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A1 The answer is n = 1. When n = 1, (a,b,c) = (1,2,2) is
a solution to the given equation. We claim that there are
no solutions when n ≥ 2.

For n = 2, suppose that we have a solution to 2a2 +
3b2 = 4c2 with a,b,c ∈ N. By dividing each of a,b,c
by gcd(a,b,c), we obtain another solution; thus we
can assume that gcd(a,b,c) = 1. Note that we have
a2 + c2 ≡ 0 (mod 3), and that only 0 and 1 are per-
fect squares mod 3; thus we must have a2 ≡ c2 ≡ 0
(mod 3). But then a,c are both multiples of 3; it follows
from b2 = 12(c/3)2−6(a/3)2 that b is a multiple of 3 as
well, contradicting our assumption that gcd(a,b,c) = 1.

For n ≥ 3, suppose that 2an + 3bn = 4cn. As in the
previous case, we can assume gcd(a,b,c) = 1. Since
3bn = 4cn − 2an, b must be even. We can then write
an + 12(b/2)n = 2cn, and so a must be even. Then
4(a/2)n + 6(b/2)n = cn, and c must be even as well.
This contradicts our assumption that gcd(a,b,c) = 1.

A2 The answer is p(x) = ±x+ c for any c ∈ R. Note that
any such polynomial works: if p(x) = x+c then p(x)−
x = c, while if p(x) =−x+ c then p(p(x))− x = 0.

We will show that these are the only polynomials p(x)
such that p(p(x))− x is divisible by (r(x))2, where
r(x) = p(x)− x. Suppose that p(x) satisfies this con-
dition. We first claim that r(x) has only simple roots
(roots of multiplicity 1) in C. Indeed, suppose α is a
multiple root of r(x) of order d for some d ≥ 2, and
write r(x) = (x − α)ds(x) for some polynomial s(x)
with s(α) ̸= 0. Then applying the formula p(x) =
(x−α)ds(x)+ x twice and collecting terms yields

p(p(x))− x = (x−α)d ·[
((x−α)d−1s(x)+1)ds((x−α)ds(x)+ x)+ s(x)

]
.

Now setting x = α in the expression in square brack-
ets gives 2s(α) ̸= 0. It follows that (x −α)d+1 does
not divide p(p(x))−x, whereas it does divide (r(x))2 =
(x−α)2d(s(x))2, contradiction. This proves the claim.

Now suppose that α is a root of r(x); then (x −
α)2 divides (r(x))2 and thus divides p(p(x))− x as
well. It follows that x − α divides the derivative of
p(p(x))− x, which is p′(x)p′(p(x))− 1, whence 0 =
p′(α)p′(p(α))− 1 = (p′(α))2 − 1 = r′(α)(r′(α)+ 2).
But r′(α) ̸= 0 since every root of r(x) is simple, and
thus r′(α)+2 = 0. We conclude that every root of r(x)
is a root of r′(x)+ 2; again since every root of r(x) is
simple, it follows that r(x) divides r′(x)+2.

If r(x) is constant, then clearly p(x) = x+ c for some
constant c. If r(x) is nonconstant, then the degree of

r(x) is greater than the degree of r′(x) + 2; thus r(x)
can only divide r′(x)+2 if r′(x)+2 = 0, in which case
p(x) =−x+ c for some constant c. This completes the
proof.

A3 Yes, such a,b,c,d exist: we take

(a,b) = (2,1), (c,d) = (1,2).

We will represent T as an 3 × n array (3 rows, n
columns) of integers in which each of 1, . . . ,3n occurs
exactly once and the rows and columns are strictly in-
creasing; we will specialize to n = 2024 at the end.

We first note that T (1,1) = 1 and 2∈ {T (1,2),T (2,1)}.
From this, it follows that T (2,1) < T (1,2) if and only
if T (2,1) = 2.

We next recall a restricted form of the hook length for-
mula (see the first remark for a short proof of this re-
stricted version and the second remark for the state-
ment of the general formula). Consider more gener-
ally an array consisting of (up to) three rows of lengths
n1 ≥ n2 ≥ n3 ≥ 0, aligned at the left. Let f (n1,n2,n3) be
the number of ways to fill this array with a permutation
of the numbers 1, . . . ,n1 + n2 + n3 in such a way that
each row increases from left to right and each column
increases from top to bottom. The hook length formula
then shows that f (n1,n2,n3) equals

(n1 −n2 +1)(n1 −n3 +2)(n2 −n3 +1)(n1 +n2 +n3)!
(n1 +2)!(n2 +1)!n3!

.

We then note that if T (2,1) = 2, we obtain a array with
row lengths n,n−1,n−1 by removing 1 and 2, relabel-
ing each remaining i as 3n+1− i, and reflecting in both
axes. The probability that T (2,1)< T (1,2) is thus

f (n,n−1,n−1)
f (n,n,n)

=
(2)(3)(n+1)n

(1)(2)(3n)(3n−1)

=
n+1
3n−1

=
1
3
+

4
9n−3

;

this is always greater than 1
3 , and for n = 2024 it is vis-

ibly less than 2
3 .

Remark. We prove the claimed formula for
f (n1,n2,n3) by induction on n1 + n2 + n3. To begin
with, if n2 = n3 = 0, then the desired count is indeed
f (n1,0,0) = 1. Next, suppose n2 > 0,n3 = 0. The entry
n1 + n2 must go at the end of either the first or second
row; counting ways to complete the diagram from these
starting points yields

f (n1,n2,0) = f (n1 −1,n2,0)+ f (n1,n2 −1,0).
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(This works even if n1 = n2, in which case the first row
is not an option but correspondingly f (n2 − 1,n2,0) =
0.) The induction step then follows from the identity

(n1 −n2)(n1 +1)+(n1 −n2 +2)n2

(n1 −n2 +1)(n1 +n2)
= 1.

(As an aside, the case n1 = n2,n3 = 0 recovers a stan-
dard interpretation of the Catalan numbers.)

Finally, suppose n3 > 0. We then have

f (n1,n2,n3)

= f (n1 −1,n2,n3)+ f (n1,n2 −1,n3)+ f (n1,n2,n3 −1),

and the induction step now reduces to the algebraic
identity

(n1 −n2)(n1 −n3 +1)(n1 +2)
(n1 −n2 +1)(n1 −n3 +2)(n1 +n2 +n3)

+
(n1 −n2 +2)(n2 −n3)(n2 +1)

(n1 −n2 +1)(n2 −n3 +1)(n1 +n2 +n3)

+
(n1 −n3 +3)(n2 −n3 +2)n3

(n1 −n3 +2)(n2 −n3 +1)(n1 +n2 +n3)
= 1.

Remark. We formulate the general hook length for-
mula in standard terminology. Let N be a positive inte-
ger, and consider a semi-infinite checkerboard with top
and left edges. A Ferrers diagram is a finite subset of
the squares of the board which is closed under taking a
unit step towards either edge. Given a Ferrers diagram
with N squares, a standard Young tableau for this dia-
gram is a bijection of the squares of the diagram with
the integers 1, . . . ,N such that the numbers always in-
crease under taking a unit step away from either edge.

For each square s = (i, j) in the diagram, the hook
length hs of s is the number of squares (i′, j′) in the
diagram such that either i = i′, j ≤ j′ or i ≤ i′, j = j′ (in-
cluding s itself). Then the number of standard Young
tableaux for this diagram equals

N!
∏s hs

.

For a proof along the lines of the argument given in the
previous remark, see: Kenneth Glass and Chi-Keung
Ng, A simple proof of the hook length formula, Ameri-
can Mathematical Monthly 111 (2024), 700–704.

A4 The prime p = 7 works: choose a = 5 and r = 3, and
note that 1,a,a2 can be rearranged to form b0 = 5, b1 =
1, b2 = 25 satisfying the stated property.

We claim that no prime p > 7 works. Suppose other-
wise: there exist p,a,r with p > 7 and r ∤ p such that
1,a, . . . ,ap−5 can be rearranged to form b0, . . . ,bp−5
with bn ≡ b0 +nr (mod p) for all 0 ≤ n ≤ p−5. Since
r ∤ p, {b0,b0 + r, . . . ,b0 +(p−5)r} represents a collec-
tion of p−4 distinct elements of Z/pZ. It follows that
all of 1,a, . . . ,ap−5 are distinct mod p. In particular,

p ∤ a; also, since p−5 ≥ p−1
2 , we conclude that ak ̸≡ 1

(mod p) for any 1 ≤ k ≤ p−1
2 . It follows that a is a

primitive root mod p.
Since a is a primitive root, a−3,a−2,a−1,a0, . . . ,ap−5

runs through all nonzero elements of Z/p exactly
once. On the other hand, b0 − 4r,b0 − 3r,b0 − 2r,b0 −
r,b0, . . . ,b0 + (p − 5)r runs through all elements of
Z/pZ exactly once. The given condition now implies
that

{b0 −4r,b0 −3r,b0 −2r,b0 − r}= {0,c,c2,c3}

where c = a−1; that is, 0,c,c2,c3 can be rearranged to
give an arithmetic sequence x1,x2,x3,x4 in Z/pZ.
If one of the two outer terms x1 or x4 is equal to 0, then
c,c2,c3 can be rearranged to give a three-element arith-
metic sequence. This implies that one of the following
is 0: −2c+c2+c3, c−2c2+c3, c+c2−2c3. Factoring
and using the fact that c ̸= 0,1, we conclude that c=−2
or c=−2−1, and the three-element arithmetic sequence
is 4,−2,−8 or 4−1,−2−1,−8−1. It is straightforward to
check that in neither case can the arithmetic sequence be
elongated to a four-element arithmetic sequence with 0
on one of the ends.
If one of the two inner terms x2 or x3 is equal to 0, then
x3 = −x1 or x4 = −x2 respectively. This implies that
two of c,c2,c3 are negatives of each other mod p. But
c ̸=−c2 and c2 ̸=−c3 since otherwise c3 = c; it follows
that c3 = −c. But now c4 = 1, whence a4 = 1 and a is
not a primitive root mod p. This concludes the proof.

A5 We will show that r = 0 (and no other value of r) mini-
mizes the stated probability.
Note that P and Q coincide with probability 0; thus we
can assume that P ̸= Q.
First restrict P,Q to points on Ω such that the seg-
ment PQ makes an angle of θ with the y axis, where
θ is a fixed number with −π/2 < θ ≤ π/2. By ro-
tating the diagram by −θ around the origin, we move
PQ to be a vertical line and move ∆ to be centered
at (r cosθ ,−r sinθ). In this rotated picture, P and Q
are at (9cosφ ,±9sinφ) where φ is chosen uniformly
at random in (0,π). Now the vertical tangent lines
to the boundary of ∆, x = r cosθ ± 1, intersect the
y > 0 semicircle of Ω at (9cosφ ,9sinφ) where φ =

cos−1
( r cosθ±1

9

)
. Thus the probability that PQ inter-

sects ∆ for a specific value of θ is
1
π

f (r,θ), where we define

f (r,θ) = cos−1
(

r cosθ −1
9

)
− cos−1

(
r cosθ +1

9

)
.

If we now allow θ to vary (uniformly) in (−π/2,π/2],
we find that the overall probability that PQ intersects ∆

is

P(r) =
1

π2

∫
π/2

−π/2
f (r,θ)dθ .
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The function P(r) is differentiable with

P′(r) =
1

π2

∫
π/2

−π/2

∂ f (r,θ)
∂ r

dθ .

Now

∂ f (r,θ)
∂ r

= (cos t)
(
(80−2r cos t − r2 cos2 t)−1/2

−(80+2r cos t − r2 cos2 t)−1/2
)
,

which, for t ∈ (−π/2,π/2), is zero for r = 0 and strictly
positive for r > 0. It follows that P′(0) = 0 and P′(r)<
0 for r ∈ (0,8], whence P(r) is minimized when r = 0.

A6 The determinant equals 10n(n−1)/2. To show this, we
compute the corresponding determinant for the coeffi-
cients of the generic power series

f (x) :=
∞

∑
n=1

cnxn, c1 = 1,

with associated continued fraction
a0

x−1 +b0 +
a1

x−1+b1+···
, a0 = 1.

If we truncate by replacing an+1 = 0, we get a ra-
tional function which can be written as An(x−1)

Bn(x−1)
where

An(x),Bn(x) are polynomials determined by the initial
conditions

A−1(x) = 1,A0(x) = 0, B−1(x) = 0,B0(x) = 1

and the recurrences

An+1(x) = (x+bn)An(x)+anAn−1(x) (n > 0)
Bn+1(x) = (x+bn)Bn(x)+anBn−1(x) (n > 0).

Since each additional truncation accounts for two more
coefficients of the power series, we have

An(x−1)

Bn(x−1)
= f (x)+O(x2n+1),

or equivalently (since Bn(x) is monic of degree n)

f (x)Bn(x−1)−An(x−1) = O(xn+1). (1)

We now reinterpret in the language of orthogonal poly-
nomials. For a polynomial P(x) = ∑i Pixi, define∫

µ

P(x) = ∑
i

Pici+1;

then the vanishing of the coefficient of xi+1 in (1) (with
n := i) implies that∫

µ

xiB j(x) = 0 ( j < i).

By expanding 0 =
∫

µ
xi−1Bi+1(x) using the recurrence,

we deduce that
∫

µ
xiBi(x)+ ai

∫
µ

xi−1Bi−1(x) = 0, and
so ∫

µ

xiBi(x) = (−1)ia1 · · ·ai.

We deduce that∫
µ

Bi(x)B j(x) =

{
0 i ̸= j
(−1)ia1 · · ·ai i = j.

(2)

In other words, for U the n×n matrix such that Ui j is the
coefficient of x j in Bi(x), the matrix UAU t is a diagonal
matrix D with diagonal entries Di,i = (−1)i−1a1 · · ·ai−1
for i = 1, . . . ,n. Since U is a unipotent matrix, its deter-
minant is 1; we conclude that

det(A) = det(D) = (−1)n(n−1)/2an−1
1 · · ·an−1.

We now return to the sequence {cn} given in the prob-
lem statement, for which

f (x) =
1−3x−

√
1−14x+9x2

4
.

For

g(x) :=
1−7x−

√
1−14x+9x2

2
,

we have

f (x) =
1

x−1 −5−g(x)
, g(x) =

10
x−1 −7−g(x)

.

This means that the continued fraction is periodic; in
particular, a1 = a2 = · · ·=−10. Plugging into the gen-
eral formula for det(A) yields the desired result. This
yields the desired result.
Remark. A matrix A whose i, j-entry depends only
on i+ j is called a Hankel matrix. The above compu-
tation of the determinant of a Hankel matrix in terms
of continued fractions is adapted from H.S. Wall, An-
alytic Theory of Continued Fractions, Theorems 50.1
and 51.1.
The same analysis shows that if we define the sequence
{cn}n=1 by c1 = 1 and

cn = acn−1 +b
n−1

∑
i=1

cicn−i (n > 1),

then an =−ab−b2, bn =−a−2b for all n > 0 and so

det(A) = (ab+b2)n(n−1)/2;

the problem statement is the case a = 3,b = 2. The case
a= 0,b= 1 yields the sequence of Catalan numbers; the
case a = 1,b = 1 yields the Schröder numbers (OEIS
sequence A006318).
There are a number of additional cases of Hankel deter-
minants of interest in combinatorics. For a survey, see:
A. Junod, Hankel determinants and orthogonal polyno-
mials, Expositiones Mathematicae 21 (2003), 63–74.
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B1 This is possible if and only if n is odd and k = (n+1)/2.

We first check that these conditions are necessary. If
the pairs (a1,b1), . . . ,(an,bn) index squares of the grid
with no two in the same row or column, then each of
the two sequences a1, . . . ,an and b1, . . . ,bn is a per-
mutation of {1, . . . ,n}, and so in particular has sum
1+ · · ·+ n = n(n+1)

2 . In particular, if the selected num-
bers are 1,2, . . . ,n in some order, then

n(n+1)
2

=
n

∑
i=1

(ai +bi − k)

=
n

∑
i=1

ai +
n

∑
i=1

bi −
n

∑
i=1

k

=
n(n+1)

2
+

n(n+1)
2

−nk

which simplifies to k = (n+1)/2.

We next check that these conditions are sufficient. For
this, it suffices to observe that the sequence(

1,
n+1

2

)
,

(
2,

n+3
2

)
, . . . ,

(
n+1

2
,n
)
,(

n+3
2

,1
)
, . . . ,

(
n,

n−1
2

)
of grid entries equals

1,3, . . . ,n,2, . . . ,n−1.

We illustrate this for the case n = 5,k = 3 below; the
selected entries are parenthesized.

−1 0 (1) 2 3
0 1 2 (3) 4
1 2 3 4 (5)
(2) 3 4 5 6
3 (4) 5 6 7


B2 No, there is no such sequence. In other words, any se-

quence of convex quadrilaterals with the property that
any two consecutive terms are partners must be finite.

Lemma 1. Given five positive real numbers a,b,c,d,K, there
are only finitely many convex quadrilaterals with side lengths
a,b,c,d in that order and area K.

Proof. Let PQRS be a convex quadrilateral with

PQ = a,QR = b,RS = c,SP = d.

Then the congruence class of PQRS is uniquely determined by
the length of the diagonal f := PR. Moreover, as f increases,
the angles ∠RPQ and ∠RPS are both strictly decreasing, so
∠SPQ is decreasing; by the same logic, ∠QRS is decreasing.

We next recall Bretschneider’s formula: for s = (a+ b+ c+
d)/2,

K2 = (s−a)(s−b)(s−c)(s−d)−abcd cos2 ∠SPQ+∠QRS
2

.

Consequently, fixing K also fixes cos2 ∠SPQ+∠QRS
2 , and thus

limits ∠SPQ+∠QRS to one of two values. By the previous
paragraph, this leaves at most two possible congruence classes
for the triangle.

Returning to our original sequence, note that any two
consecutive quadrilaterals in the sequence have the
same area and the same unordered list of side lengths.
The latter can occur as an ordered list in at most six dif-
ferent ways (up to cyclic shift); for each of these, we
can have only finitely many distinct congruence classes
of quadrilaterals in our sequence with that area and or-
dered list of side lengths. We deduce that our sequence
must be finite.

Remark. We give an alternate proof of the lemma using
Cartesian coordinates. We first specify

P = (0,0),Q = (a,0).

For two additional points R = (x,y),S = (z,w), the con-
ditions QR = b, SP = d restrict R and S to the circles

(x−a)2 + y2 = b2, z2 +w2 = d2

respectively. Since we want a convex quadrilateral, we
may assume without loss of generality that y,w> 0. The
area of the quadrilateral is 1

2 a(y+w), which we also
want to fix; we may thus regard w as a function of y
(possibly restricting y to a range for which w> 0). After
splitting the semicircles on which R and S lie into two
arcs each, we may also regard x and w as functions of y.
It now suffices to observe that RS2

= (z−x)2+(w−y)2

is a nonconstant algebraic function of y, so it takes any
given value only finitely many times.

B3 Define the function

f (x) := tanx− x.

We then have f ′(x) = tan2 x. By induction on k, f (k)(x)
is a polynomial of degree k + 1 in tanx with leading
coefficient k! and all coefficients nonnegative. In par-
ticular, on each of the intervals

In :=
(

nπ,nπ +
π

2

)
(n = 0,1, . . .),

tanx is positive and so f (k)(x) is positive for each k ≥ 1;
replacing k with k + 1, we deduce that each f (k)(x) is
strictly increasing on In for k ≥ 0.

We now analyze f more closely on In. As x → nπ+

for n > 0, f (x) tends to f (nπ) =−nπ < 0; by contrast,
as x → 0+, f (x) tends to 0 via positive values. In ei-
ther case, as x → (nπ + π

2 )
−, f (x)→ ∞. Since f (x) is

strictly increasing on In, we deduce using the interme-
diate value theorem that:

– f (x) has no zero in I0;

– for n > 0, f (x) has a unique zero in In.
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Since f (x) also has no zero between In and In+1 (as it
takes exclusively negative values there), we deduce that

nπ < rn < nπ +
π

2
.

This already suffices to prove the claimed lower bound:
since f (rn + π) = −π < 0 and f is strictly increasing
on In+1, the quantity δ := rn+1 − (rn +π) is positive.

To prove the upper bound, note that for k ≥ 1, for 0 <
x < nπ + π

2 − rn, we have

f (k)(x)≥ f (k)(rn +π)

= f (k)(rn)

≥ k!rk+1
n

> k!nk+1
π

k+1.

For each k ≥ 2, we may apply the mean value theorem
with remainder to deduce that for x in the same range,

f (rn +π + x)≥ f (rn +π)+
k

∑
i=1

f (i)(rn +π)
xi

i!
.

Taking the limit as k → ∞ yields

f (rn +π + x)≥ f (rn +π)+
∞

∑
i=1

f (i)(rn +π)
xi

i!

>−π +
k

∑
i=1

ni+1
π

i+1xi

>−π +
n2π2x

1−nπx
;

taking x = δ yields

0 >−π +nπ

(
1

1−nπδ
−1

)
and so δ < 1

n(n+1)π as desired.

Remark. There is a mild subtlety hidden in the proof:
if one first bounds the finite sum as

f (rn +π + x)>−π +
k

∑
i=1

ni+1
π

i+1xi

and then takes the limit as k → ∞, the strict inequality is
not preserved. One way around this is to write f ′′(rn) =
2rn +2r3

n, retain the extra term rnx2 in the lower bound,
take the limit as k → ∞, and then discard the extra term
to get back to a strict inequality.

Remark. The slightly weaker inequality δ < 1
n2π

fol-
lows at once from the inequality

f ′(rn +π) = f ′(rn) = tan2 rn = r2
n > n2

π
2

plus the mean value theorem.

B4 The limit equals 1−e−2

2 .

We first reformulate the problem as a Markov chain.
Let vk be the column vector of length n whose i-th entry
is the probability that an,k = i, so that v0 is the vector
(1,0, . . . ,0). Then for all k ≥ 0, vk+1 = Avk where A is
the n×n matrix defined by

Ai j =


1
n if i = j
j−1
n if i = j−1

n− j
n if i = j+1

0 otherwise.

Let w be the row vector (1, . . . ,n); then the expected
value of an,k is the sole entry of the 1×1 matrix wvk =

wAkv0. In particular, E(n) = wAnv0.

We compute some left eigenvectors of A. First,

w0 := (1, . . . ,1)

satisfies Aw0 = w0. Second,

w1 := (n−1,n−3, . . . ,3−n,1−n)
= (n−2 j+1: j = 1, . . . ,n)

satisfies Aw1 =
n−2

n w1: the j-th entry of Awi equals

j−1
n

(n+3−2 j)+
1
n
(n+1−2 j)+

n− j
n

(n−1−2 j)

=
n−2

n
(n−2 j+1).

By the same token, we obtain

w =
n+1

2
w0 −

1
2

w1;

we then have

E(n)
n

=
n+1

2n
w0Anv0 −

1
2n

w1Anv0

=
n+1

2n
w0v0 −

1
2n

(
1− 2

n

)n

w1v0

=
n+1

2n
− n−1

2n

(
1− 2

n

)n

.

In the limit, we obtain

lim
n→∞

E(n)
n

=
1
2
− 1

2
lim
n→∞

(
1− 2

n

)n

=
1
2
− 1

2
e−2.

Remark. With a bit more work, one can show that A
has eigenvalues n−2 j

n for j = 0, . . . ,n− 1, and find the
corresponding left and right eigenvectors.

B5 For convenience, we extend the problem to allow non-
negative values for k and m.
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Let R(n,k) denote the number of subsets of {1, ...,n} of
size k where repetitions are allowed. The “sticks and
stones” argument shows that

R(n,k) =
(

n+ k−1
k

)
:

there is a bijection of these subsets with linear arrange-
ments of k (unlabeled) sticks and z − 1 (unlabeled)
stones, where we recover the subset by counting the
number of stones to the left of each stick.

Let fk,m(n) := ∑
n
z=1 R(z,k)R(z,m). It is known that for

any positive integer k, the sum of the k-th powers of all
positive integers less than or equal to n is a polynomial
in n (given explicitly in terms of Bernoulli numbers via
Faulhaber’s formula); hence fk,m(n) is a polynomial in
n. We wish to show that this polynomial has nonnega-
tive coefficients.

Using the recursion for binomial coefficients, we obtain

R(n,k)R(n,m) = fk,m(n)− fk,m(n−1)

=
n

∑
z=1

R(z,k)R(z,m)−R(z−1,k)R(z−1,m)

=
n

∑
z=1

R(z,k)R(z,m)−R(z−1,k)R(z,m)

+R(z−1,k)R(z,m)−R(z−1,k)R(z−1,m)

=
n

∑
z=1

R(z,k−1)R(z,m)+R(z−1,k)R(z,m−1)

=
n

∑
z=1

R(z,k−1)R(z,m)

+(R(z,k)−R(z,k−1))R(z,m−1)
= fk−1,m + fk,m−1 − fk−1,m−1.

It follows from the latter equation (replacing the index
m by m+1) that

fk,m(n) = R(n,k)R(n,m+1)+ fk−1,m(n)− fk−1,m+1(n); (3)

this can also be recovered by applying Abel summation
(summation by parts) to ∑

n
z=1 R(z,k)R(z,m).

Using (3), we can evaluate fk,m by induction on k: for
the first few values we obtain

f0,m(n) = R(n,m+1)
f1,m(n) = R(n,1)R(n,m+1)+R(n,m+1)−R(n,m+2)

= R(n,m+1)((m+1)n+1)/(m+2)

= R(n,m+1)
R(m+1,1)R(n,1)+1

m+2

and similarly

f2,m(n) = R(n,m+1)(R(m+1,2)R(n,2)+R(m+1,1)R(n,1)
+R(m+1,0)R(n,0))/R(m+2,2).

This leads us to conjecture that

fk,m(n) =
R(n,m+1)
R(m+2,k)

k

∑
i=0

R(m+1, i)R(n, i), (4)

which we prove by induction on k; the cases k ≤ 2 are
covered by our prior work (in fact only k = 0 is needed).
Given (4) with k replaced by k−1, we apply (3) to ob-
tain

fk,m(n)

= R(n,k)R(n,m+1)+
R(n,m+1)

R(m+2,k−1)

k−1

∑
i=0

R(m+1, i)R(n, i)

− R(n,m+2)
R(m+3,k−1)

k−1

∑
i=0

R(m+2, i)R(n, i)

=
R(n,m+1)
R(m+2,k)

k

∑
i=0

R(m+1, i)R(n, i)

yielding (4) as written.

Since R(n, i) = n(n+1)(n+2) · · ·(n+ i−1)/i! clearly
has positive coefficients for all i, the explicit formula
(4) implies that fk,m(n) also has positive coefficients for
all k and m.

B6 The claim holds with c=− 1
2 . Set t := 1/(1−x), so that

x = 1−1/t and

−1
t
− 1

t2 ≤ logx ≤−1
t
.

Set also m := ⌊t⌋.

Suppose first that a >− 1
2 . Then

Fa(x)e−t =
∞

∑
n=1

nae2n−txn2

≥
∞

∑
n=1

nae2n−t−n2/t−n2/t2

=
∞

∑
n=1

nae−n2/t2
e−t(1−n/t)2

.

If we restrict the sum to the range t < n < t +
√

t, we
may bound the summand from below by cta for some
c> 0 independent of t; we then have Fa(x)e−t > cta+1/2

and this tends to ∞ as t → ∞.

Suppose next that a <− 1
2 . Then

Fa(x)e−t =
∞

∑
n=1

nae2n−txn2

≤
∞

∑
n=1

nae−t(1−n/t)2
.

Fix ε such that a+ ε < − 1
2 . For the summands with

t − t1/2+ε < n < t + t1/2+ε , we may similarly bound the
summand from above by cta for some c > 0; this range
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of the sum is then dominated by cta+1/2+ε for some c >
0. For the summands with n < t −2

√
t, we may bound

the summand from above by nae−t2ε

; this range of the
sum is then dominated by te−t2ε

. For the summands

with n > t − 2
√

t, we may again bound the summand
from above by nae−t2ε

; this range of the sum is then
dominated by ta+1e−t2ε

. Since all three bounds tends to
0 as t → ∞, so then does Fa(x)e−t .
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