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ABSTRACT
Functional magnetic resonance imaging (fMRI) has be-
come one of the most common imaging modalities for brain
function analysis. Recently, graph neural networks (GNN)
have been adopted for fMRI analysis with superior perfor-
mance. Unfortunately, traditional functional brain networks
are mainly constructed based on similarities among region
of interests (ROIs), which are noisy and can lead to inferior
results for GNN models. To better adapt GNNs for fMRI
analysis, we propose DABNet, a Deep DAG learning frame-
work based on Brain Networks for fMRI analysis. DABNet
adopts a brain network generator module, which harnesses
the DAG learning approach to transform the raw time-series
into effective brain connectivities. Experiments on two fMRI
datasets demonstrate the efficacy of DABNet. The generated
brain networks also highlight the prediction-related brain
regions and thus provide interpretations for predictions.

Index Terms— fMRI Analysis, Brain Network, Direct
Acyclic Graph Generation, Graph Neural Network

1. INTRODUCTION

Human brains play a vital role in human neurological sys-
tems. Recently, there exists abundant research progresses in
neuroscience research showing that neural circuits are key to
understanding the differences in brain functioning between
populations [1]. Functional magnetic resonance imaging
(fMRI) is one of the most commonly used imaging modali-
ties to investigate brain function and organization [2]. There
has been a significant increase of interest in utilizing fMRI
for brain connectome analysis, which focuses on compre-
hending the brain organizations and their changes, as well as
identifying disease-specific biomarkers.

Current brain network analyses are typically composed of
two steps [3]: The first step is generating functional brain net-
works from individuals’ fMRI data. Then, the obtained brain
connectivity measures between nodes are used to classify in-
dividuals or predict clinical outcomes. However, these brain
network generation methods focus on capturing the statistical
associations between ROIs. Since correlation does not im-
ply causation, they provide insufficient understandings of the
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complicated brain organization. Furthermore, the generated
brain networks based on correlations can be noisy and inac-
curate, which hinders the identifications of biological insights
on the structure of brain networks and increase the time com-
plexity of the downstream analysis.

Researchers have proposed a particular type of brain net-
work, effective brain networks [4], which can overcome these
two flaws. This type of brain network aims to infer causal re-
lationships among brain regions and produce sparse connec-
tions [5, 6]. However, these methods often model the brain
connectivity with overly simplistic assumptions, such as the
absence of unmeasured confounding and lack of temporal de-
pendencies. In reality, such assumptions are hard to satisfy.
Moreover, existing works based on constraint- or score-based
methods for brain connectivity generation [5, 7] are usually
evaluated on a selected ROI subset (less than 50 regions) for
their difficulty on scalability. But in real application scenar-
ios, there exist hundreds of ROIs, and directly adopting these
methods could take several hours, or even several days for
each instance. Till now, generating effective and interpretable
brain networks remains a challenging problem.

Fortunately, there is a recent trend in the machine learning
community to view structure learning as a directed acyclic
graphs (DAG) generation problem, which can be further con-
verted to a continuous optimization constrained by additional
regularizations to ensure acyclicity [8, 9]. Then, it can be
solved with gradient-based techniques, which are efficient
and can be combined with other deep learning models.

Motivated by these studies, we propose DABNet, a brain
network generation approach via modeling the connections
among ROIs as DAGs to identify effective brain connectivi-
ties and predict the target in an end-to-end fashion. To tackle
the inscalability issue, we leverage the recently proposed
approach [9] to recast the DAG structure learning task as a
gradient-based optimization problem, which benefits from
GPU acceleration and scales to hundreds of brain regions.

We evaluate DABNet on two real-world fMRI bench-
marks datasets [10, 11] for the important and accessible task
of biological sex prediction. The results illustrate that DAB-
Net achieves competitive performance when compared with
advanced baselines. Besides, DABNet is able to characterize
the most important brain regions for the target tasks, justify-
ing its efficacy on providing clinically useful interpretations.



2. RELATED WORK

Functional Magnetic Resonance Imaging (fMRI) has been
widely used to discover the functional connectivity (FC) be-
tween different regions in the brain. Traditional methods
usually rely on hand-crafted features to infer the functional
connectivity [12, 13], which can often be time-consuming.
With the development of graph neural networks (GNNs),
much attention has been paid to GNN models for fMRI-based
brain network analysis [14, 15]. One major advantage of
such models is that they can aggregate node features based on
graph structures and can be trained in an end-to-end fashion.

However, GNNs usually rely on a pre-defined graph struc-
tures, which are often absent for fMRI analysis. To tackle
this issue, some works directly use the brain networks con-
structed based on statistical correlations [16], but such corre-
lations can be noisy and hurt the performance on downstream
tasks. There are also some works that jointly generate the
brain networks and predict for the downstream tasks. But
they generates brain networks based on structure similarity
from GNNs [17] or attention weights [18], which still cannot
well characterize the complex relationships among ROIs.

On the other hand, learning Directed Acyclic Graphs
(DAGs) from data is a fundamental problem in machine learn-
ing. Traditional methods include constraint- and score-based
techniques [19], but the major drawback is the computational
inefficiency, as the search problem is NP-hard [20]. To re-
duce the computational overhead, [8, 9, 21] recasts the DAG
search problem as a continuous optimization task, where an
additional penalty term is used to enforce the acyclicity of the
generated graph. As recent works demonstrate the existence
of causal links among ROIs [6], it is possible to leverage SL
approaches to capture the relations among different ROIs.

3. METHOD

In this section, we first introduce the task studied in this paper,
then introduce DAG learning techniques to generate effective
brain networks. Finally, we discuss the overall pipeline.

3.1. Task Definition
In this study, the input X ∈ Rn×v×t is the BOLD time-series
for ROIs, where n is the sample size, v is the number of ROIs
and t is the length of time-series. The target output for each
time-series consists of two terms: (1) a functional brain net-
work A ∈ Rv×v (i.e., brain connectivity matrix) for each
sample x ∈ Rv×t, which serves as an intermediate result to
the end-to-end framework. (2) the prediction Y ∈ Rn×|C|,
where |C| is the number of classes.

3.2. DAG Structure Learning from BOLD Signals
⋄ Formulation. For the input BOLD time-series x, generat-
ing DAGs to capture the effective connectivities is not easy
since the current signal of a brain region is related to previous
signals from both itself and other ROIs [22]. In this work,

we hypothesize that different ROIs influence one another in
both contemporaneous and time-lagged manner, and harvest
the standard SVAR model [23] for the DAG generation pro-
cess. In the t-th step, the SVAR model can be expressed as

xt = A⊤xt +A⊤
1 xt−1 + . . .+A⊤

p xt−p + ϵt. (1)

To interpret Eq. 1, we note that xt is an v-dimensional vec-
tor that represents the signal of all ROIs at the t-th step, ϵt
is a noise vector with independent elements [8], and p is the
autoregressive order. Besides, Ai (i = 1, 2, . . . , p) repre-
sent weighted adjacency matrices with nonzero entries corre-
sponding to the time-lagged relations, and A is the directed
acyclic graph (DAG) to model the effective relations among
ROIs. To effectively model the BOLD signals among differ-
ent time steps, we further assume the DAG structure is time-
invariant and transform Eq. 1 into the matrix form as

X = A⊤X +A⊤
1 X1 + . . .+A⊤

p Xp +E, (2)

where X is a v× (T +1−p) matrix with each column stands
for one timestep, X1, . . . ,Xp are time-lagged versions of X .
Denote Z = [X1| · · · |Xp] and B =

[
A⊤

1 | · · · |A⊤
p

]⊤
, we

obtain the compact form of Eq. 2 as X = A⊤X+B⊤Z+E.
⋄ Optimization Objective for Vanilla DAG Learning. To
learn the DAG structure for brain networks with X,Z, we
aim to estimate the matrix A and B to satisfy Eq. 2 as well
as the directed acyclic constraint (for A only).

This indeed creates a constraint optimization problem as

min
A,B

ℓ(A,B) =
1

2
∥X−A⊤X−B⊤Z∥2F s.t. A is acyclic. (3)

Here ℓ(A,B) is the objective for DAG generation. Directly
optimizing Eq. 3 is difficult due to the hard acyclicity con-
straint [8]. To circumvent this issue, we reformulate the above
task to an unconstrained optimization problem via applying
additional soft sparsity and acyclic regularization for learning
a DAG equivalent to the ground truth DAG [9].

The overall objective is defined as

min
A,B

S(A,B;X) = L(A,B;X) + λ1RDAG(A)

+ λ2 (Rsparse(A) +Rsparse(B)) (4)

where

L(A,B;X) = −1

2

v∑
i=1

log

(
T+1−p∑
j=1

(
Xi,j −A⊤

i X:,j −B⊤
i Z:,j

)2)
+ log | det(I −A)|+ const. (5)

L(A,B;X) is the learning objective of the maximum log-
likelihood estimator of X,Z following multivariate Gaussian
distribution. In addition, we use l1 penalty to approximate the
sparse constraint and use the DAG constraint proposed in [8]
as the realization of RDAG which can be written as

Rsparse(A) = ∥A∥1, RDAG(A) = tr
(
eA◦A)

− v. (6)

By optimizing A and B with the above equations, we are able
to obtain the brain network A, which will be also used in the
downstream task described as follows.



3.3. GNN for Brain Networks

With the generated brain connectivity A, GNNs have been
widely used in fMRI-based brain network analysis [14]. In
this study, we leverage the modified k-layer graph convo-
lutional network architecture [24] to accommodate nega-
tive edges in A for clinical prediction tasks. Let Θ(k) =

(θ
(k)
1 ,θ

(k)
2 , . . . ,θ

(k)
v ) be the matrix of all node embedding

vectors at step k, the update rule for node embedding is

Θ(k) = ReLU
(
Â+Θ

(k−1)W
(k)
+

)
, (7)

where Â+ = D
− 1

2
+ (I +ReLU(A))D

− 1
2

+ stands for the nor-
malized adjacency matrices for positive edges only. D+ is the
diagonal matrices representing node degrees. W (k) stands
for learnable parameters in convolutional layers and Θ(0) =
F is the connection vector that stands for Pearson correlation
scores between its time-series with all the nodes contained in
the brain network, which is suggested by [15]. We concate-
nate all the node embedding from the last GNN layer Θ(k)

and use an additional MLP layer for the target prediction as

ŷ = σ
(
MLP

(
BatchNorm1D(∥vj=1θ

(k)
j )

))
, (8)

where ŷ is the probability simplex of the prediction and σ(·)
is the softmax function. We finally use the cross-entropy loss
Ltgt = ℓCE(ŷ, y) to train the GNN model.

3.4. End-to-end Training

It is worth noting that the GNN classifier module and DAG
structural learning module can be trained in an end-to-end
way, as the label y and the task-oriented graphs are learned
simultaneously. Moreover, the brain networks of the test set
are inferred separately from the training set. Thus, we elimi-
nate the issue of information leakage, as no information from
the test set has been used during the tuning process.

4. EXPERIMENTS

In this section, we conduct extensive experiments to answer
the following three questions: RQ1: How does DABNet per-
form as compared with state-of-the-art methods? RQ2: How
do the key designs in DABNet affect performance? RQ3:
Does the generated brain connectivity by DABNet offers rea-
sonable interpretability for target prediction tasks?

4.1. Experiment Setup
⋄ Dataset. We conduct experiments using two real-world
fMRI datasets: (a) Philadelphia Neuroimaging Cohort (PNC)
is curated from the University of Pennsylvania and the Chil-
dren’s Hospital of Philadelphia. It includes a population-
based sample of individuals aged 8–21 years [10]. After
quality control, we use rs-fMRI data of 503 subjects, with 289
of them being females. Each sample contains 264 nodes col-
lected through 120 time steps. (b) Adolescent Brain Cognitive

Development Study (ABCD) [11] is one of the largest public
fMRI datasets. This study recruited children aged 9–10 years
in the U.S. Each child is followed into early adulthood, with
repeated imaging scans and cognitive testing. After quality
control, ABCD includes fMRI data of 7901 children, and
3961 among them are female. Each sample contains 360
nodes with 512 time points.
⋄ Task. We choose biological sex prediction as the evaluation
task since it is an essential aspect of adolescent development
and serves as a critical task for ABCD and PNC. We split the
train/valid/test dataset to 7:1:2 for evaluation.
⋄ Evaluation Metrics. As the label distributions of both PNC
and ABCD datasets are balanced, we use both AUROC and
accuracy as the performance metrics. For accuracy, we use
0.5 as the threshold after obtaining the predicted result.
⋄ Implementations. We implement our model in PyTorch1.
We use Adam as the optimizer with the learning rate 1e-4.
The key hyperparameters in DABNet include regularization
weight λ1, λ2 and the number of steps p in SVAR model. Fol-
lowing common practice [9], we set λ1 = 10, λ2 = 1 without
further tuning. Following [7], we set p = 3 as further increas-
ing p will introduce more learnable parameters which causes
OOM error for large datasets (ABCD).

4.2. Baselines
We compare DABNet with the following baselines:

(a) Time-series Model. We use bi-GRU as the baseline to
encode BOLD time-series without modeling brain networks.

(b) Statistical Methods for Brain Networks. It sets the
weight in adjacency matrices as Pearson correlation of BOLD
signals, named as GNN-Pearson.

(c) Deep Learning Models for Brain Networks. Brain-
netCNN [25], BrainGNN [14], and BrainGB [15] are three
representative methods that develops advanced neural net-
works with the fixed correlation-based functional brain net-
works to model the relations among different ROIs.

(d) Models with Learnable Brain Network Genera-
tion. LDS [26], FBNetGen [17] are two baselines which gen-
erate brain networks and perform predictions jointly. LDS
learns graph structures and model parameters through bilevel
optimization. FBNetGen learns task-aware brain networks
based on embedding similarities. Note that we use the same
GNN classifier to adapt these methods for target tasks.

4.3. Main Experiment (RQ1)

From the experimental results shown in Table 1, we observe
that DABNet outperforms all the baselines for both PNC and
ABCD dataset with 3% and 2% performance gain in terms
of accuracy. This is because ABCD is a much larger dataset
(16 times larger than PNC) with plenty of labels, and directly
using embedding similarity is sufficient to learn the relations

1https://pytorch.org/
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(a) Male (Label 0) (b) Female (Label 1)

Fig. 1: Visualizations of predominant connectivities generated via DABNet on different biological sexes. Edges spanning
multiple neural systems are colored gray, whereas those linking nodes within the same neural system are colored appropriately.

Type Method
Dataset: PNC Dataset: ABCD

AUROC Accuracy AUROC Accuracy

Time-series bi-GRU 65.1 ± 3.5 58.1 ± 2.4 51.2 ± 1.0 49.9 ± 0.8

Statistical GNN-Pearson 76.5 ± 2.7 69.2 ± 1.8 91.0 ± 0.5 82.4 ± 0.5

Deep Model
BrainnetCNN [25] 78.5 ± 3.2 71.9 ± 4.9 93.5 ± 0.3 85.7 ± 0.8

BrainGNN [14] 77.5 ± 3.2 70.6 ± 4.8 OOM OOM
BrainGB [15] 76.6 ± 5.0 69.8 ± 4.2 91.8 ± 0.3 83.1 ± 0.9

Learnable
Graph

LDS [26] 78.2 ± 3.8 70.8 ± 6.2 90.7 ± 0.3 82.5 ± 0.9
FBNetGen [17] 80.1 ± 3.3 72.5 ± 2.3 93.8 ± 0.7 86.2 ± 1.2

Ours DABNet 82.5 ± 1.4 76.0 ± 1.6 94.0 ± 0.2 87.9 ± 0.4

Table 1: Performance (in %) comparison with different types
of baselines. Note that OOM means out-of-memory error.
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Fig. 2: Effect of different components (a, b) and running time
(in hours) (c) of DABNet.

among ROIs. Conversely, when labeled data is limited, FB-
NetGen cannot perform as well as DABNet. On the other
hand, directly using statistical correlations as brain connec-
tivity is insufficient to capture the relationships among ROIs,
as they achieve suboptimal results on two datasets. Design-
ing more complicated GNN architectures does not address
this challenge — baselines with carefully designed GNN
models [15, 25] still underperform DABNet on both datasets.
These results justify the advantage of DABNet for generating
more effective brain networks to benefit downstream tasks.

4.4. Ablation Studies and Efficiency Analysis (RQ2)
We further examine the effect of key modules in our graph
generation module (Section 3.2). From Fig 2a, we find that
when the time-lagged length p is larger, the performance gain
is more significant. However, this will also lead to larger
memory overhead. As a result, we keep p = 3 to balance
between the performance and efficiency. From Fig 2b, we
demonstrate that the regularization of DAG (λ2) and spar-
sity (λ2), as well as the strategy for handling negative weight
(Eq. 7) are beneficial for target tasks. Removing any of them
hurts the performance. From Fig 2c, we illustrates that DAB-
Net is efficient when compared with other structure learning
approaches, thanks to the GPU acceleration. On the contrary,
Conventional DAG approaches (shown as DAG in Fig 2c) is
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Fig. 3: Generated brain networks of DABNet and baselines.

inefficient and takes more than 1 day for large datasets.

4.5. Case Studies (RQ3)
We visualize the connections of the learned brain networks
between two biological sex groups in Fig. 1. Specifically,
we divide the learned graphs based on their class labels and
calculate an average network by averaging weights of each
edge within the same class. The top 100 predominant edges
are visualized using the BrainNet Viewer [27]. By comparing
Fig. 1(a) and Fig. 1(b), we observe that the main difference
in connections between two groups lies in the Default Mode
Network (DMN), the Auditory Network (Aud) and the Visual
Network (Vis), which is in line with previous studies [28] that
ROIs with significant biological sex differences are located in
the DMN and Aud systems.

Besides, we plot the generated brain network of DABNet
and baselines in Fig 3. From the result, we find that both
Pearson correlation graph and FBNetGen are suboptimal —
the Pearson correlation graph (Fig. 3b) is too dense and con-
tains many negative edges. The network generated by FBNet-
Gen (Fig. 3c) is almost fully-connected, as all the edges have
similar weight. In contrast, DABNet produces sparse connec-
tions among different ROIs and preserves the edge strength
patterns observed in Pearson graphs, indicating that DABNet
can highlight meaningful signals in the brain connectivities.

5. CONCLUSION

In this paper, we propose DABNet, an effective brain connec-
tivity generation approach to support clinical predictive tasks.
In particular, we leverage the DAG learning techniques to en-
code the relations among ROIs. Our end-to-end framework
is efficient with GPU acceleration. Experiments on two real-
world datasets illustrate the better performance of DABNet
when compared with advanced baselines, and demonstrate
valuable neurological interpretations on downstream tasks.
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