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Abstract. This paper describes a technique for constructing robust preconditioners for the
CGLS method applied to the solution of large and sparse least squares problems. The algorithm
computes an incomplete LDLT factorization of the normal equations matrix without the need to
form the normal matrix itself. The preconditioner is reliable (pivot breakdowns cannot occur) and
has low intermediate storage requirements. Numerical experiments illustrating the performance of
the preconditioner are presented. A comparison with incomplete QR preconditioners is also included.
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1. Introduction. In this paper we consider the solution of linear least squares
problems of the form

(1.1) ||b — Az||2 = min,

where the coefficient matrix A is large and sparse. We assume that A is m x n with
m > n and A has full column rank. Although the techniques considered in this
paper are applicable to the square case (m = n), we are mostly interested in the
overdetermined case (m > n).

Bjorck [5] gives a comprehensive treatment of available solution algorithms for
problem (1.1). In the large and sparse case, there are two main approaches to solve
(1.1), namely, sparse direct methods based on orthogonalization and iterative methods
based on the conjugate gradient (CG) algorithm implicitly applied to the normal
equations. For overdetermined systems, the best available CG-type methods are the
CGLS algorithm (also known as CGNR) and its mathematically equivalent variant
based on Lanczos bidiagonalization, LSQR [19]. In this paper we use CGLS. Recall
that the normal equations are

(1.2) Cx=f, C=ATA f= AT

Sparse direct solvers are very reliable, but they may be prohibitively expensive
in terms of storage and operation count for very large problems. Iterative methods
generally require much less storage and have the potential to be faster in terms of
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execution time, but only if their convergence is sufficiently rapid. For the CGLS
method, this means that a good preconditioner is needed.

In this paper we present a new approach to construct reliable preconditioners for
the CGLS method. Our method is based on C-orthogonalization, i.e., orthogonaliza-
tion with respect to the inner product

(1.3) (x,y)c :=x"Cy forall z,y € R™.

We show how C-orthogonalization can be used to compute a root-free incomplete
factorization of the normal equations matrix

C~LDL",

where L is an n X n unit lower triangular matrix and D is diagonal and positive
definite. Our algorithm enjoys the following desirable properties:
1. No entry of C' = AT A needs to be explicitly computed (the algorithm works
entirely with A).
2. The incomplete factorization process cannot break down.
3. Intermediate storage requirements are negligible.

Of course, properties 1-3 alone are not enough unless the preconditioner also
significantly reduces the solution time compared to the unpreconditioned iteration.
We will show experimentally that our preconditioner results in good convergence rates
when applied to large and sparse least squares problems. In addition, we shall see that
the cost of the incomplete factorization is relatively low compared to other methods.

The remainder of the paper is organized as follows. In section 2 we briefly review
some of the previous work on preconditioners for the CGLS method. In section 3
we present the basic C-orthogonalization scheme and explain how it can be used
to compute a root-free Cholesky factorization of the normal equations matrix. The
preconditioner based on this scheme is described in section 4. Numerical experiments
and comparisons with other methods are presented in section 5, and some conclusions
are given in section 6.

2. Previous work. General-purpose preconditioners for solving least squares
problems have been proposed by several authors. An early paper by Lauchli [17] con-
siders a preconditioner for (1.1) based on the LU factorization of an n x n nonsingular
submatrix of A, with

Ay
where the n X n matrix A; is nonsingular. This can be ensured by suitable pivoting
strategies. Then the matrix A; = LU can be used as a right preconditioner for

(1.1). The normal equations matrix corresponding to the preconditioned least squares
problems is readily seen to be

(AATHYT(AATY) =1, + B"B, where B = A, A7

Since B has at most p = min{m — n,n} distinct singular values, rapid convergence
can be expected when p < n. Matrix-vector products with this matrix require solving
linear systems with coefficient matrices A; and AT, which is done using the LU fac-
torization of A;. Variations on this basic idea have been explored by several authors;
see Ch. 7.5.3 in [5] and the paper [6] and the references therein.
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In [24], Saunders proposed to use Gaussian elimination with partial pivoting to
compute a stable, sparse factorization PA = LU, where the m x n matrix L is unit
lower trapezoidal and U is upper triangular (P is an m X m permutation matrix).
The factor U is then used as a right preconditioner for (1.1). The matrix L is not
saved, and applying the preconditioner requires only backsubstitution with U. This
approach is based on the observation that L is frequently well-conditioned and that
U tends to reflect most of the ill-conditioning of the original matrix A. Furthermore,
the U factor can be computed with little fill-in in many cases.

Most of the recent activity in preconditioning sparse least squares problems, how-
ever, has been based on incomplete variants of the QR, rather than LU, factorization.
The basic idea is the following. Let A = QR be the “thin” QR factorization of A,
where @ is m x n with orthonormal columns, and R is n X n upper triangular. The
factorization is not unique, but it can be made unique by requiring that the diagonal
entries r;; of R are all positive; see [8, p. 230]. In this case, ATA = RTR is the
Cholesky factorization of the normal equations matrix C' = AT A. If we could com-
pute this factorization exactly, we could use the R factor as a right preconditioner for
CGLS applied to problem (1.1) to get convergence in a single iteration. Indeed, the
preconditioned normal equations matrix is

(ARTHT(AR™) =QTQ =1,

and convergence takes place in one step. To obtain a feasible preconditioner, an
approximate factorization A ~ QR is computed; here R is still lower triangular with
positive diagonal entries, but the columns of @ may no longer be mutually orthogonal
in general. The approximate R factor is usually considerably more sparse than the
exact Cholesky factor R of C = ATA. This can be interpreted as an incomplete
Cholesky factorization of C. The closer R is to the exact Cholesky factor, the closer
the preconditioned normal equations matrix is to the identity matrix:

(AR)T(AR™Y) = RTATAR™ = RTCR ~ I,

and the faster the CGLS iteration converges. Note that there is no need for the Q
factor in the iterative phase of the algorithm; therefore Q) does not need to be saved.

The first paper proposing to compute an incomplete orthogonal factorization of
A for use as a preconditioner for the CGLS method is [13]. In it, the authors consider
both methods based on Givens rotations and methods based on the Gram—Schmidt
process. Sparsity in R (and possibly in Q) is preserved by applying a (relative) drop
tolerance: fill elements are dropped if they are “small” according to some criterion.
The possibility of breakdowns (singular R) is considered; in some cases, diagonal
corrections may be needed to preserve positivity of the diagonal entries of R. Some
breakdown-free variations of the algorithms are proposed. All of these algorithms
work with A only, and there is no need to form C = AT A explicitly.

Subsequent papers include [22] and [31] with focus on algorithms based on in-
complete Gram—Schmidt and Givens rotations, respectively; see also [30]. Other ref-
erences include [3] and [29] for preconditioners based on incomplete Gram—Schmidt,
and [1] and [20] for Givens-based methods. In [23], shifted incomplete orthogonal-
ization methods are studied. The focus of the paper is to develop heuristics for the
automatic selection of global diagonal shifts aimed at increasing the stability of the
preconditioner.

While incomplete QR methods can be reliable (at least for sufficiently accurate
approximations to the full QR decomposition) and often result in fast convergence of
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the preconditioned CGLS iteration, they tend to incur high set-up costs. Moreover,
for some of these methods intermediate storage requirements can be very high. As an
example, we report on results obtained with the Gram—Schmidt-based incomplete QR
method of Jennings and Ajiz [13]. We use a rather small square matrix, WEST0655,
from the Matrix Market [18]. This matrix has dimension m = n = 655 and contains
nnz(A) = 2854 nonzero entries. Its condition number is estimated to be of the order
of 10'2; thus the normal equation matrix C' has condition number of the order of 10%4.
The matrix C, if explicitly formed, would contain nnz(C) = 10672 nonzeros. Prior to
applying the Jennings—Ajiz incomplete QR preconditioner, we permute the columns
of A so that C is reordered according to a minimum degree algorithm. This greatly
reduces the amount of fill-in generated during the incomplete orthogonalization pro-
cess. We use a drop tolerance resulting in an incomplete factor with nnz(R) = 10997
nonzeros. The preconditioned CGLS algorithm is initialized with a zero initial guess
and is stopped when the initial residual is reduced by eight orders of magnitude. The
right-hand side vector b is chosen so that the solution is the vector of all 1’s. Con-
vergence takes place in 47 iterations, which is reasonable for such an ill-conditioned
problem. However, the amount of intermediate fill-in incurred by the Jennings—Ajiz
algorithm is very high: the maximum number of nonzero elements that have to be
kept in storage at any given time during the course of the incomplete Gram—Schmidt
process is 44620, almost 16 times the number of nonzeros in the original matrix A.
Clearly, this is a severe drawback of the algorithm, especially in applications involving
large matrices.

Algorithms based on Givens rotations are potentially more attractive. Givens-
based schemes are much less demanding in terms of intermediate storage requirements
if matrix entries in A are rotated out in a row-wise fashion with appropriate dropping
applied between steps. Nevertheless, as we shall see, the preconditioner set-up time
can be quite high for large problems. Column-based incomplete Givens orthogonal-
ization is even slower and suffers from high intermediate storage demand; see [20]. On
the other hand, row-oriented incomplete Givens orthogonalization is not guaranteed
to be breakdown-free: it may lead to zero diagonal entries in the incomplete R factor.
In our experiments we found that breakdowns do occur in practice and that row-
oriented incomplete Givens codes need to be safeguarded against this type of failure
(see, e.g., [5, 13]).

Clearly, an incomplete Cholesky factor of C' can always be obtained by computing
C = AT A explicitly and then applying a standard incomplete Cholesky factorization
algorithm to C. As noted in [5], there is actually no need to form all of C' explicitly;
rather, its rows can be computed one at a time, used to perform the corresponding step
of the incomplete Cholesky algorithm, and then discarded. Nevertheless, forming the
normal equations, even piecemeal, entails some overhead and may lead to severe loss
of information in very ill-conditioned cases. Also, for a general symmetric positive
definite (SPD) matrix, standard incomplete Cholesky factorization algorithms may
fail due to pivot breakdowns (that is, negative or zero pivots). There exist reliable
incomplete factorization algorithms that can be applied to a general SPD matrix
without breakdowns; see [26, 27, 28, 14, 4] and the references therein. (Note that the
first four of these papers consider different variations of the same idea.) However,
these techniques either require access to the entries of C, or have high set-up and
storage requirements, or both. An exception is the robust incomplete factorization
(RIF) method introduced in [4]. This is the method that we propose to use to compute
reliable preconditioners for problem (1.1).
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3. C-orthogonalization and the normal equations. We start by recalling
that since A has full column rank, the n x n matrix C = AT A is SPD and therefore
it defines an inner product on R" via (1.3). Given a set of n linearly independent
vectors vy, va, ..., U, € R", we can build a C-orthogonal (or C-conjugate) set of vec-
tors z1, 22,...,2, € R" by a conjugate Gram—Schmidt process, i.e., a Gram—-Schmidt
process with respect to the inner product (1.3). Written as a modified Gram—Schmidt
process, the (right-looking) algorithm starts by setting zi(o) = v; and then performs
the following nested loop:

G-1) _(G-1)
(3.1) L0 ey B E e gy,
! ‘ <Z](_J*1)7Zj(_rl)>c J

where j =1,2,...,n—1land¢=j54+1,...,n. Let now

Z =[z1,29,...,2n], wWhere z;:= zfi_l), 1<¢<n.
We have
(3.2) ZTCZ = D = diag (dy,dy, . ..,d,),
where

dj = (2j,25)c = z] Czj = (Az)" (Az;) = || A3 >0, 1<j<n.

If we set v; = e; (the ith unit basis vector) for 1 < i < n, then Z7 = L1, where L
is the unit lower triangular factor in the root-free Cholesky factorization C' = LDL™’;
the matrix D is exactly the same here and in (3.2). Indeed, it is clear from (3.1) that
the vector z; is modified only above position i (for 2 < ¢ < n); therefore Z is unit
upper triangular and by virtue of (3.2) and the uniqueness of the LDL factorization,
it must be Z7 = L1

Now, it was observed in [4] that the conjugate Gram—Schmidt process (3.1) pro-
duces not just the Z factor but also, at the same time, the L factor itself. To see this,
observe that L in the LDL” factorization of C' and the inverse factor Z satisfy

CZ=LD or L=CZD™

This easily follows from (3.2) and the fact that Z” = L~". Now observe that for i > j
we have

(3:3) <Z(‘j_1)azz(j_l)>c = <€i,2g(‘j_1)>c.

(3-1)

This identity easily follows from the fact that z; can have nonzero entries only in

the first j — 1 positions besides the 1 in position i, while CZ]Q ~Y can have nonzero

entries only in positions j,j +1,...,n. By equating corresponding entries of CZD~!
and L = [l;;] and using the identity (3.3) we find that
(-1 (-1
(z; ) %4 )c
(3.4) lij= —F———— — — > =7
<ZJ(J )’Zj(g )>C

Thus, the L factor of C' can be obtained as a by-product of the C-orthogonalization
process (3.1), at no extra cost. This observation is the basis for the RIF preconditioner
developed in [4] for solving general SPD systems. In the next section we show how
this technique can be used to compute reliable preconditioners for problem (1.1).
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4. RIF. Two different types of preconditioners can be obtained by carrying out
the C-orthogonalization process (3.1) incompletely. Given a drop tolerance 0 < 7 < 1,
Z4(]) |
in absolute value are discarded. We denote by Zi(j ) the sparsified vectors and we set
Z = [z1,%2,..., %y, where z; = 2?_1). Alternatively, a relative drop tolerance can be
used; for example, 7 can be replaced by 7||a;||2, where a; is the ith column of A. It
is sometimes advantageous to scale A so that ||a;||o = 1, where a; is the ith column
of A (i.e., C has unit diagonal); this tends to improve the conditioning of the normal
equations and it allows for the use of an absolute drop tolerance 7. Whatever the
scaling or the drop strategy used, the incomplete C-orthogonalization process results
in a sparse matrix Z ~ L~T; that is, we have an incomplete inverse factorization of

C of the form

the entries of z;”/ are scanned after each update and entries that are smaller than 7

C'm~ZD 2T,

where D is diagonal with entries Jj = ZJTCZJ- > (. This is a factored sparse approx-
imate inverse that can be used as a preconditioner for the CG algorithm applied to
Cx = f; see [2, 15]. The preconditioner is guaranteed to be positive definite (since
dj > 0 for all j) and is easily applied in parallel, since its application requires only
matrix-vector products. It is generally known as the stabilized approximate inverse
(SAINV) preconditioner.

Note that the construction of the preconditioner does not require forming C' =
AT A explicitly. Indeed, the main loop (3.1) involves the computation of the inner
products

(zj,Z)c = 2 Cz = (Az;)" Az, i=j,...n, j=1,...n-1

(here and in the remainder of the paper we omit the superscripts to simplify the nota-
tion). Hence, computing the multipliers in (3.1) involves only matrix-vector products
of the form AZ;, to be computed as a linear combination of the columns of A corre-
sponding to nonzero entries in Z;, and inner products of two sparse vectors Az; and
AZz;. Typically, most of these inner products will be structurally zero (that is, Az; and
AZ; have no nonzero entries in the same position) and the corresponding update in
(3.1) can be skipped. It is important to mention that our implementation makes use
of structural information on the incomplete inverse factor Z so as to avoid checking
which of the inner products are structurally zero, which would be an O(n?) operations;
see [2]. Note that the z; vectors are stored (they form the columns of the approximate
inverse factor Z), whereas the multipliers (z;,%;)c/(Z;, Z;)c are discarded after they
are used to perform an update step.

The second preconditioner that can be obtained is, in a sense, the dual of the
previous one. In this algorithm we save the multipliers

- <5j, Zi>C (AEj)TAEi

4.1 llz E— = — — ZZa
(4.1 Tz z)e (Az)T Az /

and we discard the vector z; as soon as it has been used to form the corresponding
parts of the incomplete factor L = [I;;] of C'. Hence, we have an algorithm to compute
an incomplete root-free Cholesky factorization

C=AT"A~LDL"

of the normal equations matrix.
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Note that this incomplete triangular factorization of C' does not require forming
the matrix C' = AT A itself (not even one row at a time): the incomplete conjugate
Gram—Schmidt process on which it is based works exclusively with A. Moreover, the
preconditioner is guaranteed to be positive definite, and no breakdown in the course
of the incomplete factorization is possible. This follows from the fact that the pivots
d; are given by d; = (Az;)T Az;, an inherently positive quantity. Note that from
well-known extremal properties of the Rayleigh quotient, the following lower bound
for the generic pivot cfj holds:

d;j = (%}, Zj)c = 2] C%; 2 Amin(O)|Z][3 = 072in (A)IZ]13 > 0,

min

where Apin (C) and omin(A) denote the smallest eigenvalue of C' and the smallest
singular value of A, respectively. Also note that ||;||3 > 1 since the jth entry of z; is
equal to 1. Because of the breakdown-free property, we denote this preconditioner by
RIF. While it is possible in principle that a pivot is so small to be numerically zero, we
have not encountered a single case where this happened (even for very ill-conditioned
A). We could in principle prevent any such tiny pivot simply by multiplying A by a
sufficiently large number, but this would require an estimate for the smallest singular
value of A and it could cause overflow. Again, we have never had to resort to any
trick of this sort in actual computations, although our codes can perform local pivot
modifications in such a situation.

We stress the very important fact that the construction of the RIF preconditioner
incurs only modest intermediate storage costs; the total storage is dominated by the
storage for A and for the final incomplete factor L. The algorithm requires some
temporary storage for the sparse z; vectors while they are needed to compute the
multipliers (4.1). At step j of the algorithm (1 < j < n — 1) we need to store,
besides the j computed columns of the incomplete factor L, the remaining n — j
columns Zj41,...,2, of Z. Notice that these sparse vectors can have nonzero entries
only within the first j positions, besides the 1 in position & of Zx. As j increases,
there are fewer and fewer such vectors that need to be kept in temporary storage,
but they tend to fill in. Assuming a uniform distribution of nonzeros in both L
and Z, a back-of-the-envelope calculation shows that in terms of storage, the “high-
water mark” is reached for j = n/2, that is, midway through the C-orthogonalization
process, after which it begins to decrease. The total storage can be estimated to be
approximately 25% more than the storage required by the final incomplete factor L.
In practice, we found that this is often an overestimate, unless a very small drop
tolerance is used (which is not practical anyway). With a careful implementation
and using suitable dynamic data structures, the proposed algorithm incurs negligible
intermediate storage requirements.

At first sight, the RIF preconditioner needs two drop tolerances: one for the
incomplete C-orthogonalization process, to be applied to the z; vectors, and a second
one to be applied to the entries of L. Note that the latter is simply a postfiltration:
once a column of L has been computed, it does not enter the computation of the
remaining ones. For the experiments in this paper, we simply used the same value 7
for both drop tolerances, thus reducing the number of user-supplied parameters from
two to just one. However, other choices are possible and may give better results in
some cases, perhaps at the expense of storage.

The RIF preconditioner is generally more effective at reducing the number of
CGLS iterations than the SAINV one (for a comparable density of the incomplete
factors). The main advantage of SAINV is that it can be easily applied in parallel.
In the remainder of the paper, we consider the RIF preconditioner only.
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TABLE 5.1
Test problem information.

Matrix m n nnz CGLS | Time
WELL1033 | 1033 320 4732 167 0.07
ILLC1033 1033 320 4732 3212 1.34
WELL1850 | 1850 712 8758 424 0.32
ILLC1850 1850 712 8758 2047 1.49
SMALL 3140 1988 8510 308 0.30
MEDIUM 9397 6119 25013 390 1.12
LARGE 28524 17264 75018 573 5.29
VERYL 174193 105882 | 463303 1303 143
HIRLAM 1385270 | 452200 | 2713200 | 282 252

5. Numerical experiments. In this section we present the results of some
numerical experiments aimed at assessing the performance of the RIF preconditioner
for least squares problems. We also present results for some other methods. We
coded all the algorithms in Fortran90 and ran the experiments on a SGI Origin 200
computer.

In Table 5.1 we provide some basic information about the test problems used in
the numerical experiments. We used nine rectangular matrices of widely different sizes
and levels of difficulty. The first four problems (WELL1033, ILLC1033, WELL1850,
ILLC1850) are from the Matrix Market repository [18]. Four more problems (SMALL,
MEDIUM, LARGE, VERYL) arise in animal breeding studies [10, 11].! The last (and
largest) matrix, which we denote by HIRLAM, was kindly provided by Dr. Ivar Lie of
the Norwegian Meteorological Institute. It arises from a finite volume discretization
of the mass conservation equation used in a model of the atmosphere; see [12]. For
each matrix we report the number m of rows, the number n of columns, and the
number nnz of nonzeros. In the last two columns we report iteration counts (under
“CGLS”) and CPU times (under “Time”) for CGLS without preconditioning. Here
and in all the other numerical experiments the stopping criterion used was

I|1AT (b — Az)]]; < 1073)|AT (b — Az©)|],.

In all cases we used the initial guess z(?) = 0, and the right-hand side b was chosen
so that the solution was the vector of all 1’s.

Table 5.2 contains results for the RIF preconditioner. Under “7” we indicate the
value of the drop tolerance used. Furthermore, we report the number of nonzeros in
the incomplete factor (under “Size”), the time to construct the preconditioner (under
“P-time”), the number of preconditioned CGLS iterations (under “Its”), the time
for the iterative solution phase (under “It-time”), and the total solution time (under
“Tot-time”). For some of the problems we show results obtained with incomplete
factors of variable densities obtained by adjusting the drop tolerance 7 (typically we
take 7 between 0.1 and 0.5). In these cases, the best timing obtained is in bold face.
The results show that RIF preconditioning is effective in reducing both the iteration
count and the total solution time in all cases except for the small, well-conditioned
matrix WELL1033. It is also clear that smaller values of the drop tolerance (leading
to denser factors) almost always lead to faster convergence in terms of number of
iterations, but higher total solution times. Sparse preconditioners are preferred also
because they can be computed more quickly. In addition, for very large matrices we

IThese matrices can be downloaded from ftp://ftp.cerfacs.fr/pub/algo.
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TABLE 5.2
Test results for RIF.

RIF }

Matrix T Size P-time | Its It-time | Tot-time
WELL1033 | 0.1 | 911 0.03 72 0.04 0.07
ILLC1033 0.1 | 825 0.03 256 | 0.13 0.16
WELL1850 | 0.1 | 2835 0.05 89 0.08 0.13
ILLC1850 0.1 | 2904 0.04 248 | 0.23 0.27
SMALL 0.1 | 12199 0.22 32 0.05 0.27
MEDIUM 0.2 | 28420 0.20 53 0.31 0.51

0.1 | 37248 0.70 34 0.21 0.91
LARGE 0.3 | 76094 0.54 63 0.96 1.50

0.2 | 82287 0.70 58 0.91 1.61

0.1 | 107007 3.62 39 0.70 4.32
VERYL 0.5 | 249327 2.17 206 | 31.4 33.6

0.4 | 272207 3.10 225 | 34.9 38.0

0.3 | 426830 5.18 199 | 33.6 38.8
HIRLAM 0.1 | 1762059 | 18.2 71 85.6 103.8

TABLE 5.3

Test results for ICNE.

ICNE
Matrix Size P-time | Its It-time | Tot-time
WELL1033 | 866 0.005 108 | 0.05 0.055
ILLC1033 816 0.005 286 | 0.14 0.145
WELL1850 | 2595 0.01 182 | 0.17 0.18
ILLC1850 2691 0.01 774 | 0.72 0.73
SMALL 17377 0.05 33 0.06 0.11
13443 0.03 134 | 0.24 0.27
MEDIUM 55950 0.14 246 | 1.50 1.64
47714 0.11 T T -
LARGE 224430 1.38 38 1.00 2.38
180309 0.85 T T —
163157 0.69 t T -
VERYL 962079 5.72 135 | 29.2 36.9
1185773 | 7.71 127 | 31.9 39.6
HIRLAM 1803086 | 6.45 50 64.9 71.4
1710215 | 5.19 s 91.3 96.5

need to restrict ourselves to sparse preconditioners anyway in order to keep memory
demands within reasonable limits. In all cases, the amount of additional temporary
storage needed to set up the RIF preconditioner was only a small fraction of the
space needed to store the coefficient matrix and the final incomplete factor L. As an
example, for the VERYL test problem the additional overhead in temporary storage
needed for constructing the preconditioner was only about 4% of the space needed to
store the incomplete factor.

In Table 5.3 we present results for a standard, drop tolerance-based incomplete
Cholesky factorization preconditioner applied to the (explicitly formed) normal equa-
tions matrix C = AT A. We denote this preconditioner by ICNE. As already men-
tioned, there is no need to compute all of C' at once: rather, its rows can be computed
one at a time and then discarded as the incomplete factorization progresses. Conse-
quently, this algorithm has negligible intermediate storage requirements. We choose
this method because it is cheap and it often performs well when it is not unstable.
On the other hand, we also want to illustrate that it is not always reliable. A re-
liable alternative would be to use the method developed by Tismenetsky [26] (with
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TABLE 5.4
Test results for IMGS.

IMGS
Matrix Size P-time | Its It-time | Tot-time
WELL1033 | 797 0.13 147 0.08 0.21
ILLC1033 807 0.14 3588 | 1.81 1.95
1848 0.17 838 0.48 0.65
1982 0.20 484 0.27 0.47
2544 0.26 111 0.07 0.33
WELL1850 | 2526 0.19 194 0.19 0.38
2849 0.20 150 0.15 0.35
ILLC1850 2608 0.18 1084 | 1.06 1.24
7031 0.36 155 0.18 0.54
SMALL 10772 0.36 27 0.05 0.41
MEDIUM 29348 0.80 40 0.24 1.04
33328 1.02 34 0.22 1.24
LARGE 75271 2.12 58 1.04 3.16
80754 2.41 50 0.91 3.32
97898 4.45 37 0.75 5.20
VERYL 433812 14.7 197 38.1 52.8
509444 21.0 166 33.5 54.5
716050 43.6 116 26.1 69.7
HIRLAM 1727182 53.3 71 89.6 142.9
1624508 | 42.2 81 101. 143.2

improvements by Kaporin [14]). In the least squares setting, this becomes precisely
the CIMGS algorithm presented in [28]. However, this method is quite expensive and
has high intermediate storage requirements. See the experiments and discussion in
[28] and [4]. The drop tolerance in ICNE was chosen so as to obtain preconditioners
of similar density to those computed with RIF, if possible. Note, however, that for
the four animal breeding problems we could not get a useful preconditioner unless we
allowed considerably more fill-in in the incomplete factor than for the RIF precondi-
tioner. Indeed, for certain choices of the drop tolerance ICNE preconditioning failed
to produce convergence in less than 10000 iterations (denoted by “f” in Table 5.3).
Furthermore, it may happen that if we try to improve the convergence rate for ICNE
by reducing the drop tolerance (thereby allowing extra fill-in in the incomplete fac-
tor), the number of iterations may actually increase. For example, consider problem
ILLC1850. If we increase the number of nonzeros in the ICNE factor to 3229, the
number of iterations goes up to 2515; if we further increase it to 3461, it takes 5393
iterations to converge. On the other hand, reducing the size of the preconditioner to
1868 nonzeros results in 1013 iterations. For this matrix, 774 iterations is the best
result we could get with ICNE using reasonably sparse preconditioners. We think
that this nonmonotonic behavior of ICNE with respect to the drop tolerance reflects
the potential instability of applying a standard incomplete Cholesky factorization to
the explicitly formed normal equations matrix.

These results indicate that RIF, as expected, is more robust than ICNE. The two
preconditioners exhibited comparable performance whenever ICNE did not fail, with
RIF being slightly better on the average. While RIF incurred somewhat higher set-up
costs, it typically led to faster convergence for preconditioners of comparable density.
Intermediate storage requirements are essentially the same for the two methods.

In Table 5.4 we show results obtained with an incomplete QR preconditioner
based on modified Gram—Schmidt (denoted IMGS); this is essentially the incomplete
Gram—Schmidt method in [13]. Our implementation is based on a column-oriented,
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TABLE 5.5
Test results for IGR.

IGR
Matrix Size P-time | Its It-time | Tot-time
WELL1033 | 851 0.08 178 0.09 0.17
ILLC1033 2687 0.20 172 0.11 0.31
WELL1850 | 2892 0.13 230 0.23 0.36
ILLC1850 2387 0.11 1312 | 1.29 1.40
3533 0.15 965 0.99 1.14
8548 0.45 1106 | 1.37 1.82
SMALL 12551 0.26 30 0.06 0.32
17002 0.55 23 0.05 0.60
MEDIUM 29256 0.40 43 0.26 0.66
39198 0.70 32 0.20 0.90
55939 1.61 26 0.19 1.80
LARGE 74517 0.92 62 1.09 2.01
85275 1.14 53 1.03 2.17
95975 1.42 46 0.96 2.38
113887 2.03 40 0.88 2.91
VERYL 453459 5.06 294 57.8 62.9
559372 6.42 244 50.6 57.0
863655 11.8 164 39.7 51.5
HIRLAM 1807328 | 85.6 64 81.3 166.9

right-looking algorithm. Again we tried, whenever possible, to compare precondi-
tioners of similar density. Our results strongly suggest that IMGS is not competitive
with RIF. Besides slower convergence in many cases, this preconditioner exhibits high
set-up costs. Furthermore, as mentioned in section 2, IMGS has much higher inter-
mediate storage requirements than RIF. Although our computer resources allowed us
to compute the preconditioner in every case, this limitation would eventually hinder
the applicability of IMGS to large-scale problems.

Finally, we present in Table 5.5 some results for a row-oriented, Givens-based
incomplete QR preconditioner (denoted by IGR). This preconditioner is very close to
the rTIGO algorithm in [20]. Our implementation differs from [20] in that we use
somewhat different data structures and dropping strategy. The poor results for the
first four problems are due to pivot breakdowns, which prompt automatic diagonal
modifications to avoid divisions by zero. For these problems, better results can be
obtained by using the stabilization strategy advocated by Jennings and Ajiz in [13].
Unfortunately, we found that this stabilization strategy leads to very poor results in
all the other cases, where there are no breakdowns. In contrast, IGR shows good per-
formance when there are no breakdowns. Nevertheless, set-up times can be quite high
compared to RIF, especially for larger problems. Intermediate storage requirements
are comparably low for both preconditioners.

We conclude this section on numerical experiments noting that all the experi-
ments reported above were performed on the original matrix, without any preprocess-
ing. Although diagonal scalings and sparse matrix reorderings may sometimes lead
to improved results, we also found several instances where these preprocessings did
not help or even made things worse. For instance, while a column minimum degree
reordering helps in reducing the size of the incomplete factor and intermediate storage
requirements, it often leads to slower convergence rates and higher overall solution
times.
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6. Conclusions. In this paper we have presented a reliable preconditioner with
low storage requirements for large sparse least squares problems. The preconditioner
is an incomplete LDL” factorization of the normal equations matrix C' = A” A based
on C-orthogonalization. The preconditioner construction cannot break down and does
not require forming the matrix product C' = AT A explicitly, not even one row at a
time, as required by some of the previously developed techniques. While somewhat
more expensive to compute than more standard incomplete Cholesky factorization
algorithms, numerical experiments indicate that our method often results in better
convergence rates and behaves in a stable and predictable manner with respect to the
drop tolerance used.

We also compared our approach with two incomplete QR preconditioners, one
based on the modified Gram—Schmidt process and the other on Givens rotations.
The first method was clearly inferior to RIF in terms of convergence rates, set-up
time, and intermediate storage requirements. The second method (also considered in
[20]) was found to be more competitive, but vulnerable to breakdowns and having
high set-up costs for larger problems. Further, we found that the Jennings—Ajiz sta-
bilization strategy [13] was effective in dealing with pivot breakdowns, but resulted
in preconditioners of low quality whenever breakdowns were not an issue. In sum-
mary, our experiments suggest that RIF is a competitive general-purpose method for
preconditioning large sparse least squares problems.

Besides as a preconditioner for CGLS applied to the normal equations, there is
at least one other situation where RIF should prove useful. Consider a saddle point
problem of the form

(6.1) [fT éHﬂ:[b}

where F' is n x n and SPD, A is n X m with n > m and has full column rank, b € R™
and ¢ € R™ are given, and x € R"™ and y € R™ are the unknowns. One of the most
effective techniques for solving problem (6.1) is to use a Krylov subspace method
(such as symmetric QMR, or GMRES) with the following preconditioner:

I, A
u- [ 4]
(the so-called constraint preconditioner; see, e.g., [16]). Application of this precon-
ditioner within a Krylov subspace method requires solving a least squares problem
of the form (1.1) at each iteration. In principle this could be done by a sparse QR
factorization, or by forming and then factoring the normal equations. Alternatively, a
sparse direct indefinite factorization of M could be used [7]. However, for large-scale
problems such as three-dimensional mixed finite element formulations, these direct
solvers become prohibitively expensive; see, e.g., [21]. As explained in [21], a sparse
incomplete factorization of AT A can be used to obtain a cheap approximation of the
action of M~ without too much of a negative effect on the rate of convergence that
would be observed with the “exact” preconditioner. The experiments in [21] show
that dramatic savings in both storage and CPU time are achieved. The results in
[21] were obtained with an incomplete Cholesky factorization of the normal equations
matrix similar to the ICNE algorithm of the previous section; we expect that using
RIF instead would result in improved results in many cases. Some preliminary exper-
iments have been performed by John Haws in his Ph.D. thesis [9], but this is a topic
that deserves further research.
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Finally, we mention that least squares problems arising in animal breeding studies
can lead to systems that are far larger than any of those considered in this paper.
For example, as mentioned in [25], the model used for the Finnish dairy cattle has
60 million unknowns. Due to storage constraints, only very simple preconditioners,
like diagonal or block diagonal preconditioning, have been used by practitioners. The
development of effective preconditioners for such huge least squares problems remains
a formidable challenge for sparse matrix researchers.
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