Property of any positional number system:
|
I will illustrate this fact by performing some addition and multiplication in the base 5 number system
The Base 5 positional number system:
|
Example of a Base-5 number:
What decimal value is represented by: 243(5) ?
Answer:
243(5) = 2 x 52 + 4 x 51 + 3 x 50
= 50 + 20 + 3 = 73(10)
|
Addition table for the Base-5 number system:
+ | 1 | 2 | 3 | 4
----+----+----+----+----
1 | 2 | 3 | 4 | 10
----+----+----+----+----
2 | 3 | 4 | 10 | 11
----+----+----+----+----
3 | 4 | 10 | 11 | 12
----+----+----+----+----
4 | 10 | 11 | 12 | 13
|
Adding Base-5 numbers works exactly like adding decimal numbers
The only difference is:
The carry happens when the total (sum) ≥ 5
Example:
Base-5 Decimal equivalent
324 89
+ 243 + 73
------- ------
1122 162
|
(I will do the addition
step-by-step in class)
Multiplication table for the Base-5 number system:
x | 1 | 2 | 3 | 4
----+----+----+----+----
1 | 1 | 2 | 3 | 4
----+----+----+----+----
2 | 2 | 4 | 11 | 13
----+----+----+----+----
3 | 3 | 11 | 14 | 22
----+----+----+----+----
4 | 4 | 13 | 22 | 31
|
Multiplying Base-5 numbers works exactly like adding decimal numbers
The only difference is:
The carry happens when the total (sum) ≥ 5
Example:
Base-5 Decimal equivalent
324 89
x 243 x 73
------- ------
2032 267
24110 6230
120300 -------
-------- 6497
201442
202042(5) = 2*55 + 0*54 + 1*53 + 4*52 + 4*51 + 2*50
= 2*3125 + 0 + 1*125 + 4*25 + 4*5 + 2
= 6250 + 125 + 100 + 20 + 2 = 6497(10)
|
(I will do the addition
step-by-step in class)