3m

3n+m−1(3m −2m)

m−1

∑
i=0

cn+i2i3m−1−i;

since all terms on the right-hand side have odd denominator, the same must be true of the sum, a contradiction.

2018 B–2. Note first that fn(1)> 0, so 1 is not a root of fn. Next, note that

(z−1) fn(z) = zn + · · ·+ z−n;

however, for |z| ≤ 1, we have |zn + · · ·+ z| ≤ n by the triangle inequality; equality can only occur if z, . . . ,zn have
norm 1 and the same argument, which only happens for z = 1. Thus there can be no root of fn with |z| ≤ 1.

2019 B–5. We prove that ( j,k) = (2019,1010) is a valid solution. More generally, let p(x) be the polynomial of
degree N such that p(2n+1) = F2n+1 for 0 ≤ n ≤ N. We will show that p(2N +3) = F2N+3 −FN+2.

Define a sequence of polynomials p0(x), . . . , pN(x) by p0(x) = p(x) and pk(x) = pk−1(x)− pk−1(x+2) for k ≥ 1.
Then by induction on k, it is the case that pk(2n+1) = F2n+1+k for 0 ≤ n ≤ N − k, and also that pk has degree
(at most) N − k for k ≥ 1. Thus pN(x) = FN+1 since pN(1) = FN+1 and pN is constant.

We now claim that for 0 ≤ k ≤ N, pN−k(2k+3) = ∑
k
j=0 FN+1+ j. We prove this again by induction on k: for the

induction step, we have

pN−k(2k+3) = pN−k(2k+1)+ pN−k+1(2k+1)

= FN+1+k +
k−1

∑
j=0

FN+1+ j.

Thus we have p(2N +3) = p0(2N +3) = ∑
N
j=0 FN+1+ j.

Now one final induction shows that ∑
m
j=1 Fj = Fm+2 −1, and so p(2N +3) = F2N+3 −FN+2, as claimed. In the

case N = 1008, we thus have p(2019) = F2019 −F1010.
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