
CS 373 Lecture 2: Dynamic Programming Fall 2002

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I:

Introduction and Reason in Common Sense (1905)

The “Dynamic-Tension r©” bodybuilding program takes only 15 minutes a day

in the privacy of your room.

— Charles Atlas

2 Dynamic Programming (September 5 and 10)

2.1 Exponentiation (Again)

Last time we saw a “divide and conquer” algorithm for computing the expression an, given two
integers a and n as input: first compute abn/2c, then adn/2e, then multiply. If we computed both
factors abn/2c and adn/2e recursively, the number of multiplications would be given by the recurrence

T (1) = 0, T (n) = T (bn/2c) + T (dn/2e) + 1.

The solution is T (n) = n − 1, so the näıve recursive algorithm uses exactly the same number of
multiplications as the näıve iterative algorithm.1

In this case, it’s obvious how to speed up the algorithm. Once we’ve computed abn/2c, we
we don’t need to start over from scratch to compute abn/2c; we can do it in at most one more
multiplication. This same simple idea—don’t solve the same subproblem more than once—
can be applied to lots of recursive algorithms to speed them up, often (as in this case) by an
exponential amount. The technical name for this technique is dynamic programming.

2.2 Fibonacci Numbers

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano2, are defined as follows: F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2. The recursive definition of Fibonacci numbers
immediately gives us a recursive algorithm for computing them:

RecFibo(n):

if (n < 2)
return n

else
return RecFibo(n− 1) + RecFibo(n− 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm requires
only a constant number of steps: one comparison and possibly one addition. If T (n) represents the
number of recursive calls to RecFibo, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! In fact, it’s fairly easy to show

by induction that T (n) = 2Fn+1 − 1 . In other words, computing Fn using this algorithm takes

more than twice as many steps as just counting to Fn!

1But less time. If we assume that multiplying two n-digit numbers takes O(n log n) time, then the iterative
algorithm takes O(n2 log n) time, but this recursive algorithm takes only O(n log2 n) time.

2Literally, “Leonardo, son of Bonacci, of Pisa”.

1

CS 373 Lecture 2: Dynamic Programming Fall 2002

Another way to see this is that the RecFibo is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must
call RecRibo(1) (which returns 1) exactly Fn times. A quick inductive argument implies that
RecFibo(0) is called exactly Fn−1 times. Thus, the recursion tree has Fn + Fn−1 = Fn+1 leaves,
and therefore, because it’s a full binary tree, it must have 2Fn+1 − 1 nodes. (See Homework Zero!)

2.3 Aside: The Annihilator Method

Just how slow is that? We can get a good asymptotic estimate for T (n) by applying the annihilator
method, described in the ‘solving recurrences’ handout:

〈T (n + 2)〉 = 〈T (n + 1)〉+ 〈T (n)〉+ 〈1〉
〈T (n + 2)− T (n + 1)− T (n)〉 = 〈1〉

(E2 −E − 1) 〈T (n)〉 = 〈1〉
(E2 −E − 1)(E − 1) 〈T (n)〉 = 〈0〉

The characteristic polynomial of this recurrence is (r2 − r − 1)(r − 1), which has three roots:

φ = 1+
√

5
2
≈ 1.618, φ̂ = 1−

√
5

2
≈ −0.618, and 1. Thus, the generic solution is

T (n) = αφn + βφ̂n + γ.

Now we plug in a few base cases:

T (0) = 1 = α + β + γ

T (1) = 1 = αφ + βφ̂ + γ

T (2) = 3 = αφ2 + βφ̂2 + γ

Solving this system of linear equations gives us

α = 1 +
1√
5
, β = 1− 1√

5
, γ = −1,

so our final solution is

T (n) =

(

1 +
1√
5

)

φn +

(

1− 1√
5

)

φ̂n − 1 = Θ(φn).

Actually, if we only want an asymptotic bound, we only need to show that α 6= 0, which is
much easier than solving the whole system of equations. Since φ is the largest characteristic root
with non-zero coefficient, we immediately have T (n) = Θ(φn).

2.4 Memo(r)ization and Dynamic Programming

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same Fibonacci
numbers over and over and over. A single call to RecursiveFibo(n) results in one recursive call
to RecursiveFibo(n − 1), two recursive calls to RecursiveFibo(n − 2), three recursive calls
to RecursiveFibo(n − 3), five recursive calls to RecursiveFibo(n − 4), and in general, Fk−1

recursive calls to RecursiveFibo(n − k), for any 0 ≤ k < n. For each call, we’re recomputing
some Fibonacci number from scratch.

We can speed up the algorithm considerably just by writing down the results of our recursive
calls and looking them up again if we need them later. This process is called memoization.3

3“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”

2

CS 373 Lecture 2: Dynamic Programming Fall 2002

MemFibo(n):

if (n < 2)
return n

else
if F [n] is undefined

F [n]←MemFibo(n− 1) + MemFibo(n− 2)
return F [n]

If we actually trace through the recursive calls made by MemFibo, we find that the array F []
gets filled from the bottom up: first F [2], then F [3], and so on, up to F [n]. Once we realize this,
we can replace the recursion with a simple for-loop that just fills up the array in that order, instead
of relying on the complicated recursion to do it for us. This gives us our first explicit dynamic

programming algorithm.

IterFibo(n):

F [0]← 0
F [1]← 1
for i← 2 to n

F [i]← F [i− 1] + F [i− 2]
return F [n]

IterFibo clearly takes only O(n) time and O(n) space to compute Fn, an exponential speedup
over our original recursive algorithm. We can reduce the space to O(1) by noticing that we never
need more than the last two elements of the array:

IterFibo2(n):

prev← 1
curr← 0
for i← 1 to n

next← curr + prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1.)
But even this isn’t the fastest algorithm for computing Fibonacci numbers. There’s a faster

algorithm defined in terms of matrix multiplication, using the following wonderful fact:

[

0 1
1 1

] [

x
y

]

=

[

y
x + y

]

In other words, multiplying a two-dimensional vector by the matrix [0 1
1 1] does exactly the same

thing as one iteration of the inner loop of IterFibo2. This might lead us to believe that multiplying
by the matrix n times is the same as iterating the loop n times:

[

0 1
1 1

]n [

1
0

]

=

[

Fn−1

Fn

]

.

A quick inductive argument proves this. So if we want to compute the nth Fibonacci number, all
we have to do is compute the nth power of the matrix [0 1

1 1].

3

CS 373 Lecture 2: Dynamic Programming Fall 2002

We saw in the previous lecture, and the beginning of this lecture, that computing the nth
power of something requires only O(log n) multiplications. In this case, that means O(log n) 2× 2
matrix multiplications, but one matrix multiplications can be done with only a constant number
of integer multiplications and additions. By applying our earlier dynamic programming algorithm
for computing exponents, we can compute Fn in only O(log n) steps.

This is an exponential speedup over the standard iterative algorithm, which was already an
exponential speedup over our original recursive algorithm. Right?

2.5 Uh. . . wait a minute.

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is
approximately n log10 φ ≈ n/5 decimal digits long, or n log2 φ ≈ 2n/3 bits. So we can’t possibly
compute Fn in logarithmic time — we need Ω(n) time just to write down the answer!

I’ve been cheating by assuming we can do arbitrary-precision arithmetic in constant time. As
we discussed last time, multiplying two n-digit numbers takes O(n log n) time. That means that
the matrix-based algorithm’s actual running time is given by the recurrence

T (n) = T (bn/2c) + O(n log n),

which solves to T (n) = O(n log n) by the Master Theorem.
Is this slower than our “linear-time” iterative algorithm? No! Addition isn’t free, either. Adding

two n-digit numbers takes O(n) time, so the running time of the iterative algorithm is O(n2). (Do
you see why?) So our matrix algorithm really is faster than our iterative algorithm, but not
exponentially faster.

Incidentally, in the recursive algorithm, the extra cost of arbitrary-precision arithmetic is over-
whelmed by the huge number of recursive calls. The correct recurrence is

T (n) = T (n− 1) + T (n− 2) + O(n),

which still has the solution O(φn) by the annihilator method.

2.6 The Pattern

Dynamic programming is essentially recursion without repetition. Developing a dynamic program-
ming algorithm generally involves two separate steps.

1. Formulate the problem recursively. Write down a formula for the whole problem as a
simple combination of the answers to smaller subproblems.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that
starts with the base cases of your recurrence and works its way up to the final solution by
considering the intermediate subproblems in the correct order.

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if
you try to build up answers in the wrong order, your algorithm won’t work!

Dynamic programming algorithms need to store the results of intermediate subproblems. This
is often but not always done with some kind of table.

4

CS 373 Lecture 2: Dynamic Programming Fall 2002

2.7 Edit Distance

The edit distance between two words is the minimum number of letter insertions, letter deletions,
and letter substitutions required to transform one word into another. For example, the edit distance
between FOOD and MONEY is at most four:

FOOD → MOOD → MON∧D → MONED → MONEY

A better way to display this editing process is to place the words one above the other, with a gap
in the first word for every insertion, and a gap in the second word for every deletion. Columns with
two different characters correspond to substitutions. Thus, the number of editing steps is just the
number of columns that don’t contain the same character twice.

F O O D

M O N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance is
exactly four. Unfortunately, this is not so easy in general. Here’s a longer example, showing that
the distance between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

A L G O R I T H M

A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two strings,
we first need to develop a recursive definition. Let’s say we have an m-character string A and an
n-character string B. Then define E(i, j) to be the edit distance between the first i characters of A
and the first j characters of B. The edit distance between the entire strings A and B is E(m,n).

This gap representation for edit sequences has a crucial “optimal substructure” property. Sup-
pose we have the gap representation for the shortest edit sequence for two strings. If we remove
the last column, the remaining columns must represent the shortest edit sequence for
the remaining substrings. We can easily prove this by contradiction. If the substrings had a
shorter edit sequence, we could just glue the last column back on and get a shorter edit sequence
for the original strings.

There are a couple of obvious base cases. The only way to convert the empty string into a string
of j characters is by doing j insertions, and the only way to convert a string of i characters into
the empty string is with i deletions:

E(i, 0) = i, E(0, j) = j.

In general, there are three possibilities for the last column in the shortest possible edit sequence:

• Insertion: The last entry in the bottom row is empty. In this case, E(i, j) = E(i− 1, j) + 1.

• Deletion: The last entry in the top row is empty. In this case, E(i, j) = E(i, j − 1) + 1.

• Substitution: Both rows have characters in the last column. If the characters are the same,
we don’t actually have to pay for the substitution, so E(i, j) = E(i−1, j−1). If the characters
are different, then E(i, j) = E(i− 1, j − 1) + 1.

To summarize, the edit distance E(i, j) is the smallest of these three possibilities:

E(i, j) = min

E(i− 1, j) + 1
E(i, j − 1) + 1
E(i− 1, j − 1) +

[

A[i] 6= B[j]
]

5

CS 373 Lecture 2: Dynamic Programming Fall 2002

[The bracket notation
[

P
]

denotes the indicator variable for the logical proposition P . Its value is
1 if P is true and 0 if P is false. This is the same as the C/C++/Java expression P ? 1 : 0.]

If we turned this recurrence directly into a recursive algorithm, we would have the following
horrible double recurrence for the running time:

T (m, 0) = T (0, n) = O(1), T (m,n) = T (m,n− 1) + T (m− 1, n) + T (n− 1,m− 1) + O(1).

Yuck!! The solution for this recurrence is an exponential mess! I don’t know a general closed form,
but T (n, n) = Θ((1 +

√
2)n). Obviously a recursive algorithm is not the way to go here.

Instead, let’s build an m × n table of all possible values of E(i, j). We can start by filling in
the base cases, the entries in the 0th row and 0th column, each in constant time. To fill in any
other entry, we need to know the values directly above it, directly to the left, and both above and
to the left. If we fill in our table in the standard way—row by row from top down, each row from
left to right—then whenever we reach an entry in the matrix, the entries it depends on are already
available.

EditDistance(A[1 ..m], B[1 .. n]):

for i← 1 to m
Edit[i, 0]← i

for j ← 1 to n
Edit[0, j] ← j

for i← 1 to m
for j ← 1 to n

if A[i] = B[j]
Edit[i, j]← min

{

Edit[i− 1, j] + 1,
Edit[i, j − 1] + 1,
Edit[i− 1, j − 1]

}

else
Edit[i, j]← min

{

Edit[i− 1, j] + 1,
Edit[i, j − 1] + 1,
Edit[i− 1, j − 1] + 1

}

return Edit[m,n]

Since there are Θ(n2) entries in the table, and each entry takes Θ(1) time once we know its
predecessors, the total running time is Θ(n2).

Here’s the resulting table for ALGORITHM → ALTRUISTIC. Bold numbers indicate places where
characters in the two strings are equal. The arrows represent the predecessor(s) that actually define
each entry. Each direction of arrow corresponds to a different edit operation: horizontal=deletion,
vertical=insertion, and diagonal=substitution. Bold diagonal arrows indicate “free” substitutions
of a letter for itself. A path of arrows from the top left corner to the bottom right corner of this
table represents an optimal edit sequence between the two strings. There can be many such paths.

6

CS 373 Lecture 2: Dynamic Programming Fall 2002

A L G O R I T H M
0→1→2→3→4→5→6→7→8→ 9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→ 8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→ 7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→ 6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→ 6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→ 6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→ 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→ 6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→ 6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths
through this table from the top left to the bottom right, so there are three optimal edit sequences:

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

2.8 Danger! Greed kills!

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is look for the best first
step, take it, and then continue. For example, a greedy algorithm for the edit distance problem
might look for the longest common substring of the two strings, match up those substrings (since
those substitutions dont cost anything), and then recursively look for the edit distances between
the left halves and right halves of the strings. If there is no common substring—that is, if the two
strings have no characters in common—the edit distance is clearly the length of the larger string.

If this sounds like a hack to you, pat yourself on the back. It isn’t even close to the correct
solution. Nevertheless, for many problems involving dynamic programming, many student’s first
intuition is to apply a greedy strategy. This almost never works; problems that can be solved
correctly by a greedy algorithm are very rare. Everyone should tattoo the following sentence on
the back of their hands, right under all the rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

Well. . . hardly ever. Later in the semester we’ll see correct greedy algorithms for minimum
spanning trees and shortest paths.

7

CS 373 Lecture 2: Dynamic Programming Fall 2002

2.9 Optimal Binary Search Trees

You all remember that the cost of a successful search in a binary search tree is proportional to the
depth of the target node plus one. As a result, the worst-case search time is proportional to the
height of the tree. To minimize the worst-case search time, the height of the tree should be as small
as possible; ideally, the tree is perfectly balanced.

In many applications of binary search trees, it is more important to minimize the total cost of
several searches than to minimize the worst-case cost of a single search. If x is a more ‘popular’
search target than y, we can save time by building a tree where the depth of x is smaller than the
depth of y, even if that means increasing the overall height of the tree. A perfectly balanced tree
is not the best choice if some items are significantly more popular than others. In fact, a totally
unbalanced tree of depth Ω(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of n keys
A[1 .. n] and an array of corresponding access frequencies f [1 .. n]. Over the lifetime of the search
tree, we will search for the key A[i] exactly f [i] times. Our task is to build the binary search tree
that minimizes the total search time.

Before we think about how to solve this problem, we should first come up with the right way
to describe the function we are trying to optimize! Suppose we have a binary search tree T . Let
depth(T, i) denote the depth of the node in T that stores the key A[i]. Up to constant factors, the
total search time S(T) is given by the following expression:

S(T) =
n

∑

i=1

(

depth(T, i) + 1
)

· f [i]

This expression is called the weighted external path length of T . We can trivially split this expression
into two components:

S(T) =

n
∑

i=1

f [i] +

n
∑

i=1

depth(T, i) · f [i].

The first term is the total number of searches, which doesn’t depend on our choice of tree at all.
The second term is called the weighted internal path length of T .

We can express S(T) in terms of the recursive structure of T as follows. Suppose the root of T
contains the key A[r], so the left subtree stores the keys A[1 .. r − 1], and the right subtree stores
the keys A[r + 1 .. n]. We can actually define depth(T, i) recursively as follows:

depth(T, i) =

depth(left(T), i) + 1 if i < r

0 if i = r

depth(right(T), i) + 1 if i > r

If we plug this recursive definition into our earlier expression for S(T), we get the following:

S(T) =

n
∑

i=1

f [i] +

r−1
∑

i=1

(

depth(left(T), i) + 1
)

· f [i] +

r−1
∑

i=1

(

depth(right(T), i) + 1
)

· f [i]

This looks complicated, until we realize that the second and third look exactly like our initial
expression for S(T)!

S(T) =
n

∑

i=1

f [i] + S(left(T)) + S(right(T))

8

CS 373 Lecture 2: Dynamic Programming Fall 2002

Now our task is to compute the tree Topt that minimizes the total search time S(T). Suppose
the root of Topt stores key A[r]. The recursive definition of S(T) immediately implies that the left
subtree left(Topt) must also be the optimal search tree for the keys A[1 .. r−1] and access frequencies
f [1 .. r − 1]. Similarly, the right subtree right(Topt) must also be the optimal search tree for the
keys A[r + 1 .. n] and access frequencies f [r + 1 .. n]. Thus, once we choose the correct key to store
at the root, the recursion fairy will automatically construct the rest of the optimal tree for us!

More formally, let S(i, j) denote the total search time for the optimal search tree containing
the subarray A[1 .. j]; our task is to compute S(1, n). To simplify notation a bit, let F (i, j) denote
the total frequency counts for all the keys in the subarray A[i .. j]:

F (i, j) =

j
∑

k=i

f [k]

We now have the following recurrence:

S(i, j) =

0 if j = i− i

F (i, j) + min
1≤r≤n

(

S(1, r − 1) + S(r + 1, n)
)

otherwise

The base case might look a little weird, but all it means is that the total cost for searching an
empty set of keys is zero. We could use the base cases S(i, i) = f [i] instead, but this would lead
to extra special cases when r = 1 or r = n. Also, the F (i, j) term is outside the max because it
doesn’t depend on the root index r.

Now, if we try to evaluate this recurrence directly using a recursive algorithm, the running time
will have the following evil-looking recurrence:

T (n) = Θ(n) +

n
∑

k=1

(

T (k − 1) + T (n− k)
)

The Θ(n) term comes from computing F (1, n), which is the total number of searches. A few minutes
of pain and suffering by a professional algorithm analyst gives us the solution T (n) = Θ(3n). Once
again, top-down recursion is not the way to go.

In fact, we’re not even computing the access counts F (i, j) as efficiently as we could. Even if
we memoize the answers in an array F [1 .. n][1 .. n], computing each value F (i, j) using a separate
for-loop requires a total of O(n3) time. A better approach is to turn the recurrence

F (i, j) =

{

f [i] if i = j

F (i, j − 1) + f [j] otherwise

into the following O(n2)-time dynamic programming algorithm:

InitF(f [1 .. n]):

for i← 1 to n
F [i, i− 1]← 0
for j ← i to n

F [i, j]← F [i, j − 1] + f [i]

This will be used as an initialization subroutine in our final algorithm.

9

CS 373 Lecture 2: Dynamic Programming Fall 2002

So now let’s compute the optimal search tree cost S(1, n) from the bottom up. We can store all
intermediate results in a table S[1 .. n, 0 .. n]. Only the entries S[i, j] with j ≥ i− 1 will actually be
used. The base case of the recursion tells us that any entry of the form S[i, i− 1] can immediately
be set to 0. For any other entry S[i, j], we can use the following algorithm fragment, which comes
directly from the recurrence:

ComputeS(i, j):

S[i, j]←∞
for r ← i to j

tmp← S[i, r − 1] + S[r + 1, j]
if S[i, j] > tmp

S[i, j]← tmp
S[i, j]← S[i, j] + F [i, j]

The only question left is what order to fill in the table.
Each entry S[i, j] depends on all entries S[i, r − 1] and S[r + 1, j] with i ≤ k ≤ j. In other

words, every entry in the table depends on all the entries directly to the left or directly below. In
order to fill the table efficiently, we must choose an order that computes all those entries before
S[i, j]. There are at least three different orders that satisfy this constraint. The one that occurs to
most people first is to scan through the table one diagonal at a time, starting with the trivial base
cases S[i, i − 1]. The complete algorithm looks like this:

OptimalSearchTree(f [1 .. n]):

InitF(f [1 .. n])
for i← 1 to n

S[i, i− 1]← 0
for d← 0 to n− 1

for i← 1 to n− d
ComputeS(i, i + d)

return S[1, n]

We could also traverse the array row by row from the bottom up, traversing each row from left to
right, or column by column from left to right, traversing each columns from the bottom up. These
two orders give us the following algorithms:

OptimalSearchTree2(f [1 .. n]):

InitF(f [1 .. n])
for i← n downto 1

S[i, i− 1]← 0
for j ← i to n

ComputeS(i, j)
return S[1, n]

OptimalSearchTree3(f [1 .. n]):

InitF(f [1 .. n])
for j ← 0 to n

S[j + 1, j]← 0
for i← j downto 1

ComputeS(i, j)
return S[1, n]

Three different orders to fill in the table S[i, j].

10

CS 373 Lecture 2: Dynamic Programming Fall 2002

No matter which of these three orders we actually use, the resulting algorithm runs in Θ(n3)
time and uses Θ(n2) space.

We could have predicted this from the original recursive formulation.

S(i, j) =

0 if j = i− i

F (i, j) + min
i≤r≤j

(

S(i, r − 1) + S(r + 1, j)
)

otherwise

First, the function has two arguments, each of which can take on any value between 1 and n, so we
probably need a table of size O(n2). Next, there are three variables in the recurrence (i, j, and r),
each of which can take any value between 1 and n, so it should take us O(n3) time to fill the table.

In general, you can get an easy estimate of the time and space bounds for any dynamic program-
ming algorithm by looking at the recurrence. The time bound is determined by how many values
all the variables can have, and the space bound is determined by how many values the parameters
of the function can have. For example, the (completely made up) recurrence

F (i, j, k, l,m) = min
0≤p≤i

max
0≤q≤j

k−m
∑

r=1

F (i− p, j − q, r, l − 1,m− r)

should immediately suggests a dynamic programming algorithm that uses O(n8) time and O(n5)
space. This rule of thumb immediately usually gives us the right time bound to shoot for.

But not always! In fact, the algorithm I’ve described is not the most efficient algorithm for
computing optimal binary search trees. Let R[i, j] denote the root of the optimal search tree for
A[i .. j]. Donald Knuth proved the following nice monotonicity property for optimal subtrees: if
we move either end of the subarray, the optimal root moves in the same direction or not at all, or
more formally:

R[i, j − 1] ≤ R[i, j] ≤ R[i + 1, j] for all i and j.

This (nontrivial!) observation leads to the following more efficient algorithm:

FasterOptimalSearchTree(f [1 .. n]):

InitF(f [1 .. n])
for i← n downto 1

S[i, i− 1]← 0
R[i, i− 1]← i
for j ← i to n

ComputeSandR(i, j)
return S[1, n]

ComputeSandR(f [1 .. n]):

S[i, j]←∞
for r ← R[i, j − 1] to j

tmp← S[i, r − 1] + S[r + 1, j]
if S[i, j] > tmp

S[i, j]← tmp
R[i, j]← r

S[i, j]← S[i, j] + F [i, j]

It’s not hard to see the r increases monotonically from i to n during each iteration of the outermost

for loop. Consequently, the innermost for loop iterates at most n times during a single iteration of
the outermost loop, so the total running time of the algorithm is O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1 .. n] are all stored at
the leaves, and intermediate pivot values are stored at the internal nodes. An algorithm due to
Te Ching Hu and Alan Tucker4 computes the optimal binary search tree in this setting in only

4T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J.

Applied Math. 21:514–532, 1971. For a slightly simpler algorithm with the same running time, see A. M. Garsia and
M. L. Wachs, A new algorithms for minimal binary search trees, SIAM J. Comput. 6:622–642, 1977. The original
correctness proofs for both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L.
Larmore, and Wojciech Rytter, Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer

Science, 180:309-324, 1997.

11

CS 373 Lecture 2: Dynamic Programming Fall 2002

O(n log n) time!

2.10 Optimal Triangulations of Convex Polygons

A convex polygon is a circular chain of line segments, arranged so none of the corners point inwards—
imagine a rubber band stretched around a bunch of nails. (This is technically not the best definition,
but it’ll do for now.) A diagonal is a line segment that cuts across the interior of the polygon from
one corner to another. A simple induction argument (hint, hint) implies that any n-sided convex
polygon can be split into n−2 triangles by cutting along n−3 different diagonals. This collection of
triangles is called a triangulation of the polygon. Triangulations are incredibly useful in computer
graphics—most graphics hardware is built to draw triangles incredibly quickly, but to draw anything
more complicated, you usually have to break it into triangles first.

A convex polygon and two of its many possible triangulations.

There are several different ways to triangulate any convex polygon. Suppose we want to find
the triangulation that requires the least amount of ink to draw, or in other words, the triangulation
where the total perimeter of the triangles is as small as possible. To make things concrete, let’s
label the corners of the polygon from 1 to n, starting at the bottom of the polygon and going
clockwise. We’ll need the following subroutines to compute the perimeter of a triangle joining three
corners using their x- and y-coordinates:

∆(i, j, k) :

return Dist(i, j) + Dist(j, k) + Dist(i, k)

Dist(i, j) :

return
√

(x[i] − x[j])2 + (y[i] − y[j])2

In order to get a dynamic programming algorithm, we first need a recursive formulation of
the minimum-length triangulation. To do that, we really need some kind of recursive definition of
a triangulation! Notice that in any triangulation, exactly one triangle uses both the first corner
and the last corner of the polygon. If we remove that triangle, what’s left over is two smaller
triangulations. The base case of this recursive definition is a ‘polygon’ with just two corners.
Notice that at any point in the recursion, we have a polygon joining a contiguous subset of the
original corners.

5

1

5

1
1 1

5

18

7

6

4

3

2 2

3

4
4

4

6

7

8
8 8

7

6

5
4

3

2
2

3

4

6

7
7

7

8
81

Two examples of the recursive definition of a triangulation.

Building on this recursive definition, we can now recursively define the total length of the
minimum-length triangulation. In the best triangulation, if we remove the ‘base’ triangle, what

12

CS 373 Lecture 2: Dynamic Programming Fall 2002

remains must be the optimal triangulation of the two smaller polygons. So we just have choose the
best triangle to attach to the first and last corners, and let the recursion fairy take care of the rest:

M(i, j) =

0 if j = i + 1

min
i<k<j

(

∆(i, j, k) + M(i, k) + M(k, j)
)

otherwise

What we’re looking for is M(1, n).
If you think this looks similar to the recurrence for S(i, j), the cost of an optimal binary search

tree, you’re absolutely right. We can build up intermediate results in a two-dimensional table,
starting with the base cases M [i, i + 1] = 0 and working our way up. We can use the following
algorithm fragment to compute a generic entry M [i, j]:

ComputeM(i, j):

M [i, j]←∞
for k ← i + 1 to j − 1

tmp← ∆(i, j, k) + M [i, k] + M [k, j]
if M [i, j] > tmp

M [i, j]← tmp

As in the optimal search tree problem, each table entry M [i, j] depends on all the entries directly
to the left or directly below, so we can use any of the orders described earlier to fill the table.

MinTriangulation:
for i← 1 to n− 1

M [i, i + 1]← 0
for d← 2 to n− 1

for i← 1 to n− d
ComputeM(i, i + d)

return M [1, n]

MinTriangulation2:
for i← n downto 1

M [i, i + 1]← 0
for j ← i + 2 to n

ComputeM(i, j)
return M [1, n]

MinTriangulation3:
for j ← 2 to n

M [j − 1, j]← 0
for i← j − 1 downto 1

ComputeM(i, j)
return M [1, n]

In all three cases, the algorithm runs in Θ(n3) time and uses Θ(n2) space, just as we should have
guessed from the recurrence.

2.11 It’s the same problem!

Actually, the last two problems are both special cases of the same meta-problem: computing
optimal Catalan structures. There is a straightforward one-to-one correspondence between the set
of triangulations of a convex n-gon and the set of binary trees with n − 2 nodes. In effect, these
two problems differ only in the cost function for a single node/triangle.

A polygon triangulation and the corresponding binary tree. (Squares represent null pointers.)

A third problem that fits into the same mold is the infamous matrix chain multiplication
problem. Using the standard algorithm, we can multiply a p × q matrix by a q × r matrix using

13

CS 373 Lecture 2: Dynamic Programming Fall 2002

O(pqr) arithmetic operations; the result is a p×r matrix. If we have three matrices to multiply, the
cost depends on which pair we multiply first. For example, suppose A and C are 1000× 2 matrices
and B is a 2× 1000 matrix. There are two different ways to compute the threefold product ABC:

• (AB)C: Computing AB takes 1000·2·1000 = 2 000 000 operations and produces a 1000×1000
matrix. Multiplying this matrix by C takes 1000 · 1000 · 2 = 2 000 000 additional operations.
So the total cost of (AB)C is 4 000 000 operations.

• A(BC): Computing BC takes 2 · 1000 · 2 = 4000 operations and produces a 2 × 2 matrix.
Multiplying A by this matrix takes 1000 ·2 ·2 = 4 000 additional operations. So the total cost
of A(BC) is only 8000 operations.

Now suppose we are given an array D[0 .. n] as input, indicating that each matrix Mi has
D[i− 1] rows and D[i] columns. We have an exponential number of possible ways to compute the
n-fold product

∏n
i=1 Mi. The following dynamic programming algorithm computes the number of

arithmetic operations for the best possible parenthesization:

MatrixChainMult:
for i← n downto 1

M [i, i + 1]← 0
for j ← i + 2 to n

ComputeM(i, j)
return M [1, n]

ComputeM(i, j):
M [i, j]←∞
for k ← i + 1 to j − 1

tmp← (D[i] ·D[j] ·D[k]) + M [i, k] + M [k, j]
if M [i, j] > tmp

M [i, j]← tmp

The derivation of this algorithm is left as a simple exercise.

14

