

A ROBUST PRECONDITIONER WITH LOW MEMORY REQUIREMENTS FOR LARGE SPARSE LEAST SQUARES PROBLEMS*

MICHELE BENZI[†] AND MIROSLAV TŮMA[‡]

Abstract. This paper describes a technique for constructing robust preconditioners for the CGLS method applied to the solution of large and sparse least squares problems. The algorithm computes an incomplete LDL^T factorization of the normal equations matrix without the need to form the normal matrix itself. The preconditioner is reliable (pivot breakdowns cannot occur) and has low intermediate storage requirements. Numerical experiments illustrating the performance of the preconditioner are presented. A comparison with incomplete QR preconditioners is also included.

Key words. large sparse least squares problems, preconditioned CGLS, robust incomplete factorization, incomplete C -orthogonalization, incomplete QR

AMS subject classifications. Primary, 65F10, 65F20, 65F25, 65F35, 65F50; Secondary, 15A06

DOI. 10.1137/S106482750240649X

1. Introduction. In this paper we consider the solution of linear least squares problems of the form

$$(1.1) \quad \|b - Ax\|_2 = \min,$$

where the coefficient matrix A is large and sparse. We assume that A is $m \times n$ with $m \geq n$ and A has full column rank. Although the techniques considered in this paper are applicable to the square case ($m = n$), we are mostly interested in the overdetermined case ($m > n$).

Björck [5] gives a comprehensive treatment of available solution algorithms for problem (1.1). In the large and sparse case, there are two main approaches to solve (1.1), namely, sparse direct methods based on orthogonalization and iterative methods based on the conjugate gradient (CG) algorithm implicitly applied to the normal equations. For overdetermined systems, the best available CG-type methods are the CGLS algorithm (also known as CGNR) and its mathematically equivalent variant based on Lanczos bidiagonalization, LSQR [19]. In this paper we use CGLS. Recall that the normal equations are

$$(1.2) \quad Cx = f, \quad C = A^T A, \quad f = A^T b.$$

Sparse direct solvers are very reliable, but they may be prohibitively expensive in terms of storage and operation count for very large problems. Iterative methods generally require much less storage and have the potential to be faster in terms of

*Received by the editors April 27, 2002; accepted for publication (in revised form) October 17, 2002; published electronically November 11, 2003.

<http://www.siam.org/journals/sisc/25-2/40649.html>

[†]Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 (benzi@mathcs.emory.edu). The work of this author was supported in part by NSF grant DMS-0207599.

[‡]Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 182 07 Prague 8, Czech Republic (tuma@cs.cas.cz). The work of this author was supported by Grant Agency of the Academy of Sciences of the Czech Republic grants 1030103 and 2030801.

execution time, but only if their convergence is sufficiently rapid. For the CGLS method, this means that a good preconditioner is needed.

In this paper we present a new approach to construct reliable preconditioners for the CGLS method. Our method is based on C -orthogonalization, i.e., orthogonalization with respect to the inner product

$$(1.3) \quad \langle x, y \rangle_C := x^T C y \quad \text{for all } x, y \in \mathbb{R}^n.$$

We show how C -orthogonalization can be used to compute a root-free incomplete factorization of the normal equations matrix

$$C \approx LDL^T,$$

where L is an $n \times n$ unit lower triangular matrix and D is diagonal and positive definite. Our algorithm enjoys the following desirable properties:

1. No entry of $C = A^T A$ needs to be explicitly computed (the algorithm works entirely with A).
2. The incomplete factorization process cannot break down.
3. Intermediate storage requirements are negligible.

Of course, properties 1–3 alone are not enough unless the preconditioner also significantly reduces the solution time compared to the unpreconditioned iteration. We will show experimentally that our preconditioner results in good convergence rates when applied to large and sparse least squares problems. In addition, we shall see that the cost of the incomplete factorization is relatively low compared to other methods.

The remainder of the paper is organized as follows. In section 2 we briefly review some of the previous work on preconditioners for the CGLS method. In section 3 we present the basic C -orthogonalization scheme and explain how it can be used to compute a root-free Cholesky factorization of the normal equations matrix. The preconditioner based on this scheme is described in section 4. Numerical experiments and comparisons with other methods are presented in section 5, and some conclusions are given in section 6.

2. Previous work. General-purpose preconditioners for solving least squares problems have been proposed by several authors. An early paper by Läuchli [17] considers a preconditioner for (1.1) based on the LU factorization of an $n \times n$ nonsingular submatrix of A , with

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix},$$

where the $n \times n$ matrix A_1 is nonsingular. This can be ensured by suitable pivoting strategies. Then the matrix $A_1 = LU$ can be used as a right preconditioner for (1.1). The normal equations matrix corresponding to the preconditioned least squares problems is readily seen to be

$$(AA_1^{-1})^T(AA_1^{-1}) = I_n + B^T B, \quad \text{where } B = A_2 A_1^{-1}.$$

Since B has at most $p = \min\{m - n, n\}$ distinct singular values, rapid convergence can be expected when $p \ll n$. Matrix-vector products with this matrix require solving linear systems with coefficient matrices A_1 and A_1^T , which is done using the LU factorization of A_1 . Variations on this basic idea have been explored by several authors; see Ch. 7.5.3 in [5] and the paper [6] and the references therein.

In [24], Saunders proposed to use Gaussian elimination with partial pivoting to compute a stable, sparse factorization $PA = LU$, where the $m \times n$ matrix L is unit lower trapezoidal and U is upper triangular (P is an $m \times m$ permutation matrix). The factor U is then used as a right preconditioner for (1.1). The matrix L is not saved, and applying the preconditioner requires only backsubstitution with U . This approach is based on the observation that L is frequently well-conditioned and that U tends to reflect most of the ill-conditioning of the original matrix A . Furthermore, the U factor can be computed with little fill-in in many cases.

Most of the recent activity in preconditioning sparse least squares problems, however, has been based on incomplete variants of the QR, rather than LU, factorization. The basic idea is the following. Let $A = QR$ be the “thin” QR factorization of A , where Q is $m \times n$ with orthonormal columns, and R is $n \times n$ upper triangular. The factorization is not unique, but it can be made unique by requiring that the diagonal entries r_{ii} of R are all positive; see [8, p. 230]. In this case, $A^T A = R^T R$ is the Cholesky factorization of the normal equations matrix $C = A^T A$. If we could compute this factorization exactly, we could use the R factor as a right preconditioner for CGLS applied to problem (1.1) to get convergence in a single iteration. Indeed, the preconditioned normal equations matrix is

$$(AR^{-1})^T (AR^{-1}) = Q^T Q = I_n$$

and convergence takes place in one step. To obtain a feasible preconditioner, an approximate factorization $A \approx \bar{Q} \bar{R}$ is computed; here \bar{R} is still lower triangular with positive diagonal entries, but the columns of \bar{Q} may no longer be mutually orthogonal in general. The approximate \bar{R} factor is usually considerably more sparse than the exact Cholesky factor R of $C = A^T A$. This can be interpreted as an incomplete Cholesky factorization of C . The closer \bar{R} is to the exact Cholesky factor, the closer the preconditioned normal equations matrix is to the identity matrix:

$$(A\bar{R}^{-1})^T (A\bar{R}^{-1}) = \bar{R}^{-T} A^T A \bar{R}^{-1} = \bar{R}^{-T} C \bar{R}^{-1} \approx I_n,$$

and the faster the CGLS iteration converges. Note that there is no need for the \bar{Q} factor in the iterative phase of the algorithm; therefore \bar{Q} does not need to be saved.

The first paper proposing to compute an incomplete orthogonal factorization of A for use as a preconditioner for the CGLS method is [13]. In it, the authors consider both methods based on Givens rotations and methods based on the Gram–Schmidt process. Sparsity in \bar{R} (and possibly in \bar{Q}) is preserved by applying a (relative) drop tolerance: fill elements are dropped if they are “small” according to some criterion. The possibility of breakdowns (singular \bar{R}) is considered; in some cases, diagonal corrections may be needed to preserve positivity of the diagonal entries of \bar{R} . Some breakdown-free variations of the algorithms are proposed. All of these algorithms work with A only, and there is no need to form $C = A^T A$ explicitly.

Subsequent papers include [22] and [31] with focus on algorithms based on incomplete Gram–Schmidt and Givens rotations, respectively; see also [30]. Other references include [3] and [29] for preconditioners based on incomplete Gram–Schmidt, and [1] and [20] for Givens-based methods. In [23], shifted incomplete orthogonalization methods are studied. The focus of the paper is to develop heuristics for the automatic selection of global diagonal shifts aimed at increasing the stability of the preconditioner.

While incomplete QR methods can be reliable (at least for sufficiently accurate approximations to the full QR decomposition) and often result in fast convergence of

the preconditioned CGLS iteration, they tend to incur high set-up costs. Moreover, for some of these methods intermediate storage requirements can be very high. As an example, we report on results obtained with the Gram–Schmidt-based incomplete QR method of Jennings and Ajiz [13]. We use a rather small square matrix, WEST0655, from the Matrix Market [18]. This matrix has dimension $m = n = 655$ and contains $nnz(A) = 2854$ nonzero entries. Its condition number is estimated to be of the order of 10^{12} ; thus the normal equation matrix C has condition number of the order of 10^{24} . The matrix C , if explicitly formed, would contain $nnz(C) = 10672$ nonzeros. Prior to applying the Jennings–Ajiz incomplete QR preconditioner, we permute the columns of A so that C is reordered according to a minimum degree algorithm. This greatly reduces the amount of fill-in generated during the incomplete orthogonalization process. We use a drop tolerance resulting in an incomplete factor with $nnz(\bar{R}) = 10997$ nonzeros. The preconditioned CGLS algorithm is initialized with a zero initial guess and is stopped when the initial residual is reduced by eight orders of magnitude. The right-hand side vector b is chosen so that the solution is the vector of all 1's. Convergence takes place in 47 iterations, which is reasonable for such an ill-conditioned problem. However, the amount of intermediate fill-in incurred by the Jennings–Ajiz algorithm is very high: the maximum number of nonzero elements that have to be kept in storage at any given time during the course of the incomplete Gram–Schmidt process is 44620, almost 16 times the number of nonzeros in the original matrix A . Clearly, this is a severe drawback of the algorithm, especially in applications involving large matrices.

Algorithms based on Givens rotations are potentially more attractive. Givens-based schemes are much less demanding in terms of intermediate storage requirements if matrix entries in A are rotated out in a row-wise fashion with appropriate dropping applied between steps. Nevertheless, as we shall see, the preconditioner set-up time can be quite high for large problems. Column-based incomplete Givens orthogonalization is even slower and suffers from high intermediate storage demand; see [20]. On the other hand, row-oriented incomplete Givens orthogonalization is not guaranteed to be breakdown-free: it may lead to zero diagonal entries in the incomplete R factor. In our experiments we found that breakdowns do occur in practice and that row-oriented incomplete Givens codes need to be safeguarded against this type of failure (see, e.g., [5, 13]).

Clearly, an incomplete Cholesky factor of C can always be obtained by computing $C = A^T A$ explicitly and then applying a standard incomplete Cholesky factorization algorithm to C . As noted in [5], there is actually no need to form all of C explicitly; rather, its rows can be computed one at a time, used to perform the corresponding step of the incomplete Cholesky algorithm, and then discarded. Nevertheless, forming the normal equations, even piecemeal, entails some overhead and may lead to severe loss of information in very ill-conditioned cases. Also, for a general symmetric positive definite (SPD) matrix, standard incomplete Cholesky factorization algorithms may fail due to pivot breakdowns (that is, negative or zero pivots). There exist reliable incomplete factorization algorithms that can be applied to a general SPD matrix without breakdowns; see [26, 27, 28, 14, 4] and the references therein. (Note that the first four of these papers consider different variations of the same idea.) However, these techniques either require access to the entries of C , or have high set-up and storage requirements, or both. An exception is the robust incomplete factorization (RIF) method introduced in [4]. This is the method that we propose to use to compute reliable preconditioners for problem (1.1).

3. C -orthogonalization and the normal equations. We start by recalling that since A has full column rank, the $n \times n$ matrix $C = A^T A$ is SPD and therefore it defines an inner product on \mathbb{R}^n via (1.3). Given a set of n linearly independent vectors $v_1, v_2, \dots, v_n \in \mathbb{R}^n$, we can build a C -orthogonal (or C -conjugate) set of vectors $z_1, z_2, \dots, z_n \in \mathbb{R}^n$ by a *conjugate Gram–Schmidt process*, i.e., a Gram–Schmidt process with respect to the inner product (1.3). Written as a *modified* Gram–Schmidt process, the (right-looking) algorithm starts by setting $z_i^{(0)} = v_i$ and then performs the following nested loop:

$$(3.1) \quad z_i^{(j)} \leftarrow z_i^{(j-1)} - \frac{\langle z_j^{(j-1)}, z_i^{(j-1)} \rangle_C}{\langle z_j^{(j-1)}, z_j^{(j-1)} \rangle_C} z_j^{(j-1)},$$

where $j = 1, 2, \dots, n-1$ and $i = j+1, \dots, n$. Let now

$$Z = [z_1, z_2, \dots, z_n], \quad \text{where } z_i := z_i^{(i-1)}, \quad 1 \leq i \leq n.$$

We have

$$(3.2) \quad Z^T C Z = D = \text{diag}(d_1, d_2, \dots, d_n),$$

where

$$d_j = \langle z_j, z_j \rangle_C = z_j^T C z_j = (A z_j)^T (A z_j) = \|A z_j\|_2^2 > 0, \quad 1 \leq j \leq n.$$

If we set $v_i = e_i$ (the i th unit basis vector) for $1 \leq i \leq n$, then $Z^T = L^{-1}$, where L is the unit lower triangular factor in the root-free Cholesky factorization $C = LDL^T$; the matrix D is exactly the same here and in (3.2). Indeed, it is clear from (3.1) that the vector z_i is modified only above position i (for $2 \leq i \leq n$); therefore Z is unit upper triangular and by virtue of (3.2) and the uniqueness of the LDL^T factorization, it must be $Z^T = L^{-1}$.

Now, it was observed in [4] that the conjugate Gram–Schmidt process (3.1) produces not just the Z factor but also, at the same time, the L factor itself. To see this, observe that L in the LDL^T factorization of C and the inverse factor Z satisfy

$$CZ = LD \quad \text{or} \quad L = CZD^{-1}.$$

This easily follows from (3.2) and the fact that $Z^T = L^{-1}$. Now observe that for $i \geq j$ we have

$$(3.3) \quad \langle z_j^{(j-1)}, z_i^{(j-1)} \rangle_C = \langle e_i, z_j^{(j-1)} \rangle_C.$$

This identity easily follows from the fact that $z_i^{(j-1)}$ can have nonzero entries only in the first $j-1$ positions besides the 1 in position i , while $C z_j^{(j-1)}$ can have nonzero entries only in positions $j, j+1, \dots, n$. By equating corresponding entries of CZD^{-1} and $L = [l_{ij}]$ and using the identity (3.3) we find that

$$(3.4) \quad l_{ij} = \frac{\langle z_j^{(j-1)}, z_i^{(j-1)} \rangle_C}{\langle z_j^{(j-1)}, z_j^{(j-1)} \rangle_C}, \quad i \geq j.$$

Thus, the L factor of C can be obtained as a by-product of the C -orthogonalization process (3.1), *at no extra cost*. This observation is the basis for the RIF preconditioner developed in [4] for solving general SPD systems. In the next section we show how this technique can be used to compute reliable preconditioners for problem (1.1).

4. RIF. Two different types of preconditioners can be obtained by carrying out the C -orthogonalization process (3.1) incompletely. Given a drop tolerance $0 < \tau < 1$, the entries of $z_i^{(j)}$ are scanned after each update and entries that are smaller than τ in absolute value are discarded. We denote by $\bar{z}_i^{(j)}$ the sparsified vectors and we set $\bar{Z} = [\bar{z}_1, \bar{z}_2, \dots, \bar{z}_n]$, where $\bar{z}_i = \bar{z}_i^{(i-1)}$. Alternatively, a *relative* drop tolerance can be used; for example, τ can be replaced by $\tau \|a_i\|_2$, where a_i is the i th column of A . It is sometimes advantageous to scale A so that $\|a_i\|_2 = 1$, where a_i is the i th column of A (i.e., C has unit diagonal); this tends to improve the conditioning of the normal equations and it allows for the use of an absolute drop tolerance τ . Whatever the scaling or the drop strategy used, the incomplete C -orthogonalization process results in a sparse matrix $\bar{Z} \approx L^{-T}$; that is, we have an incomplete inverse factorization of C of the form

$$C^{-1} \approx \bar{Z} \bar{D}^{-1} \bar{Z}^T,$$

where \bar{D} is diagonal with entries $\bar{d}_j = \bar{z}_j^T C \bar{z}_j > 0$. This is a factored sparse approximate inverse that can be used as a preconditioner for the CG algorithm applied to $Cx = f$; see [2, 15]. The preconditioner is guaranteed to be positive definite (since $\bar{d}_j > 0$ for all j) and is easily applied in parallel, since its application requires only matrix-vector products. It is generally known as the stabilized approximate inverse (SAINV) preconditioner.

Note that the construction of the preconditioner does not require forming $C = A^T A$ explicitly. Indeed, the main loop (3.1) involves the computation of the inner products

$$\langle \bar{z}_j, \bar{z}_i \rangle_C = \bar{z}_j^T C \bar{z}_i = (A \bar{z}_j)^T A \bar{z}_i, \quad i = j, \dots, n, \quad j = 1, \dots, n-1$$

(here and in the remainder of the paper we omit the superscripts to simplify the notation). Hence, computing the multipliers in (3.1) involves only matrix-vector products of the form $A \bar{z}_i$, to be computed as a linear combination of the columns of A corresponding to nonzero entries in \bar{z}_i , and inner products of two sparse vectors $A \bar{z}_i$ and $A \bar{z}_j$. Typically, most of these inner products will be structurally zero (that is, $A \bar{z}_i$ and $A \bar{z}_j$ have no nonzero entries in the same position) and the corresponding update in (3.1) can be skipped. It is important to mention that our implementation makes use of structural information on the incomplete inverse factor \bar{Z} so as to avoid checking which of the inner products are structurally zero, which would be an $\mathcal{O}(n^2)$ operations; see [2]. Note that the \bar{z}_i vectors are stored (they form the columns of the approximate inverse factor \bar{Z}), whereas the multipliers $\langle \bar{z}_j, \bar{z}_i \rangle_C / \langle \bar{z}_j, \bar{z}_j \rangle_C$ are discarded after they are used to perform an update step.

The second preconditioner that can be obtained is, in a sense, the *dual* of the previous one. In this algorithm we save the multipliers

$$(4.1) \quad \bar{l}_{ij} = \frac{\langle \bar{z}_j, \bar{z}_i \rangle_C}{\langle \bar{z}_j, \bar{z}_j \rangle_C} = \frac{(A \bar{z}_j)^T A \bar{z}_i}{(A \bar{z}_j)^T A \bar{z}_j}, \quad i \geq j,$$

and we discard the vector \bar{z}_i as soon as it has been used to form the corresponding parts of the incomplete factor $\bar{L} = [\bar{l}_{ij}]$ of C . Hence, we have an algorithm to compute an incomplete root-free Cholesky factorization

$$C = A^T A \approx \bar{L} \bar{D} \bar{L}^T$$

of the normal equations matrix.

Note that this incomplete triangular factorization of C does not require forming the matrix $C = A^T A$ itself (not even one row at a time): the incomplete conjugate Gram–Schmidt process on which it is based works exclusively with A . Moreover, the preconditioner is guaranteed to be positive definite, and no breakdown in the course of the incomplete factorization is possible. This follows from the fact that the pivots \bar{d}_j are given by $\bar{d}_j = (A\bar{z}_j)^T A\bar{z}_j$, an inherently positive quantity. Note that from well-known extremal properties of the Rayleigh quotient, the following lower bound for the generic pivot \bar{d}_j holds:

$$\bar{d}_j = \langle \bar{z}_j, \bar{z}_j \rangle_C = \bar{z}_j^T C \bar{z}_j \geq \lambda_{\min}(C) \|\bar{z}_j\|_2^2 = \sigma_{\min}^2(A) \|\bar{z}_j\|_2^2 > 0,$$

where $\lambda_{\min}(C)$ and $\sigma_{\min}(A)$ denote the smallest eigenvalue of C and the smallest singular value of A , respectively. Also note that $\|\bar{z}_j\|_2^2 \geq 1$ since the j th entry of \bar{z}_j is equal to 1. Because of the breakdown-free property, we denote this preconditioner by RIF. While it is possible in principle that a pivot is so small to be numerically zero, we have not encountered a single case where this happened (even for very ill-conditioned A). We could in principle prevent any such tiny pivot simply by multiplying A by a sufficiently large number, but this would require an estimate for the smallest singular value of A and it could cause overflow. Again, we have never had to resort to any trick of this sort in actual computations, although our codes can perform local pivot modifications in such a situation.

We stress the very important fact that the construction of the RIF preconditioner incurs only modest intermediate storage costs; the total storage is dominated by the storage for A and for the final incomplete factor \bar{L} . The algorithm requires some temporary storage for the sparse \bar{z}_i vectors while they are needed to compute the multipliers (4.1). At step j of the algorithm ($1 \leq j \leq n - 1$) we need to store, besides the j computed columns of the incomplete factor \bar{L} , the remaining $n - j$ columns $\bar{z}_{j+1}, \dots, \bar{z}_n$ of \bar{Z} . Notice that these sparse vectors can have nonzero entries only within the first j positions, besides the 1 in position k of \bar{z}_k . As j increases, there are fewer and fewer such vectors that need to be kept in temporary storage, but they tend to fill in. Assuming a uniform distribution of nonzeros in both \bar{L} and \bar{Z} , a back-of-the-envelope calculation shows that in terms of storage, the ‘high-water mark’ is reached for $j \approx n/2$, that is, midway through the C -orthogonalization process, after which it begins to decrease. The total storage can be estimated to be approximately 25% more than the storage required by the final incomplete factor \bar{L} . In practice, we found that this is often an overestimate, unless a very small drop tolerance is used (which is not practical anyway). With a careful implementation and using suitable dynamic data structures, the proposed algorithm incurs negligible intermediate storage requirements.

At first sight, the RIF preconditioner needs two drop tolerances: one for the incomplete C -orthogonalization process, to be applied to the \bar{z}_i vectors, and a second one to be applied to the entries of \bar{L} . Note that the latter is simply a postfiltration: once a column of \bar{L} has been computed, it does not enter the computation of the remaining ones. For the experiments in this paper, we simply used the same value τ for both drop tolerances, thus reducing the number of user-supplied parameters from two to just one. However, other choices are possible and may give better results in some cases, perhaps at the expense of storage.

The RIF preconditioner is generally more effective at reducing the number of CGLS iterations than the SAINV one (for a comparable density of the incomplete factors). The main advantage of SAINV is that it can be easily applied in parallel. In the remainder of the paper, we consider the RIF preconditioner only.

TABLE 5.1
Test problem information.

Matrix	<i>m</i>	<i>n</i>	<i>nnz</i>	CGLS	Time
WELL1033	1033	320	4732	167	0.07
ILLC1033	1033	320	4732	3212	1.34
WELL1850	1850	712	8758	424	0.32
ILLC1850	1850	712	8758	2047	1.49
SMALL	3140	1988	8510	308	0.30
MEDIUM	9397	6119	25013	390	1.12
LARGE	28524	17264	75018	573	5.29
VERYL	174193	105882	463303	1303	143
HIRLAM	1385270	452200	2713200	282	252

5. Numerical experiments. In this section we present the results of some numerical experiments aimed at assessing the performance of the RIF preconditioner for least squares problems. We also present results for some other methods. We coded all the algorithms in Fortran90 and ran the experiments on a SGI Origin 200 computer.

In Table 5.1 we provide some basic information about the test problems used in the numerical experiments. We used nine rectangular matrices of widely different sizes and levels of difficulty. The first four problems (WELL1033, ILLC1033, WELL1850, ILLC1850) are from the Matrix Market repository [18]. Four more problems (SMALL, MEDIUM, LARGE, VERYL) arise in animal breeding studies [10, 11].¹ The last (and largest) matrix, which we denote by HIRLAM, was kindly provided by Dr. Ivar Lie of the Norwegian Meteorological Institute. It arises from a finite volume discretization of the mass conservation equation used in a model of the atmosphere; see [12]. For each matrix we report the number *m* of rows, the number *n* of columns, and the number *nnz* of nonzeros. In the last two columns we report iteration counts (under “CGLS”) and CPU times (under “Time”) for CGLS without preconditioning. Here and in all the other numerical experiments the stopping criterion used was

$$\|A^T(b - Ax^{(k)})\|_2 < 10^{-8} \|A^T(b - Ax^{(0)})\|_2.$$

In all cases we used the initial guess $x^{(0)} = 0$, and the right-hand side b was chosen so that the solution was the vector of all 1’s.

Table 5.2 contains results for the RIF preconditioner. Under “ τ ” we indicate the value of the drop tolerance used. Furthermore, we report the number of nonzeros in the incomplete factor (under “Size”), the time to construct the preconditioner (under “P-time”), the number of preconditioned CGLS iterations (under “Its”), the time for the iterative solution phase (under “It-time”), and the total solution time (under “Tot-time”). For some of the problems we show results obtained with incomplete factors of variable densities obtained by adjusting the drop tolerance τ (typically we take τ between 0.1 and 0.5). In these cases, the best timing obtained is in bold face. The results show that RIF preconditioning is effective in reducing both the iteration count and the total solution time in all cases except for the small, well-conditioned matrix WELL1033. It is also clear that smaller values of the drop tolerance (leading to denser factors) almost always lead to faster convergence in terms of number of iterations, but higher total solution times. Sparse preconditioners are preferred also because they can be computed more quickly. In addition, for very large matrices we

¹These matrices can be downloaded from <ftp://ftp.cerfacs.fr/pub/algo>.

TABLE 5.2
Test results for RIF.

Matrix	RIF					
	τ	Size	P-time	Its	It-time	Tot-time
WELL1033	0.1	911	0.03	72	0.04	0.07
ILLC1033	0.1	825	0.03	256	0.13	0.16
WELL1850	0.1	2835	0.05	89	0.08	0.13
ILLC1850	0.1	2904	0.04	248	0.23	0.27
SMALL	0.1	12199	0.22	32	0.05	0.27
MEDIUM	0.2	28420	0.20	53	0.31	0.51
	0.1	37248	0.70	34	0.21	0.91
LARGE	0.3	76094	0.54	63	0.96	1.50
	0.2	82287	0.70	58	0.91	1.61
	0.1	107007	3.62	39	0.70	4.32
VERYL	0.5	249327	2.17	206	31.4	33.6
	0.4	272207	3.10	225	34.9	38.0
	0.3	426830	5.18	199	33.6	38.8
HIRLAM	0.1	1762059	18.2	71	85.6	103.8

TABLE 5.3
Test results for ICNE.

Matrix	ICNE				
	Size	P-time	Its	It-time	Tot-time
WELL1033	866	0.005	108	0.05	0.055
ILLC1033	816	0.005	286	0.14	0.145
WELL1850	2595	0.01	182	0.17	0.18
ILLC1850	2691	0.01	774	0.72	0.73
SMALL	17377	0.05	33	0.06	0.11
	13443	0.03	134	0.24	0.27
MEDIUM	55950	0.14	246	1.50	1.64
	47714	0.11	†	†	—
LARGE	224430	1.38	38	1.00	2.38
	180309	0.85	†	†	—
	163157	0.69	†	†	—
VERYL	962079	5.72	135	29.2	36.9
	1185773	7.71	127	31.9	39.6
HIRLAM	1803086	6.45	50	64.9	71.4
	1710215	5.19	77	91.3	96.5

need to restrict ourselves to sparse preconditioners anyway in order to keep memory demands within reasonable limits. In all cases, the amount of additional temporary storage needed to set up the RIF preconditioner was only a small fraction of the space needed to store the coefficient matrix and the final incomplete factor \bar{L} . As an example, for the VERYL test problem the additional overhead in temporary storage needed for constructing the preconditioner was only about 4% of the space needed to store the incomplete factor.

In Table 5.3 we present results for a standard, drop tolerance-based incomplete Cholesky factorization preconditioner applied to the (explicitly formed) normal equations matrix $C = A^T A$. We denote this preconditioner by ICNE. As already mentioned, there is no need to compute all of C at once: rather, its rows can be computed one at a time and then discarded as the incomplete factorization progresses. Consequently, this algorithm has negligible intermediate storage requirements. We choose this method because it is cheap and it often performs well when it is not unstable. On the other hand, we also want to illustrate that it is not always reliable. A reliable alternative would be to use the method developed by Tismenetsky [26] (with

TABLE 5.4
Test results for IMGS.

Matrix	IMGS				
	Size	P-time	Its	It-time	Tot-time
WELL1033	797	0.13	147	0.08	0.21
ILLC1033	807	0.14	3588	1.81	1.95
	1848	0.17	838	0.48	0.65
	1982	0.20	484	0.27	0.47
	2544	0.26	111	0.07	0.33
WELL1850	2526	0.19	194	0.19	0.38
	2849	0.20	150	0.15	0.35
ILLC1850	2608	0.18	1084	1.06	1.24
	7031	0.36	155	0.18	0.54
SMALL	10772	0.36	27	0.05	0.41
MEDIUM	29348	0.80	40	0.24	1.04
	33328	1.02	34	0.22	1.24
LARGE	75271	2.12	58	1.04	3.16
	80754	2.41	50	0.91	3.32
	97898	4.45	37	0.75	5.20
VERYL	433812	14.7	197	38.1	52.8
	509444	21.0	166	33.5	54.5
	716050	43.6	116	26.1	69.7
HIRLAM	1727182	53.3	71	89.6	142.9
	1624508	42.2	81	101.	143.2

improvements by Kaporin [14]). In the least squares setting, this becomes precisely the CIMGS algorithm presented in [28]. However, this method is quite expensive and has high intermediate storage requirements. See the experiments and discussion in [28] and [4]. The drop tolerance in ICNE was chosen so as to obtain preconditioners of similar density to those computed with RIF, if possible. Note, however, that for the four animal breeding problems we could not get a useful preconditioner unless we allowed considerably more fill-in in the incomplete factor than for the RIF preconditioner. Indeed, for certain choices of the drop tolerance ICNE preconditioning failed to produce convergence in less than 10000 iterations (denoted by “†” in Table 5.3). Furthermore, it may happen that if we try to improve the convergence rate for ICNE by reducing the drop tolerance (thereby allowing extra fill-in in the incomplete factor), the number of iterations may actually increase. For example, consider problem ILLC1850. If we increase the number of nonzeros in the ICNE factor to 3229, the number of iterations goes up to 2515; if we further increase it to 3461, it takes 5393 iterations to converge. On the other hand, reducing the size of the preconditioner to 1868 nonzeros results in 1013 iterations. For this matrix, 774 iterations is the best result we could get with ICNE using reasonably sparse preconditioners. We think that this nonmonotonic behavior of ICNE with respect to the drop tolerance reflects the potential instability of applying a standard incomplete Cholesky factorization to the explicitly formed normal equations matrix.

These results indicate that RIF, as expected, is more robust than ICNE. The two preconditioners exhibited comparable performance whenever ICNE did not fail, with RIF being slightly better on the average. While RIF incurred somewhat higher set-up costs, it typically led to faster convergence for preconditioners of comparable density. Intermediate storage requirements are essentially the same for the two methods.

In Table 5.4 we show results obtained with an incomplete QR preconditioner based on modified Gram–Schmidt (denoted IMGS); this is essentially the incomplete Gram–Schmidt method in [13]. Our implementation is based on a column-oriented,

TABLE 5.5
Test results for IGR.

Matrix	IGR				
	Size	P-time	Its	It-time	Tot-time
WELL1033	851	0.08	178	0.09	0.17
ILLC1033	2687	0.20	172	0.11	0.31
WELL1850	2892	0.13	230	0.23	0.36
ILLC1850	2387	0.11	1312	1.29	1.40
	3533	0.15	965	0.99	1.14
	8548	0.45	1106	1.37	1.82
	12551	0.26	30	0.06	0.32
SMALL	17002	0.55	23	0.05	0.60
	29256	0.40	43	0.26	0.66
	39198	0.70	32	0.20	0.90
MEDIUM	55939	1.61	26	0.19	1.80
	74517	0.92	62	1.09	2.01
	85275	1.14	53	1.03	2.17
	95975	1.42	46	0.96	2.38
LARGE	113887	2.03	40	0.88	2.91
	453459	5.06	294	57.8	62.9
	559372	6.42	244	50.6	57.0
	863655	11.8	164	39.7	51.5
HIRLAM	1807328	85.6	64	81.3	166.9

right-looking algorithm. Again we tried, whenever possible, to compare preconditioners of similar density. Our results strongly suggest that IMGS is not competitive with RIF. Besides slower convergence in many cases, this preconditioner exhibits high set-up costs. Furthermore, as mentioned in section 2, IMGS has much higher intermediate storage requirements than RIF. Although our computer resources allowed us to compute the preconditioner in every case, this limitation would eventually hinder the applicability of IMGS to large-scale problems.

Finally, we present in Table 5.5 some results for a row-oriented, Givens-based incomplete QR preconditioner (denoted by IGR). This preconditioner is very close to the rTIGO algorithm in [20]. Our implementation differs from [20] in that we use somewhat different data structures and dropping strategy. The poor results for the first four problems are due to pivot breakdowns, which prompt automatic diagonal modifications to avoid divisions by zero. For these problems, better results can be obtained by using the stabilization strategy advocated by Jennings and Ajiz in [13]. Unfortunately, we found that this stabilization strategy leads to very poor results in all the other cases, where there are no breakdowns. In contrast, IGR shows good performance when there are no breakdowns. Nevertheless, set-up times can be quite high compared to RIF, especially for larger problems. Intermediate storage requirements are comparably low for both preconditioners.

We conclude this section on numerical experiments noting that all the experiments reported above were performed on the original matrix, without any preprocessing. Although diagonal scalings and sparse matrix reorderings may sometimes lead to improved results, we also found several instances where these preprocessings did not help or even made things worse. For instance, while a column minimum degree reordering helps in reducing the size of the incomplete factor and intermediate storage requirements, it often leads to slower convergence rates and higher overall solution times.

6. Conclusions. In this paper we have presented a reliable preconditioner with low storage requirements for large sparse least squares problems. The preconditioner is an incomplete LDL^T factorization of the normal equations matrix $C = A^T A$ based on C -orthogonalization. The preconditioner construction cannot break down and does not require forming the matrix product $C = A^T A$ explicitly, not even one row at a time, as required by some of the previously developed techniques. While somewhat more expensive to compute than more standard incomplete Cholesky factorization algorithms, numerical experiments indicate that our method often results in better convergence rates and behaves in a stable and predictable manner with respect to the drop tolerance used.

We also compared our approach with two incomplete QR preconditioners, one based on the modified Gram–Schmidt process and the other on Givens rotations. The first method was clearly inferior to RIF in terms of convergence rates, set-up time, and intermediate storage requirements. The second method (also considered in [20]) was found to be more competitive, but vulnerable to breakdowns and having high set-up costs for larger problems. Further, we found that the Jennings–Ajiz stabilization strategy [13] was effective in dealing with pivot breakdowns, but resulted in preconditioners of low quality whenever breakdowns were not an issue. In summary, our experiments suggest that RIF is a competitive general-purpose method for preconditioning large sparse least squares problems.

Besides as a preconditioner for CGLS applied to the normal equations, there is at least one other situation where RIF should prove useful. Consider a saddle point problem of the form

$$(6.1) \quad \begin{bmatrix} F & A \\ A^T & O \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix},$$

where F is $n \times n$ and SPD, A is $n \times m$ with $n > m$ and has full column rank, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}^m$ are given, and $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ are the unknowns. One of the most effective techniques for solving problem (6.1) is to use a Krylov subspace method (such as symmetric QMR, or GMRES) with the following preconditioner:

$$M = \begin{bmatrix} I_n & A \\ A^T & O \end{bmatrix}$$

(the so-called *constraint preconditioner*; see, e.g., [16]). Application of this preconditioner within a Krylov subspace method requires solving a least squares problem of the form (1.1) at each iteration. In principle this could be done by a sparse QR factorization, or by forming and then factoring the normal equations. Alternatively, a sparse direct indefinite factorization of M could be used [7]. However, for large-scale problems such as three-dimensional mixed finite element formulations, these direct solvers become prohibitively expensive; see, e.g., [21]. As explained in [21], a sparse incomplete factorization of $A^T A$ can be used to obtain a cheap approximation of the action of M^{-1} without too much of a negative effect on the rate of convergence that would be observed with the “exact” preconditioner. The experiments in [21] show that dramatic savings in both storage and CPU time are achieved. The results in [21] were obtained with an incomplete Cholesky factorization of the normal equations matrix similar to the ICNE algorithm of the previous section; we expect that using RIF instead would result in improved results in many cases. Some preliminary experiments have been performed by John Haws in his Ph.D. thesis [9], but this is a topic that deserves further research.

Finally, we mention that least squares problems arising in animal breeding studies can lead to systems that are far larger than any of those considered in this paper. For example, as mentioned in [25], the model used for the Finnish dairy cattle has 60 million unknowns. Due to storage constraints, only very simple preconditioners, like diagonal or block diagonal preconditioning, have been used by practitioners. The development of effective preconditioners for such huge least squares problems remains a formidable challenge for sparse matrix researchers.

Acknowledgments. We would like to thank Dr. Ivar Lie of the Norwegian Meteorological Institute for providing us with the HIRLAM test problem and for useful discussions. Thanks are also due to the referees for their helpful and constructive comments.

REFERENCES

- [1] Z. Z. BAI, I. S. DUFF, AND A. J. WATHEN, *A class of incomplete orthogonal factorization methods. I: Methods and theories*, BIT, 41 (2001), pp. 53–70.
- [2] M. BENZI, J. K. CULLUM, AND M. TÜMA, *Robust approximate inverse preconditioning for the conjugate gradient method*, SIAM J. Sci. Comput., 22 (2000), pp. 1318–1332.
- [3] M. BENZI AND M. TÜMA, *A comparison of some preconditioning techniques for general sparse matrices*, in Iterative Methods in Linear Algebra, II, S. D. Margenov and P. S. Vassilevski, eds., IMACS Ser. Comput. Appl. Math., IMACS, New Brunswick, NJ, 1996, pp. 191–203.
- [4] M. BENZI AND M. TÜMA, *A robust incomplete factorization preconditioner for positive definite matrices*, Numer. Linear Algebra Appl., to appear.
- [5] A. BJÖRCK, *Numerical Methods for Least Squares Problems*, SIAM, Philadelphia, 1996.
- [6] A. BJÖRCK AND J. Y. YUAN, *Preconditioners for least squares problems by LU factorization*, Electron. Trans. Numer. Anal., 8 (1997), pp. 26–35.
- [7] I. S. DUFF AND J. K. REID, *The multifrontal solution of indefinite sparse symmetric linear equations*, ACM Trans. Math. Software, 9 (1983), pp. 302–325.
- [8] G. H. GOLUB AND C. F. VAN LOAN, *Matrix Computations*, 3rd ed., Johns Hopkins University Press, Baltimore and London, 1996.
- [9] J. C. HAWS, *Preconditioning KKT Systems*, Ph.D. thesis, Department of Mathematics, North Carolina State University, Raleigh, NC, 2002.
- [10] M. HEGLAND, *On the computation of breeding values*, in Proceedings of CONPAR 90-VAPP IV Joint International Conference on Vector and Parallel Processing, H. Burkhardt, ed., Lecture Notes in Comput. Sci. 457, Springer-Verlag, Berlin, 1990, pp. 232–242.
- [11] M. HEGLAND, *Description and Use of Animal Breeding Data for Large Least Squares Problems*, Technical report TR/PA/93/50, CERFACS, Toulouse, France, 1993.
- [12] A. HOLSTAD AND I. LIE, *On the Computation of Mass Conservative Wind and Vertical Velocity Fields*, Technical report 141, The Norwegian Meteorological Institute, Oslo, Norway, 2002.
- [13] A. JENNINGS AND M. A. AJIZ, *Incomplete methods for solving $A^T A x = b$* , SIAM J. Sci. Stat. Comput., 5 (1984), pp. 978–987.
- [14] I. E. KAPORIN, *High quality preconditioning of a general symmetric positive definite matrix based on its $U^T U + U^T R + R^T U$ -decomposition*, Numer. Linear Algebra Appl., 5 (1998), pp. 483–509.
- [15] S. A. KHARCHENKO, L. YU. KOLOTILINA, A. A. NIKISHIN, AND A. YU. YEREMIN, *A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form*, Numer. Linear Algebra Appl., 8 (2001), pp. 165–179.
- [16] C. KELLER, N. I. M. GOULD, AND A. J. WATHEN, *Constraint preconditioning for indefinite linear systems*, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.
- [17] P. LÄUCHLI, *Jordan-Elimination und Ausgleichung nach kleinsten Quadraten*, Numer. Math., 3 (1961), pp. 226–240.
- [18] National Institute of Standards and Technology, *Matrix Market*, <http://math.nist.gov/MatrixMarket> (October 2002).
- [19] C. C. PAIGE AND M. A. SAUNDERS, *LSQR: An algorithm for sparse linear equations and sparse least squares*, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
- [20] A. T. PAPADOPOULOS, I. S. DUFF, AND A. J. WATHEN, *Incomplete Orthogonal Factorization Methods Using Givens Rotations. II: Implementation and Results*, Report 02/07, Oxford University Computing Laboratory, Oxford, England, 2002.

- [21] I. PERUGIA AND V. SIMONCINI, *Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations*, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.
- [22] Y. SAAD, *Preconditioning techniques for nonsymmetric and indefinite linear systems*, J. Comput. Appl. Math., 24 (1988), pp. 89–105.
- [23] Y. SAAD AND M. SOSONKINA, *Enhanced Preconditioners for Large Sparse Least Squares Problems*, Report UMSI-2001-1, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001.
- [24] M. A. SAUNDERS, *Sparse least squares problems by conjugate gradients: A comparison of preconditioning methods*, in Proceedings of Computer Science and Statistics: Twelfth Annual Conference on the Interface, Waterloo, Canada, 1979.
- [25] I. STRANDÉN, S. TSURUTA, AND I. MISZTAL, *Simple preconditioners for the conjugate gradient method: Experience with test day models*, J. Anim. Breed. Genet., 119 (2002), pp. 166–174.
- [26] M. TISMENETSKY, *A new preconditioning technique for solving large sparse linear systems*, Linear Algebra Appl., 154/156 (1991), pp. 331–353.
- [27] X. WANG, *Incomplete Factorization Preconditioning for Linear Least Squares Problems*, Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 1994.
- [28] X. WANG, K. A. GALLIVAN, AND R. BRAMLEY, *CIMGS: An incomplete orthogonal factorization preconditioner*, SIAM J. Sci. Comput., 18 (1997), pp. 516–536.
- [29] S.-L. ZHANG, K. NAKATA, AND M. KOJIMA, *Incomplete orthogonalization preconditioners for solving large and dense linear systems which arise from semidefinite programming*, Appl. Numer. Math., 41 (2002), pp. 235–245.
- [30] Z. ZLATEV, *Computational Methods for General Sparse Matrices*, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.
- [31] Z. ZLATEV AND H. B. NIELSEN, *Solving large and sparse linear least-squares problems by conjugate gradient algorithms*, Comput. Math. Appl., 15 (1988), pp. 185–202.