

Page 355

MASM: Directives & Pseudo-Opcodes Chapter Eight

Statements like

mov ax,0

and

add ax,bx

are meaningless to the microprocessor. As
arcane as these statements appear, they are still human readable forms of 80x86 instruc-
tions. The 80x86 responds to commands like B80000 and 03C3. An assembler is a program
that converts strings like

mov ax,0

 to 80x86 machine code like “B80000”. An assembly lan-
guage program consists of statements like

mov ax,0

. The assembler converts an assembly
language source file to machine code – the binary equivalent of the assembly language
program. In this respect, the assembler program is much like a compiler, it reads an ASCII
source file from the disk and produces a machine language program as output. The major
difference between a compiler for a high level language (HLL) like Pascal and an assem-
bler is that the compiler usually emits several machine instructions for each Pascal state-
ment. The assembler generally emits a single machine instruction for each assembly
language statement.

Attempting to write programs in machine language (i.e., in binary) is not particularly
bright. This process is very tedious, prone to mistakes, and offers almost no advantages
over programming in assembly language. The only major disadvantage to assembly lan-
guage over pure machine code is that you must first assemble and link a program before
you can execute it. However, attempting to assemble the code by hand would take far
longer than the small amount of time that the assembler takes to perform the conversion
for you.

There is another disadvantage to learning assembly language. An assembler like
Microsoft's Macro Assembler (MASM) provides a large number of features for assembly
language programmers. Although learning about these features takes a fair amount of
time, they are so useful that it is well worth the effort.

8.0 Chapter Overview

Like Chapter Six, much of the information in this chapter is reference material. Like
any reference section, some knowledge is essential, other material is handy, but optional,
and some material you may never use while writing programs. The following list outlines
the information in this text. A “•” symbol marks the essential material. The “

❏

” symbol
marks the optional and lesser used subjects.

• Assembly language statement source format

 ❏

The location counter
• Symbols and identifiers
• Constants
• Procedure declarations

 ❏

Segments in an assembly language program
• Variables
• Symbol types
• Address expressions (later subsections contain advanced material)

 ❏

Conditional assembly

 ❏

Macros

 ❏

Listing directives

 ❏

Separate assembly

8.1 Assembly Language Statements

Assembly language statements in a source file use the following format:

{Label} {Mnemonic {Operand}} {;Comment}

Thi d t t d ith F M k 4 0 2

Chapter 08

Page 356

Each entity above is a field. The four fields above are the

label field

, the

mnemonic field

,
the

operand field

, and the

comment field

.

The label field is (usually) an optional field containing a symbolic label for the current
statement. Labels are used in assembly language, just as in HLLs, to mark lines as the tar-
gets of GOTOs (jumps). You can also specify variable names, procedure names, and other
entities using symbolic labels. Most of the time the label field is optional, meaning a label
need be present only if you want a label on that particular line. Some mnemonics, how-
ever, require a label, others do not allow one. In general, you should always begin your
labels in column one (this makes your programs easier to read).

A mnemonic is an instruction name (e.g.,

mov

,

add

, etc.). The word mnemonic means
memory aid.

mov

is much easier to remember than the binary equivalent of the

mov

instruction! The braces denote that this item is optional. Note, however, that you cannot
have an operand without a mnemonic.

The mnemonic field contains an assembler instruction. Instructions are divided into
three classes: 80x86 machine instructions, assembler directives, and pseudo opcodes.
80x86 instructions, of course, are assembler mnemonics that correspond to the actual
80x86 instructions introduced in Chapter Six.

Assembler directives are special instructions that provide information to the assem-
bler but do not generate any code. Examples include the

segment

directive,

equ

,

assume

,
and

end

. These mnemonics are not valid 80x86 instructions. They are messages to the
assembler, nothing else.

A pseudo-opcode is a message to the assembler, just like an assembler directive, how-
ever a pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include

byte

,

word

,

dword

,

qword

, and

tbyte

. These instructions emit the bytes of data specified by
their operands but they are not true 80X86 machine instructions.

The operand field contains the operands, or parameters, for the instruction specified
in the mnemonic field. Operands never appear on lines by themselves. The type and
number of operands (zero, one, two, or more) depend entirely on the specific instruction.

The comment field allows you to annotate each line of source code in your program.
Note that the comment field always begins with a semicolon. When the assembler is pro-
cessing a line of text, it completely ignores everything on the source line following a semi-
colon

1

.

Each assembly language statement appears on its own line in the source file. You can-
not have multiple assembly language statements on a single line. On the other hand,
since all the fields in an assembly language statement are optional, blank lines are fine.
You can use blank lines anywhere in your source file. Blank lines are useful for spacing
out certain sections of code, making them easier to read.

The Microsoft Macro Assembler is a free form assembler. The various fields of an
assembly language statement may appear in any column (as long as they appear in the
proper order). Any number of spaces or tabs can separate the various fields in the state-
ment. To the assembler, the following two code sequences are identical:

__

mov ax, 0
mov bx, ax
add ax, dx
mov cx, ax

 __

mov ax, 0
 mov bx, ax
 add ax, dx

mov cx, ax

__

1. Unless, of course, the semicolon appears inside a string constant.

Directives and Pseudo Opcodes

Page 357

The first code sequence is much easier to read than the second (if you don't think so,
perhaps you should go see a doctor!). With respect to readability, the judicial use of spac-
ing within your program can make all the difference in the world.

Placing the labels in column one, the mnemonics in column 17 (two tabstops), the
operand field in column 25 (the third tabstop), and the comments out around column 41
or 49 (five or six tabstops) produces the best looking listings. Assembly language pro-
grams are hard enough to read as it is. Formatting your listings to help make them easier
to read will make them much easier to maintain.

You may have a comment on the line by itself. In such a case, place the semicolon in
column one and use the entire line for the comment, examples:

; The following section of code positions the cursor to the upper
; left hand position on the screen:

 mov X, 0
 mov Y, 0

; Now clear from the current cursor position to the end of the
; screen to clear the video display:

; etc.

8.2 The Location Counter

Recall that all addresses in the 80x86's memory space consist of a segment address
and an offset within that segment. The assembler, in the process of converting your
source file into object code, needs to keep track of offsets within the current segment. The

location counter

 is an assembler variable that handles this.

Whenever you create a segment in your assembly language source file (see segments
later in this chapter), the assembler associates the current location counter value with it.
The location counter contains the current offset into the segment. Initially (when the
assembler first encounters a segment) the location counter is set to zero. When encounter-
ing instructions or pseudo-opcodes, MASM increments the location counter for each byte
written to the object code file. For example, MASM increments the location counter by
two after encountering

mov ax, bx

 since this instruction is two bytes long.

The value of the location counter varies throughout the assembly process. It changes
for each line of code in your program that emits object code. We will use the term location
counter to mean the value of the location counter at a particular statement before generat-
ing any code. Consider the following assembly language statements:

0 : or ah, 9
3 : and ah, 0c9h
6 : xor ah, 40h
9 : pop cx
A : mov al, cl
C : pop bp
D : pop cx
E : pop dx
F : pop ds
10: ret

The

or

,

and

, and

xor

instructions are all three bytes long; the

mov

instruction is two
bytes long; the remaining instructions are all one byte long. If these instructions appear at
the beginning of a segment, the location counter would be the same as the numbers that
appear immediately to the left of each instruction above. For example, the

or

instruction
above begins at offset zero. Since the

or

instruction is three bytes long, the next instruc-
tion (

and

) follows at offset three. Likewise,

and

is three bytes long, so

xor

follows at offset
six, etc..

Chapter 08

Page 358

8.3 Symbols

Consider the

jmp

instruction for a moment. This instruction takes the form:

jmp target

Target

 is the destination address. Imagine how painful it would be if you had to actually
specify the target memory address as a numeric value. If you've ever programmed in
BASIC (where line numbers are the same thing as statement labels) you've experienced
about 10% of the trouble you would have in assembly language if you had to specify the
target of a

jmp

by an address.

To illustrate, suppose you wanted to jump to some group of instructions you've yet to
write. What is the address of the target instruction? How can you tell until you've written
every instruction before the target instruction? What happens if you change the program
(remember, inserting and deleting instructions will cause the location counter values for
all the following instructions within that segment to change). Fortunately, all these prob-
lems are of concern only to machine language programmers. Assembly language pro-
grammers can deal with addresses in a much more reasonable fashion – by using
symbolic addresses.

A

symbol

,

identifier,

or

label

 , is a name associated with some particular value. This
value can be an offset within a segment, a constant, a string, a segment address, an offset
within a record, or even an operand for an instruction. In any case, a label provides us
with the ability to represent some otherwise incomprehensible value with a familiar, mne-
monic, name.

A symbolic name consists of a sequence of letters, digits, and special characters, with
the following restrictions:

• A symbol cannot begin with a numeric digit.
• A name can have any combination of upper and lower case alphabetic

characters. The assembler treats upper and lower case equivalently.
• A symbol may contain any number of characters, however only the first

31 are used. The assembler ignores all characters beyond the 31st.
• The _, $, ?, and @ symbols may appear anywhere within a symbol. How-

ever, $ and ? are special symbols; you cannot create a symbol made up
solely of these two characters.

• A symbol cannot match any name that is a reserved symbol. The follow-
ing symbols are reserved:

%out .186 .286 .286P
.287 .386 .386P .387
.486 .486P .8086 .8087
.ALPHA .BREAK .CODE .CONST
.CREF .DATA .DATA? .DOSSEG
.ELSE .ELSEIF .ENDIF .ENDW
.ERR .ERR1 .ERR2 .ERRB
.ERRDEF .ERRDIF .ERRDIFI .ERRE
.ERRIDN .ERRIDNI .ERRNB .ERRNDEF
.ERRNZ .EXIT .FARDATA .FARDATA?
.IF .LALL .LFCOND .LIST
.LISTALL .LISTIF .LISTMACRO .LISTMACROALL
.MODEL .MSFLOAT .NO87 .NOCREF
.NOLIST .NOLISTIF .NOLISTMACRO .RADIX
.REPEAT .UNTIL .SALL .SEQ
.SFCOND .STACK .STARTUP .TFCOND
.UNTIL .UNTILCXZ .WHILE .XALL
.XCREF .XLIST ALIGN ASSUME
BYTE CATSTR COMM COMMENT
DB DD DF DOSSEG
DQ DT DW DWORD
ECHO ELSE ELSEIF ELSEIF1
ELSEIF2 ELSEIFB ELSEIFDEF ELSEIFDEF
ELSEIFE ELSEIFIDN ELSEIFNB ELSEIFNDEF

Directives and Pseudo Opcodes

Page 359

END ENDIF ENDM ENDP
ENDS EQU EVEN EXITM
EXTERN EXTRN EXTERNDEF FOR
FORC FWORD GOTO GROUP
IF IF1 IF2 IFB
IFDEF IFDIF IFDIFI IFE
IFIDN IFIDNI IFNB IFNDEF
INCLUDE INCLUDELIB INSTR INVOKE
IRP IRPC LABEL LOCAL
MACRO NAME OPTION ORG
PAGE POPCONTEXT PROC PROTO
PUBLIC PURGE PUSHCONTEXT QWORD
REAL4 REAL8 REAL10 RECORD
REPEAT REPT SBYTE SDWORD
SEGMENT SIZESTR STRUC STRUCT
SUBSTR SUBTITLE SUBTTL SWORD
TBYTE TEXTEQU TITLE TYPEDEF
UNION WHILE WORD

In addition, all valid 80x86 instruction names and register names are reserved as well.
Note that this list applies to Microsoft's Macro Assembler version 6.0. Earlier versions of
the assembler have fewer reserved words. Later versions may have more.

Some examples of valid symbols include:

L1 Bletch RightHere
Right_Here Item1 __Special
$1234 @Home $_@1
Dollar$ WhereAmI? @1234

$1234 and @1234 are perfectly valid, strange though they may seem.

Some examples of illegal symbols include:

1TooMany - Begins with a digit.
Hello.There - Contains a period in the middle of the symbol.
$ - Cannot have $ or ? by itself.
LABEL - Assembler reserved word.
Right Here - Symbols cannot contain spaces.
Hi,There - or other special symbols besides _, ?, $, and @.

Symbols, as mentioned previously, can be assigned numeric values (such as location
counter values), strings, or even whole operands. To keep things straightened out, the
assembler assigns a type to each symbol. Examples of types include near, far, byte, word,
double word, quad word, text, and strings. How you declare labels of a certain type is the
subject of much of the rest of this chapter. For now, simply note that the assembler always
assigns some type to a label and will tend to complain if you try to use a label at some
point where it does not allow that type of label.

8.4 Literal Constants

The Microsoft Macro Assembler (MASM) is capable of processing five different types
of constants: integers, packed binary coded decimal integers, real numbers, strings, and
text. In this chapter we'll consider integers, reals, strings, and text only. For more infor-
mation about packed BCD integers please consult the Microsoft Macro Assembler Pro-
grammer's Guide.

A

literal constant

 is one whose value is implicit from the characters that make up the
constant. Examples of literal constants include:

• 123
• 3.14159
• “Literal String Constant”
• 0FABCh
• ‘A’
• <Text Constant>

Chapter 08

Page 360

Except for the last example above, most of these literal constants should be reasonably
familiar to anyone who has written a program in a high level language like Pascal or C++.
Text constants are special forms of strings that allow textual substitution during assembly.

A literal constant’s representation corresponds to what we would normally expect for
its “real world value.” Literal constants are also known as

non symbolic constants

 since they
use the value’s actual representation, rather than some symbolic name, within your pro-
gram. MASM also lets you define symbolic, or

manifest

, constants in a program, but more
on that later.

8.4.1 Integer Constants

An integer constant is a numeric value that can be specified in binary, decimal, or
hexadecimal

2

. The choice of the base (or radix) is up to you. The following table shows
the legal digits for each radix:

To differentiate between numbers in the various bases, you use a suffix character. If
you terminate a number with a “b” or “B”, then MASM assumes that it is a binary num-
ber. If it contains any digits other than zero or one the assembler will generate an error. If
the suffix is “t”, “T”, “d” or “D”, then the assembler assumes that the number is a decimal
(base 10) value. A suffix of “h” or “H” will select the hexadecimal radix.

All integer constants must begin with a decimal digit, including hexadecimal con-
stants. To represent the value “FDED” you must specify 0FDEDh. The leading decimal
digit is required by the assembler so that it can differentiate between symbols and
numeric constants; remember, “FDEDh” is a perfectly valid symbol to the Microsoft
Macro Assembler.

Examples:

0F000h 12345d 0110010100b
 1234h 100h 08h

If you do not specify a suffix after your numeric constants, the assembler uses the cur-
rent default radix. Initially, the default radix is decimal. Therefore, you can usually spec-
ify decimal values without the trailing “D” character. The

radix

assembler directive can be
used to change the default radix to some other base. The

.radix

instruction takes the fol-
lowing form:

.radix

base

;Optional comment

Base

 is a decimal value between 2 and 16.

The .

radix

 statement takes effect as soon as MASM encounters it in the source file. All
the statements before the .

radix

 statement will use the previous default base for numeric
constants. By sprinkling multiple .

radix

 instructions throughout your source file, you can
switch the default base amongst several values depending upon what's most convenient
at each point in your program.

Generally, decimal is fine as the default base so the .

radix

 instruction doesn't get used
much. However, faced with entering a gigantic table of hexadecimal values, you can save

2. Actually, you can also specify the octal (base 8) radix. We will not use octal in this text.

Table 35: Digits Used With Each Radix

Name Base Valid Digits

Binary 2 0 1

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Directives and Pseudo Opcodes

Page 361

a lot of typing by temporarily switching to base 16 before the table and switching back to
decimal after the table. Note: if the default radix is hexadecimal, you should use the “T”
suffix to denote decimal values since MASM will confuse the “D” suffix with a hexadeci-
mal digit.

8.4.2 String Constants

A string constant is a sequence of characters surrounded by apostrophes or quotation
marks.

Examples:

"This is a string"
 'So is this'

You may freely place apostrophes inside string constants enclosed by quotation marks
and vice versa. If you want to place an apostrophe inside a string delimited by apostro-
phes, you must place a pair of apostrophes next to each other in the string, e.g.,

'Doesn''t this look weird?'

Quotation marks appearing within a string delimited by quotes must also be doubled up,
e.g.,

 "Microsoft claims ""Our software is very fast."" Do you believe them?"

Although you can double up apostrophes or quotes as shown in the examples above,
the easiest way to include these characters in a string is to use the

other

 character as the
string delimiter:

“Doesn’t this look weird?”
‘Microsoft claims “Our software is very fast.” Do you believe them?’

The only time it would be absolutely necessary to double up quotes or apostrophes in a
string is if that string contained

both

 symbols. This rarely happens in real programs.

Like the C and C++ programming languages, there is a subtle difference between a
character value and a string value. A single character (that is, a string of length one) may
appear anywhere MASM allows an integer constant or a string. If you specify a character
constant where MASM expects an integer constant, MASM uses the ASCII code of that
character as the integer value. Strings (whose length is greater than one) are allowed only
within certain contexts.

8.4.3 Real Constants

Within certain contexts, you can use floating point constants. MASM allows you to
express floating point constants in one of two forms: decimal notation or scientific nota-
tion. These forms are quite similar to the format for real numbers that Pascal, C, and other
HLLs use.

The decimal form is just a sequence of digits containing a decimal point in some posi-
tion of the number:

1.0 3.14159 625.25 -128.0 0.5

Scientific notation is also identical to the form used by various HLLs:

1e5 1.567e-2 -6.02e-10 5.34e+12

The exact range of precision of the numbers depend on your particular floating point
package. However, MASM generally emits binary data for the above constants that is
compatible with the 80x87 numeric coprocessors. This form corresponds to the numeric
format specified by the IEEE standard for floating point values. In particular, the constant
1.0 is not the binary equivalent of the integer one.

Chapter 08

Page 362

8.4.4 Text Constants

Text constants are not the same thing as string constants. A textual constant substi-
tutes verbatim during the assembly process. For example, the characters

5[bx]

could be a
textual constant associated with the symbol VAR1. During assembly, an instruction of the
form

mov ax, VAR1

would be converted to the instruction

mov ax, 5[bx]

.

Textual equates are quite useful in MASM because MASM often insists on long strings
of text for some simple assembly language operands. Using text equates allows you to
simplify such operands by substituting some string of text for a single identifier in a state-
ment.

A text constant consists of a sequence of characters surrounded by the “<“ and “>”
symbols. For example the text constant

5[bx]

would normally be written as

<5[bx]>

. When
the text substitution occurs, MASM strips the delimiting “<“ and “>” characters.

8.5 Declaring Manifest Constants Using Equates

A manifest constant is a symbol name that represents some fixed quantity during the
assembly process. That is, it is a symbolic name that represents some value. Equates are the
mechanism MASM uses to declare symbolic constants. Equates take three basic forms:

symbol equ expression
symbol = expression
symbol textequ expression

The expression operand is typically a numeric expression or a text string. The symbol is
given the value and type of the expression. The equ and “=” directives have been with
MASM since the beginning. Microsoft added the textequ directive starting with MASM 6.0.

The purpose of the “=” directive is to define symbols that have an integer (or single
character) quantity associated with them. This directive does not allow real, string, or text
operands. This is the primary directive you should use to create numeric symbolic con-
stants in your programs. Some examples:

NumElements = 16
 .
 .
 .

Array byte NumElements dup (?)
 .
 .
 .

mov cx, NumElements
mov bx, 0

ClrLoop: mov Array[bx], 0
inc bx
loop ClrLoop

The textequ directive defines a text substitution symbol. The expression in the operand
field must be a text constant delimited with the “<“ and “>” symbols. Whenever MASM
encounters the symbol within a statement, it substitutes the text in the operand field for
the symbol. Programmers typically use this equate to save typing or to make some code
more readable:

Count textequ <6[bp]>
DataPtr textequ <8[bp]>

 .
 .
 .

les bx, DataPtr ;Same as les bx, 8[bp]
mov cx, Count ;Same as mov cx, 6[bp]
mov al, 0

ClrLp: mov es:[bx], al
inc bx
loop ClrLp

Directives and Pseudo Opcodes

Page 363

Note that it is perfectly legal to equate a symbol to a blank operand using an equate like
the following:

BlankEqu textequ <>

The purpose of such an equate will become clear in the sections on conditional assembly
and macros.

The equ directive provides almost a superset of the capabilities of the “=” and textequ
directives. It allows operands that are numeric, text, or string literal constants. The follow-
ing are all legal uses of the equ directive:

One equ 1
Minus1 equ -1
TryAgain equ 'Y'
StringEqu equ “Hello there”
TxtEqu equ <4[si]>

 .
 .
 .

HTString byte StringEqu ;Same as HTString equ “Hello there”
 .
 .
 .

mov ax, TxtEqu ;Same as mov ax, 4[si]
 .
 .
 .

mov bl, One ;Same as mov bl, 1
cmp al, TryAgain ;Same as cmp al, ‘Y’

Manifest constants you declare with equates help you parameterize a program. If you
use the same value, string, or text, multiple times within a program, using a symbolic
equate will make it very easy to change that value in future modifications to the program.
Consider the following example:

Array byte 16 dup (?)
 .
 .
 .

mov cx, 16
mov bx, 0

ClrLoop: mov Array[bx], 0
inc bx
loop ClrLoop

If you decide you want Array to have 32 elements rather than 16, you will need to search
throughout your program an locate every reference to this data and adjust the literal con-
stants accordingly. Then there is the possibility that you missed modifying some particu-
lar section of code, introducing a bug into your program. On the other hand, if you use the
NumElements symbolic constant shown earlier, you would only have to change a single
statement in your program, reassemble it, and you would be in business; MASM would
automatically update all references using NumElements.

MASM lets you redefine symbols declared with the “=” directive. That is, the follow-
ing is perfectly legal:

SomeSymbol = 0
.
.
.

SomeSymbol = 1

Since you can change the value of a constant in the program, the symbol’s scope (where
the symbol has a particular value) becomes important. If you could not redefine a symbol,
one would expect the symbol to have that constant value everywhere in the program.
Given that you can redefine a constant, a symbol’s scope cannot be the entire program.
The solution MASM uses is the obvious one, a manifest constant’s scope is from the point
it is defined to the point it is redefined. This has one important ramification – you must
declare all manifest constants with the “=” directive before you use that constant. Of course, once
you redefine a symbolic constant, the previous value of that constant is forgotten. Note
that you cannot redefine symbols you declare with the textequ or equ directives.

Chapter 08

Page 364

8.6 Processor Directives

By default, MASM will only assemble instructions that are available on all members of
the 80x86 family. In particular, this means it will not assemble instructions that are not
available on the 8086 and 8088 microprocessors. By generating an error for non-8086
instructions, MASM prevents the accidental use of instructions that are not available on
various processors. This is great unless, of course, you actually want to use those instruc-
tions available on processors beyond the 8086 and 8088. The processor directives let you
enable the assembly of instructions available on later processors.

The processor directives are

.8086 .8087 .186 .286 .287

.286P .386 .387 .386P .486

.486P .586 .586P

None of these directives accept any operands.

The processor directives enable all instructions available on a given processor. Since
the 80x86 family is upwards compatible, specifying a particular processor directive
enables all instructions on that processor and all earlier processors as well.

The .8087, .287, and .387 directives activate the floating point instruction set for the
given floating point coprocessors. However, the .8086 directive also enables the 8087
instruction set; likewise, .286 enables the 80287 instruction set and .386 enables the 80387
floating point instruction set. About the only purpose for these FPU (floating point unit)
directives is to allow 80287 instructions with the 8086 or 80186 instruction set or 80387
instruction with the 8086, 80186, or 80286 instruction set.

The processor directives ending with a “P” allow assembly of privileged mode instruc-
tions. Privileged mode instructions are only useful to those writing operating systems,
certain device drivers, and other advanced system routines. Since this text does not dis-
cuss privileged mode instructions, there is little need to discuss these privileged mode
directives further.

The 80386 and later processors support two types of segments when operating in pro-
tected mode – 16 bit segments and 32 bit segments. In real mode, these processors support
only 16 bit segments. The assembler must generate subtly different opcodes for 16 and 32
bit segments. If you’ve specified a 32 bit processor using .386, .486, or .586, MASM gener-
ates instructions for 32 bit segments by default. If you attempt to run such code in real
mode under MS-DOS, you will probably crash the system. There are two solutions to this
problem. The first is to specify use16 as an operand to each segment you create in your
program. The other solution is slightly more practical, simply put the following statement
after the 32 bit processor directive:

option segment:use16

This directive tells MASM to generate 16 bit segments by default, rather than 32 bit seg-
ments.

Note that MASM does not require an 80486 or Pentium processor if you specify the
.486 or .586 directives. The assembler itself is written in 80386 code3 so you only need an
80386 processor to assemble any program with MASM. Of course, if you use 80486 or Pen-
tium processor specific instructions, you will need an 80486 or Pentium processor to run
the assembled code.

You can selectively enable or disable various instruction sets throughout your pro-
gram. For example, you can turn on 80386 instructions for several lines of code and then
return back to 8086 only instructions. The following code sequence demonstrates this:

3. Starting with version 6.1.

Directives and Pseudo Opcodes

Page 365

.386 ;Begin using 80386 instructions
 .
 . ;This code can have 80386 instrs.
 .
.8086 ;Return back to 8086-only instr set.
 .
 . ;This code can only have 8086 instrs.
 .

It is possible to write a routine that detects, at run-time, what processor a program is actu-
ally running on. Therefore, you can detect an 80386 processor and use 80386 instructions.
If you do not detect an 80386 processor, you can stick with 8086 instructions. By selectively
turning 80386 instructions on in those sections of your program that executes if an 80386
processor is present, you can take advantage of the additional instructions. Likewise, by
turning off the 80386 instruction set in other sections of your program, you can prevent
the inadvertent use of 80386 instructions in the 8086-only portion of the program.

8.7 Procedures

Unlike HLLs, MASM doesn't enforce strict rules on exactly what constitutes a proce-
dure4. You can call a procedure at any address in memory. The first ret instruction
encountered along that execution path terminates the procedure. Such expressive free-
dom, however, is often abused yielding programs that are very hard to read and maintain.
Therefore, MASM provides facilities to declare procedures within your code. The basic
mechanism for declaring a procedure is:

procname proc {NEAR or FAR}

<statements>

procname endp

 As you can see, the definition of a procedure looks similar to that for a segment. One
difference is that procname (that is the name of the procedure you're defining) must be a
unique identifier within your program. Your code calls this procedure using this name, it
wouldn't do to have another procedure by the same name; if you did, how would the pro-
gram determine which routine to call?

Proc allows several different operands, though we will only consider three: the single
keyword near, the single keyword far, or a blank operand field5. MASM uses these oper-
ands to determine if you're calling this procedure with a near or far call instruction. They
also determine which type of ret instruction MASM emits within the procedure. Consider
the following two procedures:

NProc proc near
mov ax, 0
ret

NProc endp

FProc proc far
mov ax, 0FFFFH
ret

FProc endp

and:

call NPROC
call FPROC

The assembler automatically generates a three-byte (near) call for the first call instruc-
tion above because it knows that NProc is a near procedure. It also generates a five-byte
(far) call instruction for the second call because FProc is a far procedure. Within the proce-

4. “Procedure” in this text means any program unit such as procedure, subroutine, subprogram, function, opera-
tor, etc.
5. Actually, there are many other possible operands but we will not consider them in this text.

Chapter 08

Page 366

dures themselves, MASM automatically converts all ret instructions to near or far returns
depending on the type of routine.

Note that if you do not terminate a proc/endp section with a ret or some other transfer
of control instruction and program flow runs into the endp directive, execution will con-
tinue with the next executable instruction following the endp. For example, consider the
following:

Proc1 proc
mov ax, 0

Proc1 endp

Proc2 proc
mov bx, 0FFFFH
ret

Proc2 endp

 If you call Proc1, control will flow on into Proc2 starting with the mov bx,0FFFFh
instruction. Unlike high level language procedures, an assembly language procedure does
not contain an implicit return instruction before the endp directive. So always be aware of
how the proc/endp directives work.

There is nothing special about procedure declarations. They're a convenience pro-
vided by the assembler, nothing more. You could write assembly language programs for
the rest of your life and never use the proc and endp directives. Doing so, however, would
be poor programming practice. Proc and endp are marvelous documentation features
which, when properly used, can help make your programs much easier to read and main-
tain.

MASM versions 6.0 and later treat all statement labels inside a procedure as local. That
is, you cannot refer directly to those symbols outside the procedure. For more details, see
“How to Give a Symbol a Particular Type” on page 385.

8.8 Segments

All programs consist of one or more segments. Of course, while your program is run-
ning, the 80x86’s segment registers point at the currently active segments. On 80286 and
earlier processors, you can have up to four active segments at once (code, data, extra, and
stack); on the 80386 and later processors, there are two additional segment registers: fs and
gs. Although you cannot access data in more than four or six segments at any one given
instant, you can modify the 80x86’s segment registers and point them at other segments in
memory under program control. This means that a program can access more than four or
six segments. The question is “how do you create these different segments in a program
and how do you access them at run-time?”

Segments, in your assembly language source file, are defined with the segment and
ends directives. You can put as many segments as you like in your program. Well, actually
you are limited to 65,536 different segments by the 80x86 processors and MASM probably
doesn’t even allow that many, but you will probably never exceed the number of seg-
ments MASM allows you to put in your program.

When MS-DOS begins execution of your program, it initializes two segment registers.
It points cs at the segment containing your main program and it points ss at your stack
segment. From that point forward, you are responsible for maintaining the segment regis-
ters yourself.

To access data in some particular segment, an 80x86 segment register must contain the
address of that segment. If you access data in several different segments, your program
will have to load a segment register with that segment’s address before accessing it. If you
are frequently accessing data in different segments, you will spend considerable time
reloading segment registers. Fortunately, most programs exhibit locality of reference
when accessing data. This means that a piece of code will likely access the same group of
variables many times during a given time period. It is easy to organize your programs so

Directives and Pseudo Opcodes

Page 367

that variables you often access together appear in the same segment. By arranging your
programs in this manner, you can minimize the number of times you need to reload the
segment registers. In this sense, a segment is nothing more than a cache of often accessed
data.

In real mode, a segment can be up to 64 Kilobytes long. Most pure assembly language
programs use less than 64K code, 64K global data, and 64K stack space. Therefore, you can
often get by with no more than three or four segments in your programs. In fact, the
SHELL.ASM file (containing the skeletal assembly language program) only defines four
segments and you will generally only use three of them. If you use the SHELL.ASM file as
the basis for your programs, you will rarely need to worry about segmentation on the
80x86. On the other hand, if you want to write complex 80x86 programs, you will need to
understand segmentation.

A segment in your file should take the following form6:

segmentname segment {READONLY} {align} {combine} {use} {'class'}

statements

segmentname ends

The following sections describe each of the operands to the segment directive.

Note: segmentation is a concept that many beginning assembly language program-
mers find difficult to understand. Note that you do not have to completely understand
segmentation to begin writing 80x86 assembly language programs. If you make a copy of
the SHELL.ASM file for each program you write, you can effectively ignore segmentation
issues. The main purpose of the SHELL.ASM file is to take care of the segmentation details
for you. As long as you don’t write extremely large programs or use a vast amount of
data, you should be able to use SHELL.ASM and forget about segmentation. Nonetheless,
eventually you may want to write larger assembly language programs, or you may want
to write assembly language subroutines for a high level language like Pascal or C++. At
that point you will need to know quite a bit about segmentation. The bottom line is this,
you can get by without having to learn about segmentation right now, but sooner or later
you will need to understand it if you intend to continue writing 80x86 assembly language
code.

8.8.1 Segment Names

The segment directive requires a label in the label field. This label is the segment’s
name. MASM uses segment names for three purposes: to combine segments, to determine
if a segment override prefix is necessary, and to obtain the address of a segment. You must
also specify the segment’s name in the label field of the ends directive that ends the seg-
ment.

If the segment name is not unique (i.e., you've defined it somewhere else in the pro-
gram), the other uses must also be segment definitions. If there is another segment with
this same name, then the assembler treats this segment definition as a continuation of the
previous segment using the same name. Each segment has its own location counter value
associated with it. When you begin a new segment (that is, one whose name has not yet
appeared in the source file) MASM creates a new location counter variable, initially zero,
for the segment. If MASM encounters a segment definition that is a continuation of a pre-
vious segment, then MASM uses the value of the location counter at the end of that previ-
ous segment. E.g.,

6. MASM 5.0 and later also provide simplified segment directives. In MASM 5.0 they actually were simplified. Since
then Microsoft has enhanced them over and over again. Today they are quite complex beasts. They are useful for
simplifying the interface between assembly and HLLs. However, we will ignore those directives.

Chapter 08

Page 368

CSEG segment
mov ax, bx
ret

CSEG ends

DSEG segment
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment
mov ax, 10
add ax, Item1
ret

CSEG ends
end

The first segment (CSEG) starts with a location counter value of zero. The mov ax,bx
instruction is two bytes long and the ret instruction is one byte long, so the location
counter is three at the end of the segment. DSEG is another three byte segment, so the
location counter associated with DSEG also contains three at the end of the segment. The
third segment has the same name as the first segment (CSEG), therefore the assembler will
assume that they are the same segment with the second occurrence simply being an exten-
sion of the first. Therefore, code placed in the second CSEG segment will be assembled
starting at offset three within CSEG – effectively continuing the code in the first CSEG seg-
ment.

Whenever you specify a segment name as an operand to an instruction, MASM will
use the immediate addressing mode and substitute the address of that segment for its
name. Since you cannot load an immediate value into a segment register with a single
instruction, loading the segment address into a segment register typically takes two
instructions. For example, the following three instructions appear at the beginning of the
SHELL.ASM file, they initialize the ds and es registers so they point at the dseg segment:

mov ax, dseg ;Loads ax with segment address of dseg.
mov ds, ax ;Point ds at dseg.
mov es, ax ;Point es at dseg.

The other purpose for segment names is to provide the segment component of a vari-
able name. Remember, 80x86 addresses contain two components: a segment and an offset.
Since the 80x86 hardware defaults most data references to the data segment, it is common
practice among assembly language programmers to do the same thing; that is, not bother
to specify a segment name when accessing variables in the data segment. In fact, a full
variable reference consists of the segment name, a colon, and the offset name:

mov ax, dseg:Item1
mov dseg:Item2, ax

Technically, you should prefix all your variables with the segment name in this fashion.
However, most programmers don’t bother because of the extra typing involved. Most of
the time you can get away with this; however, there are a few times when you really will
need to specify the segment name. Fortunately, those situations are rare and only occur in
very complex programs, not the kind you’re likely to run into for a while.

It is important that you realize that specifying a segment name before a variable’s
name does not mean that you can access data in a segment without having some segment
register pointing at that segment. Except for the jmp and call instructions, there are no
80x86 instructions that let you specify a full 32 bit segmented direct address. All other
memory references use a segment register to supply the segment component of the
address.

8.8.2 Segment Loading Order

Segments normally load into memory in the order that they appear in your source file.
In the example above, DOS would load the CSEG segment into memory before the DSEG

Directives and Pseudo Opcodes

Page 369

segment. Even though the CSEG segment appears in two parts, both before and after
DSEG. CSEG's declaration before any occurrence of DSEG tells DOS to load the entire
CSEG segment into memory before DSEG. To load DSEG before CSEG, you could use the
following program:

DSEG segment public
DSEG ends

CSEG segment public
mov ax, bx
ret

CSEG ends

DSEG segment public
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment public
mov ax, 10
add ax, Item1
ret

CSEG ends
end

The empty segment declaration for DSEG doesn't emit any code. The location counter
value for DSEG is zero at the end of the segment definition. Hence it's zero at the begin-
ning of the next DSEG segment, exactly as it was in the previous version of this program.
However, since the DSEG declaration appears first in the program, DOS will load it into
memory first.

The order of appearance is only one of the factors controlling the loading order. For
example, if you use the “.alpha” directive, MASM will organize the segments alphabeti-
cally rather than in order of first appearance. The optional operands to the segment direc-
tive also control segment loading order. These operands are the subject of the next section.

8.8.3 Segment Operands

The segment directive allows six different items in the operand field: an align operand,
a combine operand, a class operand, a readonly operand, a “uses” operand, and a size
operand. Three of these operands control how DOS loads the segment into memory, the
other three control code generation.

8.8.3.1 The ALIGN Type

The align parameter is one of the following words: byte, word, dword, para, or page.
These keywords instruct the assembler, linker, and DOS to load the segment on a byte,
word, double word, paragraph, or page boundary. The align parameter is optional. If one
of the above keywords does not appear as a parameter to the segment directive, the
default alignment is paragraph (a paragraph is a multiple of 16 bytes).

Aligning a segment on a byte boundary loads the segment into memory starting at the
first available byte after the last segment. Aligning on a word boundary will start the seg-
ment at the first byte with an even address after the last segment. Aligning on a dword
boundary will locate the current segment at the first address that is an even multiple of
four after the last segment.

For example, if segment #1 is declared first in your source file and segment #2 imme-
diate follows and is byte aligned, the segments will be stored in memory as follows (see
Figure 8.1).

Chapter 08

Page 370

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment byte
 .
 .
 .

seg2 ends

If segments one and two are declared as below, and segment #2 is word aligned, the
segments appear in memory as show in Figure 8.2.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment word
 .
 .
 .

seg2 ends

Another example: if segments one and two are as below, and segment #2 is double
word aligned, the segments will be stored in memory as shown in Figure 8.3.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment dword
 .
 .
 .

seg2 ends

Figure 8.1 Segment with Byte Alignment

Segment #1

Segment #2

Absolutely no wasted space between
segments one and two.

Low Memory:

High Memory:

Figure 8.2 Segment with Word Alignment

Segment #1

Segment #2

With WORD alignment, Segment #2 always begins
on an even byte boundary and you may waste a
byte of storage between the segments.

Low Memory:

High Memory:

Directives and Pseudo Opcodes

Page 371

Since the 80x86's segment registers always point at paragraph addresses, most seg-
ments are aligned on a 16 byte paragraph (para) boundary. For the most part, your seg-
ments should always be aligned on a paragraph boundary unless you have a good reason
to choose otherwise.

For example, if segments one and two are declared as below, and segment #2 is para-
graph aligned, DOS will store the segments in memory as shown in Figure 8.4.

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment para
 .
 .
 .

seg2 ends

Page boundary alignment forces the segment to begin at the next address that is an
even multiple of 256 bytes. Certain data buffers may require alignment on 256 (or 512)
byte boundaries. The page alignment option can be useful in this situation.

For example, if segments one and two are declared as below, and segment #2 is page
aligned, the segments will be stored in memory as shown in Figure 8.5

seg1 segment
 .
 .
 .

seg1 ends

seg2 segment page
 .
 .
 .

seg2 ends

Figure 8.3 Segment with DWord Alignment

Segment #1

Segment #2

With DWORD alignment, Segment #2 always begins
on an double word boundary and you may waste one,
two, or three bytes of storage between the segments.

Low Memory:

High Memory:

Figure 8.4 Segment with Paragraph Alignment

Segment #1

Segment #2

With PARA alignment, Segment #2 always begins
on a paragraph boundary and you may waste up to
fifteen bytes of storage between the segments.

Low Memory:

High Memory:

Chapter 08

Page 372

If you choose any alignment other than byte, the assembler, linker, and DOS may
insert several dummy bytes between the two segments, so that the segment is properly
aligned. Since the 80x86 segment registers must always point at a paragraph address (that
is, they must be paragraph aligned), you might wonder how the processor can address a
segment that is aligned on a byte, word, or double word boundary. It's easy. Whenever
you specify a segment alignment which forces the segment to begin at an address that is
not a paragraph boundary, the assembler/linker will assume that the segment register
points at the previous paragraph address and the location counter will begin at some off-
set into that segment other than zero. For example, suppose that segment #1 above ends
at physical address 10F87h and segment #2 is byte aligned. The code for segment #2 will
begin at segment address 10F80h. However, this will overlap segment #1 by eight bytes.
To overcome this problem, the location counter for segment #2 will begin at 8, so the seg-
ment will be loaded into memory just beyond segment #1.

If segment #2 is byte aligned and segment #1 doesn't end at an even paragraph
address, MASM adjusts the starting location counter for segment #2 so that it can use the
previous paragraph address to access it (see Figure 8.6).

Since the 80x86 requires all segments to start on a paragraph boundary in memory, the
Microsoft Assembler (by default) assumes that you want paragraph alignment for your
segments. The following segment definition is always aligned on a paragraph boundary:

CSEG segment
mov ax, bx
ret

CSEG ends
end

Figure 8.5 Segment with Page Alignment

Segment #1

Segment #2

With PAGE alignment, Segment #2 always begins
on a 256 byte boundary and you may waste up to
255 bytes of storage between the segments.

Low Memory:

High Memory:

Figure 8.6 Paragraph Alignment of Segments

Segment #1

Segment #2

Low Memory:

High Memory:

10F80h

10F90h

The segment register associated with Segment #2 actually
points up here.

But the code in Segment #2 begins at offset eight so
it can load into memory starting at segment 10F8h
without overlapping any data in segment #1

Directives and Pseudo Opcodes

Page 373

8.8.3.2 The COMBINE Type

The combine type controls the order that segments with the same name are written out
to the object code file produced by the assembler. To specify the combine type you use
one of the keywords public, stack, common, memory, or at. Memory is a synonym for public
provided for compatibility reasons; you should always use public rather than memory. Com-
mon and at are advanced combine types that won't be considered in this text. The stack
combine type should be used with your stack segments (see “The SHELL.ASM File” on
page 170 for an example). The public combine type should be used with most everything
else.

The public and stack combine types essentially perform the same operation. They con-
catenate segments with the same name into a single contiguous segment, just as described
earlier. The difference between the two is the way that DOS handles the initialization of
the stack segment and stack pointer registers. All programs should have at least one stack
type segment (or the linker will generate a warning); the rest should all be public . MS-DOS
will automatically point the stack segment register at the segment you declare with the
stack combine type when it loads the program into memory.

If you do not specify a combine type, then the assembler will not concatenate the seg-
ments when producing the object code file. In effect, the absence of any combine type
keyword produces a private combine type by default. Unless the class types are the same
(see the next section), each segment will be emitted as MASM encounters it in the source
file. For example, consider the following program:

CSEG segment public
mov ax, 0
mov VAR1, ax

CSEG ends

DSEG segment public
I word ?
DSEG ends

CSEG segment public
mov bx, ax
ret

CSEG ends

DSEG segment public
J word ?
DSEG ends

end

This program section will produce the same code as:

CSEG segment public
mov ax, 0
mov VAR1, ax
mov bx, ax
ret

CSEG ends

DSEG segment public
I word ?
J word ?
DSEG ends

end

The assembler automatically joins all segments that have the same name and are pub-
lic. The reason the assembler allows you to separate the segments like this is for conve-
nience. Suppose you have several procedures, each of which requires certain variables.
You could declare all the variables in one segment somewhere, but this is often distract-
ing. Most people like to declare their variables right before the procedure that uses them.
By using the public combine type with the segment declaration, you may declare your
variables right before using them and the assembler will automatically move those vari-
able declarations into the proper segment when assembling the program. For example,

Chapter 08

Page 374

CSEG segment public

; This is procedure #1

DSEG segment public

;Local vars for proc #1.

VAR1 word ?
DSEG ends

mov AX, 0
mov VAR1, AX
mov BX, AX
ret

; This is procedure #2

DSEG segment public
I word ?
J word ?
DSEG ends

mov ax, I
add ax, J
ret

CSEG ends
end

Note that you can nest segments any way you please. Unfortunately, Microsoft's
Macro Assembler scoping rules do not work the same way as a HLL like Pascal. Normally,
once you define a symbol within your program, it is visible everywhere else in the pro-
gram7.

8.8.4 The CLASS Type

The final operand to the segment directive is usually the class type. The class type
specifies the ordering of segments that do not have the same segment name. This operand
consists of a symbol enclosed by apostrophes (quotation marks are not allowed here).
Generally, you should use the following names: CODE (for segments containing program
code); DATA (for segments containing variables, constant data, and tables); CONST (for
segments containing constant data and tables); and STACK (for a stack segment). The fol-
lowing program section illustrates their use:

CSEG segment public 'CODE'
mov ax, bx
ret

CSEG ends

DSEG segment public 'DATA'
Item1 byte 0
Item2 word 0
DSEG ends

CSEG segment public 'CODE'
mov ax, 10
add AX, Item1
ret

CSEG ends

SSEG segment stack 'STACK'
STK word 4000 dup (?)
SSEG ends

C2SEG segment public 'CODE'
ret

C2SEG ends
end

7. The major exception are statement labels within a procedure.

Directives and Pseudo Opcodes

Page 375

The actual loading procedure is accomplished as follows. The assembler locates the
first segment in the file. Since it's a public combined segment, MASM concatenates all
other CSEG segments to the end of this segment. Finally, since its combine class is 'CODE',
MASM appends all segments (C2SEG) with the same class afterwards. After processing
these segments, MASM scans the source file for the next uncombined segment and repeats
the process. In the example above, the segments will be loaded in the following order:
CSEG, CSEG (2nd occurrence), C2SEG, DSEG, and then SSEG. The general rule concerning
how your files will be loaded into memory is the following:

• (1) The assembler combines all public segments that have the same name.
• (2) Once combined, the segments are output to the object code file in the

order of their appearance in the source file. If a segment name appears
twice within a source file (and it's public), then the combined segment
will be output to the object code file at the position denoted by the first
occurrence of the segment within the source file.

• (3) The linker reads the object code file produced by the assembler and
rearranges the segments when creating the executable file. The linker
begins by writing the first segment found in the object code file to the
.EXE file. Then it searches throughout the object code file for every seg-
ment with the same class name. Such segments are sequentially written
to the .EXE file.

• (4) Once all the segments with the same class name as the first segment
are emitted to the .EXE file, the linker scans the object code file for the
next segment which doesn't belong to the same class as the previous seg-
ment(s). It writes this segment to the .EXE file and repeats step (3) for
each segment belonging to this class.

• (5) Finally, the linker repeats step (4) until it has linked all the segments in
the object code file.

8.8.5 The Read-only Operand

If readonly is the first operand of the segment directive, the assembler will generate an
error if it encounters any instruction that attempts to write to this segment. This is most
useful for code segments, though is it possible to imagine a read-only data segment. This
option does not actually prevent you from writing to this segment at run-time. It is very
easy to trick the assembler and write to this segment anyway. However, by specifying
readonly you can catch some common programming errors you would otherwise miss.
Since you will rarely place writable variables in your code segments, it’s probably a good
idea to make your code segments readonly.

Example of READONLY operand:

seg1 segment readonly para public ‘DATA’
 .
 .
 .

seg1 ends

8.8.6 The USE16, USE32, and FLAT Options

When working with an 80386 or later processor, MASM generates different code for
16 versus 32 bit segments. When writing code to execute in real mode under DOS, you
must always use 16 bit segments. Thirty-two bit segments are only applicable to programs
running in protected mode. Unfortunately, MASM often defaults to 32 bit mode whenever
you select an 80386 or later processor using a directive like .386, .486, or .586 in your pro-
gram. If you want to use 32 bit instructions, you will have to explicitly tell MASM to use
16 bit segments. The use16, use32, and flat operands to the segment directive let you specify
the segment size.

Chapter 08

Page 376

For most DOS programs, you will always want to use the use16 operand. This tells
MASM that the segment is a 16 bit segment and it assembles the code accordingly. If you
use one of the directives to activate the 80386 or later instruction sets, you should put use16 in all
your code segments or MASM will generate bad code.

Example of use16 operand:

seg1 segment para public use16 ‘data’
 .
 .
 .

seg1 ends

The use32 and flat operands tell MASM to generate code for a 32 bit segment. Since
this text does not deal with protected mode programming, we will not consider these
options. See the MASM Programmer’s Guide for more details.

If you want to force use16 as the default in a program that allows 80386 or later
instructions, there is one way to accomplish this. Place the following directive in your pro-
gram before any segments:

.option segment:use16

8.8.7 Typical Segment Definitions

Has the discussion above left you totally confused? Don't worry about it. Until
you're writing extremely large programs, you needn't concern yourself with all the oper-
ands associated with the segment directive. For most programs, the following three seg-
ments should prove sufficient:

DSEG segment para public 'DATA'

; Insert your variable definitions here

DSEG ends

CSEG segment para public use16 'CODE'

; Insert your program instructions here

CSEG ends

SSEG segment para stack 'STACK'
stk word 1000h dup (?)
EndStk equ this word
SSEG ends

end

The SHELL.ASM file automatically declares these three segments for you. If you
always make a copy of the SHELL.ASM file when writing a new assembly language pro-
gram, you probably won’t need to worry about segment declarations and segmentation in
general.

8.8.8 Why You Would Want to Control the Loading Order

Certain DOS calls require that you pass the length of your program as a parameter.
Unfortunately, computing the length of a program containing several segments is a very
difficult process. However, when DOS loads your program into memory, it will load the
entire program into a contiguous block of RAM. Therefore, to compute the length of your
program, you need only know the starting and ending addresses of your program. By
simply taking the difference of these two values, you can compute the length of your pro-
gram.

In a program that contains multiple segments, you will need to know which segment
was loaded first and which was loaded last in order to compute the length of your pro-
gram. As it turns out, DOS always loads the program segment prefix, or PSP, into mem-

Directives and Pseudo Opcodes

Page 377

ory just before the first segment of your program. You must consider the length of the PSP
when computing the length of your program. MS-DOS passes the segment address of the
PSP in the ds register. So computing the difference of the last byte in your program and
the PSP will produce the length of your program. The following code segment computes
the length of a program in paragraphs:

CSEG segment public 'CODE'
mov ax, ds ;Get PSP segment address
sub ax, seg LASTSEG ;Compute difference

; AX now contains the length of this program (in paragraphs)
 .
 .
 .

CSEG ends

; Insert ALL your other segments here.

LASTSEG segment para public 'LASTSEG'
LASTSEG ends

end

8.8.9 Segment Prefixes

When the 80x86 references a memory operand, it usually references a location within
the current data segment8. However, you can instruct the 80x86 microprocessor to refer-
ence data in one of the other segments using a segment prefix before an address expres-
sion.

A segment prefix is either ds:, cs:, ss:, es:, fs:, or gs:. When used in front of an address
expression, a segment prefix instructs the 80x86 to fetch its memory operand from the
specified segment rather than the default segment. For example, mov ax, cs:I[bx] loads the
accumulator from address I+bx within the current code segment. If the cs: prefix were absent,
this instruction would normally load the data from the current data segment. Likewise,
mov ds:[bp],ax stores the accumulator into the memory location pointed at by the bp regis-
ter in the current data segment (remember, whenever using bp as a base register it points
into the stack segment).

Segment prefixes are instruction opcodes. Therefore, whenever you use a segment
prefix you are increasing the length (and decreasing the speed) of the instruction utilizing
the segment prefix. Therefore, you don't want to use segment prefixes unless you have a
good reason to do so.

8.8.10 Controlling Segments with the ASSUME Directive

The 80x86 generally references data items relative to the ds segment register (or stack
segment). Likewise, all code references (jumps, calls, etc.) are always relative to the cur-
rent code segment. There is only one catch – how does the assembler know which seg-
ment is the data segment and which is the code segment (or other segment)? The segment
directive doesn't tell you what type of segment it happens to be in the program. Remem-
ber, a data segment is a data segment because the ds register points at it. Since the ds register
can be changed at run time (using an instruction like mov ds,ax), any segment can be a
data segment. This has some interesting consequences for the assembler. When you spec-
ify a segment in your program, not only must you tell the CPU that a segment is a data
segment9, but you must also tell the assembler where and when that segment is a data (or
code/stack/extra/F/G) segment. The assume directive provides this information to the
assembler.

8. The exception, of course, are those instructions and addressing modes that use the stack segment by default
(e.g., push/pop and addressing modes that use bp or sp).
9. By loading DS with the address of that segment.

Chapter 08

Page 378

The assume directive takes the following form:

assume {CS:seg} {DS:seg} {ES:seg} {FS:seg} {GS:seg} {SS:seg}

The braces surround optional items, you do not type the braces as part of these oper-
ands. Note that there must be at least one operand. Seg is either the name of a segment
(defined with the segment directive) or the reserved word nothing. Multiple operands in
the operand field of the assume directive must be separated by commas. Examples of
valid assume directives:

assume DS:DSEG
assume CS:CSEG, DS:DSEG, ES:DSEG, SS:SSEG
assume CS:CSEG, DS:NOTHING

The assume directive tells the assembler that you have loaded the specified segment
register(s) with the segment addresses of the specified value. Note that this directive
does not modify any of the segment registers, it simply tells the assembler to assume
the segment registers are pointing at certain segments in the program. Like the proces-
sor selection and equate directives, the assume directive modifies the assembler’s behav-
ior from the point MASM encounters it until another assume directive changes the stated
assumption.

Consider the following program:

DSEG1 segment para public 'DATA'
var1 word ?
DSEG1 ends

DSEG2 segment para public 'DATA'
var2 word ?
DSEG2 ends

CSEG segment para public 'CODE'
assume CS:CSEG, DS:DSEG1, ES:DSEG2
mov ax, seg DSEG1
mov ds, ax
mov ax, seg DSEG2
mov es, ax

mov var1, 0
mov var2, 0
 .
 .
 .
assume DS:DSEG2
mov ax, seg DSEG2
mov ds, ax
mov var2, 0
 .
 .
 .

CSEG ends
end

 Whenever the assembler encounters a symbolic name, it checks to see which segment
contains that symbol. In the program above, var1 appears in the DSEG1 segment and var2
appears in the DSEG2 segment. Remember, the 80x86 microprocessor doesn't know about
segments declared within your program, it can only access data in segments pointed at by
the cs, ds, es, ss, fs, and gs segment registers. The assume statement in this program tells
the assembler the ds register points at DSEG1 for the first part of the program and at
DSEG2 for the second part of the program.

When the assembler encounters an instruction of the form mov var1,0, the first thing it
does is determine var1's segment. It then compares this segment against the list of
assumptions the assembler makes for the segment registers. If you didn't declare var1 in
one of these segments, then the assembler generates an error claiming that the program
cannot access that variable. If the symbol (var1 in our example) appears in one of the cur-
rently assumed segments, then the assembler checks to see if it is the data segment. If so,
then the instruction is assembled as described in the appendices. If the symbol appears in

Directives and Pseudo Opcodes

Page 379

a segment other than the one that the assembler assumes ds points at, then the assembler
emits a segment override prefix byte, specifying the actual segment that contains the data.

In the example program above, MASM would assemble mov VAR1,0 without a seg-
ment prefix byte. MASM would assemble the first occurrence of the mov VAR2,0 instruc-
tion with an es: segment prefix byte since the assembler assumes es, rather than ds, is
pointing at segment DSEG2. MASM would assemble the second occurrence of this instruc-
tion without the es: segment prefix byte since the assembler, at that point in the source file,
assumes that ds points at DSEG2. Keep in mind that it is very easy to confuse the assem-
bler. Consider the following code:

CSEG segment para public 'CODE'
assume CS:CSEG, DS:DSEG1, ES:DSEG2
mov ax, seg DSEG1
mov ds, ax
 .
 .
 .

jmp SkipFixDS

assume DS:DSEG2

FixDS: mov ax, seg DSEG2
mov ds, ax

SkipFixDS:
 .
 .
 .

CSEG ends
end

Notice that this program jumps around the code that loads the ds register with the
segment value for DSEG2. This means that at label SkipFixDS the ds register contains a
pointer to DSEG1, not DSEG2. However, the assembler isn't bright enough to realize this
problem, so it blindly assumes that ds points at DSEG2 rather than DSEG1. This is a disas-
ter waiting to happen. Because the assembler assumes you're accessing variables in
DSEG2 while the ds register actually points at DSEG1, such accesses will reference mem-
ory locations in DSEG1 at the same offset as the variables accessed in DSEG2. This will
scramble the data in DSEG1 (or cause your program to read incorrect values for the vari-
ables assumed to be in segment DSEG2).

For beginning programmers, the best solution to the problem is to avoid using multi-
ple (data) segments within your programs as much as possible. Save the multiple seg-
ment accesses for the day when you’re prepared to deal with problems like this. As a
beginning assembly language programmer, simply use one code segment, one data seg-
ment, and one stack segment and leave the segment registers pointing at each of these
segments while your program is executing. The assume directive is quite complex and
can get you into a considerable amount of trouble if you misuse it. Better not to bother
with fancy uses of assume until you are quite comfortable with the whole idea of assembly
language programming and segmentation on the 80x86.

The nothing reserved word tells the assembler that you haven't the slightest idea where
a segment register is pointing. It also tells the assembler that you're not going to access
any data relative to that segment register unless you explicitly provide a segment prefix to
an address. A common programming convention is to place assume directives before all
procedures in a program. Since segment pointers to declared segments in a program
rarely change except at procedure entry and exit, this is the ideal place to put assume
directives:

Chapter 08

Page 380

assume ds:P1Dseg, cs:cseg, es:nothing
Procedure1 proc near

push ds ;Preserve DS
push ax ;Preserve AX
mov ax, P1Dseg ;Get pointer to P1Dseg into the
mov ds, ax ; ds register.
 .
 .
 .

pop ax ;Restore ax’s value.
pop ds ;Restore ds’ value.
ret

Procedure1 endp

The only problem with this code is that MASM still assumes that ds points at P1Dseg
when it encounters code after Procedure1. The best solution is to put a second assume
directive after the endp directive to tell MASM it doesn’t know anything about the value in
the ds register:

 .
 .
 .

ret
Procedure1 endp

assume ds:nothing

Although the next statement in the program will probably be yet another assume directive
giving the assembler some new assumptions about ds (at the beginning of the procedure
that follows the one above), it’s still a good idea to adopt this convention. If you fail to put
an assume directive before the next procedure in your source file, the assume ds:nothing
statement above will keep the assembler from assuming you can access variables in
P1Dseg.

Segment override prefixes always override any assumptions made by the assembler.
mov ax, cs:var1 always loads the ax register with the word at offset var1 within the current
code segment, regardless of where you've defined var1. The main purpose behind the seg-
ment override prefixes is handling indirect references. If you have an instruction of the
form mov ax,[bx] the assembler assumes that bx points into the data segment. If you really
need to access data in a different segment you can use a segment override, thusly,
mov ax, es:[bx].

In general, if you are going to use multiple data segments within your program, you
should use full segment:offset names for your variables. E.g., mov ax, DSEG1:I and
mov bx,DSEG2:J. This does not eliminate the need to load the segment registers or make
proper use of the assume directive, but it will make your program easier to read and help
MASM locate possible errors in your program.

The assume directive is actually quite useful for other things besides just setting the
default segment. You’ll see some more uses for this directive a little later in this chapter.

8.8.11 Combining Segments: The GROUP Directive

Most segments in a typical assembly language program are less than 64 Kilobytes
long. Indeed, most segments are much smaller than 64 Kilobytes in length. When MS-DOS
loads the program’s segments into memory, several of the segments may fall into a single
64K region of memory. In practice, you could combine these segments into a single seg-
ment in memory. This might possibly improve the efficiency of your code if it saves hav-
ing to reload segment registers during program execution.

So why not simply combine such segments in your assembly language code? Well, as
the next section points out, maintaining separate segments can help you structure your
programs better and help make them more modular. This modularity is very important in
your programs as they get more complex. As usual, improving the structure and modular-
ity of your programs may cause them to become less efficient. Fortunately, MASM pro-
vides a directive, group, that lets you treat two segments as the same physical segment
without abandoning the structure and modularity of your program.

Directives and Pseudo Opcodes

Page 381

The group directive lets you create a new segment name that encompasses the seg-
ments it groups together. For example, if you have two segments named “Module1Data”
and “Module2Data” that you wish to combine into a single physical segment, you could
use the group directive as follows:

ModuleData group Module1Data, Module2Data

The only restriction is that the end of the second module’s data must be no more than 64
kilobytes away from the start of the first module in memory. MASM and the linker will not
automatically combine these segments and place them together in memory. If there are
other segments between these two in memory, then the total of all such segments must be
less than 64K in length. To reduce this problem, you can use the class operand to the seg-
ment directive to tell the linker to combine the two segments in memory by using the
same class name:

ModuleData group Module1Data, Module2Data

Module1Data segment para public ‘MODULES’
 .
 .
 .

Module1Data ends
 .
 .
 .

Module2Data segment byte public ‘MODULES’
 .
 .
 .

Module2Data ends

With declarations like those above, you can use “ModuleData” anywhere MASM allows a
segment name, as the operand to a mov instruction, as an operand to the assume directive,
etc. The following example demonstrates the usage of the ModuleData segment name:

assume ds:ModuleData
Module1Proc proc near

push ds ;Preserve ds’ value.
push ax ;Preserve ax’s value.
mov ax, ModuleData ;Load ds with the segment

address
mov ds, ax ; of ModuleData.
 .
 .
 .

pop ax ;Restore ax’s and ds’ values.
pop ds
ret

Module1Proc endp
assume ds:nothing

Of course, using the group directive in this manner hasn’t really improved the code.
Indeed, by using a different name for the data segment, one could argue that using group
in this manner has actually obfuscated the code. However, suppose you had a code
sequence that needed to access variables in both the Module1Data and Module2Data seg-
ments. If these segments were physically and logically separate you would have to load
two segment registers with the addresses of these two segments in order to access their
data concurrently. This would cost you a segment override prefix on all the instructions
that access one of the segments. If you cannot spare an extra segment register, the situa-
tion will be even worse, you’ll have to constantly load new values into a single segment
register as you access data in the two segments. You can avoid this overhead by combin-
ing the two logical segments into a single physical segment and accessing them through
their group rather than individual segment names.

If you group two or more segments together, all you’re really doing is creating a
pseudo-segment that encompasses the segments appearing in the group directive’s oper-
and field. Grouping segments does not prevent you from accessing the individual seg-
ments in the grouping list. The following code is perfectly legal:

Chapter 08

Page 382

assume ds:Module1Data
mov ax, Module1Data
mov ds, ax
 .

< Code that accesses data in Module1Data >
 .
assume ds:Module2Data
mov ax, Module2Data
mov ds, ax
 .

< Code that accesses data in Module2Data >
 .
assume ds:ModuleData
mov ax, ModuleData
mov ds, ax
 .

< Code that accesses data in both Module1Data and Module2Data >
 .
 .
 .

When the assembler processes segments, it usually starts the location counter value
for a given segment at zero. Once you group a set of segments, however, an ambiguity
arises; grouping two segments causes MASM and the linker to concatenate the variables
of one or more segments to the end of the first segment in the group list. They accomplish
this by adjusting the offsets of all symbols in the concatenated segments as though they
were all symbols in the same segment. The ambiguity exists because MASM allows you to
reference a symbol in its segment or in the group segment. The symbol has a different off-
set depending on the choice of segment. To resolve the ambiguity, MASM uses the follow-
ing algorithm:

• If MASM doesn’t know that a segment register is pointing at the symbol’s
segment or a group containing that segment, MASM generates an error.

• If an assume directive associates the segment name with a segment regis-
ter but does not associate a segment register with the group name, then
MASM uses the offset of the symbol within its segment.

• If an assume directive associates the group name with a segment register
but does not associate a segment register with the symbol’s segment
name, MASM uses the offset of the symbol with the group.

• If an assume directive provides segment register association with both the
symbol’s segment and its group, MASM will pick the offset that would
not require a segment override prefix. For example, if the assume direc-
tive specifies that ds points at the group name and es points at the seg-
ment name, MASM will use the group offset if the default segment
register would be ds since this would not require MASM to emit a seg-
ment override prefix opcode. If either choice results in the emission of a
segment override prefix, MASM will choose the offset (and segment over-
ride prefix) associated with the symbol’s segment.

MASM uses the algorithm above if you specify a variable name without a segment
prefix. If you specify a segment register override prefix, then MASM may choose an arbi-
trary offset. Often, this turns out to be the group offset. So the following instruction
sequence, without an assume directive telling MASM that the BadOffset symbol is in seg1
may produce bad object code:

DataSegs group Data1, Data2, Data3
 .
 .
 .

Data2 segment
 .
 .
 .

BadOffset word ?
 .
 .
 .

Data2 ends
 .
 .
 .

Directives and Pseudo Opcodes

Page 383

assume ds:nothing, es:nothing, fs:nothing, gs:nothing
mov ax, Data2 ;Force ds to point at data2

despite
mov ds, ax ; the assume directive above.

mov ax, ds:BadOffset ;May use the offset from
DataSegs

; rather than Data2!

If you want to force the correct offset, use the variable name containing the complete seg-
ment:offset address form:

; To force the use of the offset within the DataSegs group use an instruction
; like the following:

mov ax, DataSegs:BadOffset

; To force the use of the offset within Data2, use:

mov ax, Data2:BadOffset

You must use extra care when working with groups within your assembly language
programs. If you force MASM to use an offset within some particular segment (or group)
and the segment register is not pointing at that particular segment or group, MASM may
not generate an error message and the program will not execute correctly. Reading the off-
sets MASM prints in the assembly listing will not help you find this error. MASM always
displays the offsets within the symbol’s segment in the assembly listing. The only way to
really detect that MASM and the linker are using bad offsets is to get into a debugger like
CodeView and look at the actual machine code bytes produced by the linker and loader.

8.8.12 Why Even Bother With Segments?

After reading the previous sections, you’re probably wondering what possible good
could come from using segments in your programs. To be perfectly frank, if you use the
SHELL.ASM file as a skeleton for the assembly language programs you write, you can get
by quite easily without ever worrying about segments, groups, segment override prefixes,
and full segment:offset names. As a beginning assembly language programmer, it’s proba-
bly a good idea to ignore much of this discussion on segmentation until you are much
more comfortable with 80x86 assembly language programming. However, there are three
reasons you’ll want to learn more about segmentation if you continue writing assembly
language programs for any length of time: the real-mode 64K segment limitation, pro-
gram modularity, and interfacing with high level languages.

When operating in real mode, segments can be a maximum of 64 kilobytes long. If
you need to access more than 64K of data or code in your programs, you will need to use
more than one segment. This fact, more than any other reason, has dragged programmers
(kicking and screaming) into the world of segmentation. Unfortunately, this is as far as
many programmers get with segmentation. They rarely learn more than just enough
about segmentation to write a program that accesses more than 64K of data. As a result,
when a segmentation problem occurs because they don’t fully understand the concept,
they blame segmentation for their problems and they avoid using segmentation as much
as possible.

This is too bad because segmentation is a powerful memory management tool that
lets you organize your programs into logical entities (segments) that are, in theory, inde-
pendent of one another. The field of software engineering studies how to write correct,
large programs. Modularity and independence are two of the primary tools software engi-
neers use to write large programs that are correct and easy to maintain. The 80x86 family
provides, in hardware, the tools to implement segmentation. On other processors, seg-
mentation is enforced strictly by software. As a result, it is easier to work with segments
on the 80x86 processors.

Chapter 08

Page 384

Although this text does not deal with protected mode programming, it is worth point-
ing out that when you operate in protected mode on 80286 and later processors, the 80x86
hardware can actually prevent one module from accessing another module’s data (indeed,
the term “protected mode” means that segments are protected from illegal access). Many
debuggers available for MS-DOS operate in protected mode allowing you to catch array
and segment bounds violations. Soft-ICE and Bounds Checker from NuMega are exam-
ples of such products. Most people who have worked with segmentation in a protected
mode environment (e.g., OS/2 or Windows) appreciate the benefits that segmentation
offers.

Another reason for studying segmentation on the 80x86 is because you might want to
write an assembly language function that a high level language program can call. Since
the HLL compiler makes certain assumptions about the organization of segments in mem-
ory, you will need to know a little bit about segmentation in order to write such code.

8.9 The END Directive

The end directive terminates an assembly language source file. In addition to telling
MASM that it has reached the end of an assembly language source file, the end directive’s
optional operand tells MS-DOS where to transfer control when the program begins execu-
tion; that is, you specify the name of the main procedure as an operand to the end direc-
tive. If the end directive’s operand is not present, MS-DOS will begin execution starting at
the first byte in the .exe file. Since it is often inconvenient to guarantee that your main pro-
gram begins with the first byte of object code in the .exe file, most programs specify a
starting location as the operand to the end directive. If you are using the SHELL.ASM file
as a skeleton for your assembly language programs, you will notice that the end directive
already specifies the procedure main as the starting point for the program.

If you are using separate assembly and you’re linking together several different object
code files (see “Managing Large Programs” on page 425), only one module can have a
main program. Likewise, only one module should specify the starting location of the pro-
gram. If you specify more than one starting location, you will confuse the linker and it will
generate an error.

8.10 Variables

Global variable declarations use the byte/sbyte/db, word/sword/dw, dword/sdword/dd,
qword/dq, and tbyte/dt pseudo-opcodes. Although you can place your variables in any seg-
ment (including the code segment), most beginning assembly language programmers
place all their global variables in a single data segment..

A typical variable declaration takes the form:

varname byte initial_value

Varname is the name of the variable you're declaring and initial_value is the initial value you
want that variable to have when the program begins execution. “?” is a special initial
value. It means that you don't want to give a variable an initial value. When DOS loads a
program containing such a variable into memory, it does not initialize this variable to any
particular value.

The declaration above reserves storage for a single byte. This could be changed to any
other variable type by simply changing the byte mnemonic to some other appropriate
pseudo-opcode.

For the most part, this text will assume that you declare all variables in a data segment,
that is, a segment that the 80x86's ds register will point at. In particular, most of the pro-
grams herein will place all variables in the DSEG segment (CSEG is for code, DSEG is for
data, and SSEG is for the stack). See the SHELL.ASM program in Chapter Four for more
details on these segments.

Directives and Pseudo Opcodes

Page 385

Since Chapter Five covers the declaration of variables, data types, structures, arrays,
and pointers in depth, this chapter will not waste any more time discussing this subject.
Refer to Chapter Five for more details.

8.11 Label Types

One unusual feature of Intel syntax assemblers (like MASM) is that they are strongly
typed. A strongly typed assembler associates a certain type with symbols declared appear-
ing in the source file and will generate a warning or an error message if you attempt to use
that symbol in a context that doesn't allow its particular type. Although unusual in an
assembler, most high level languages apply certain typing rules to symbols declared in the
source file. Pascal, of course, is famous for being a strongly typed language. You cannot,
in Pascal, assign a string to a numeric variable or attempt to assign an integer value to a
procedure label. Intel, in designing the syntax for 8086 assembly language, decided that
all the reasons for using a strongly typed language apply to assembly language as well as
Pascal. Therefore, standard Intel syntax 80x86 assemblers, like MASM, impose certain
type restrictions on the use of symbols within your assembly language programs.

8.11.1 How to Give a Symbol a Particular Type

Symbols, in an 80x86 assembly language program, may be one of eight different prim-
itive types: byte, word, dword, qword, tbyte, near, far, and abs (constant)10. Anytime you
define a label with the byte, word, dword, qword, or tbyte pseudo-opcodes, MASM associates
the type of that pseudo-opcode with the label. For example, the following variable decla-
ration will create a symbol of type byte:

BVar byte ?

Likewise, the following defines a dword symbol:

DWVar dword ?

Variable types are not limited to the primitive types built into MASM. If you create
your own types using the typedef or struct directives MASM will associate those types with
any associated variable declarations.

You can define near symbols (also known as statement labels) in a couple of different
ways. First, all procedure symbols declared with the proc directive (with either a blank
operand field11 or near in the operand field) are near symbols. Statement labels are also
near symbols. A statement label takes the following form:

label: instr

Instr represents an 80x86 instruction12. Note that a colon must follow the symbol. It is not
part of the symbol, the colon informs the assembler that this symbol is a statement label
and should be treated as a near typed symbol.

Statement labels are often the targets of jump and loop instructions. For example,
consider the following code sequence:

mov cx, 25
Loop1: mov ax, cx

call PrintInteger
loop Loop1

10. MASM also supports an FWORD type. FWORD is for programmers working in 32-bit protected mode. This
text will not consider that type.
11. Note: if you are using the simplified directives, a blank operand field might not necessarily imply that the pro-
cedure is near. If your program does not contain a “.MODEL” directive, however, blank operand fields imply a
near type.
12. The mnemonic “instr” is optional. You may also place a statement label on a line by itself. The assembler
assigns the location counter of the next instruction in the program to the symbol.

Chapter 08

Page 386

The loop instruction decrements the cx register and transfers control to the instruction
labelled by Loop1 until cx becomes zero.

Inside a procedure, statement labels are local. That is, the scope of statement labels
inside a procedure are visible only to code inside that procedure. If you want to make a
symbol global to a procedure, place two colons after the symbol name. In the example
above, if you needed to refer to Loop1 outside of the enclosing procedure, you would use
the code:

mov cx, 25
Loop1:: mov ax, cx

call PrintInteger
loop Loop1

Generally, far symbols are the targets of jump and call instructions. The most common
method programmers use to create a far label is to place far in the operand field of a proc
directive. Symbols that are simply constants are normally defined with the equ directive.
You can also declare symbols with different types using the equ and extrn/extern/externdef
directives. An explanation of the extrn directives appears in the section “Managing Large
Programs” on page 425.

If you declare a numeric constant using an equate, MASM assigns the type abs (abso-
lute, or constant) to the system. Text and string equates are given the type text. You can
also assign an arbitrary type to a symbol using the equ directive, see “Type Operators” on
page 392 for more details.

8.11.2 Label Values

Whenever you define a label using a directive or pseudo-opcode, MASM gives it a
type and a value. The value MASM gives the label is usually the current location counter
value. If you define the symbol with an equate the equate’s operand usually specifies the
symbol’s value. When encountering the label in an operand field, as with the loop instruc-
tion above, MASM substitutes the label’s value for the label.

8.11.3 Type Conflicts

Since the 80x86 supports strongly typed symbols, the next question to ask is “What
are they used for?” In a nutshell, strongly typed symbols can help verify proper operation
of your assembly language programs. Consider the following code sections:

DSEG segment public 'DATA'
 .
 .
 .

I byte ?
 .
 .
 .

DSEG ends

CSEG segment public 'CODE'
 .
 .
 .

mov ax, I
 .
 .
 .

CSEG ends
end

The mov instruction in this example is attempting to load the ax register (16 bits) from
a byte sized variable. Now the 80x86 microprocessor is perfectly capable of this operation.
It would load the al register from the memory location associated with I and load the ah
register from the next successive memory location (which is probably the L.O. byte of
some other variable). However, this probably wasn't the original intent. The person who

Directives and Pseudo Opcodes

Page 387

wrote this code probably forgot that I is a byte sized variable and assumed that it was a
word variable – which is definitely an error in the logic of the program.

MASM would never allow an instruction like the one above to be assembled without
generating a diagnostic message. This can help you find errors in your programs, particu-
larly difficult-to-find errors. On occasion, advanced assembly language programmers may
want to execute a statement like the one above. MASM provides certain coercion opera-
tors that bypass MASM's safety mechanisms and allow illegal operations (see “Coercion”
on page 390).

8.12 Address Expressions

An address expression is an algebraic expression that produces a numeric result that
MASM merges into the displacement field of an instruction. An integer constant is proba-
bly the simplest example of an address expression. The assembler simply substitutes the
value of the numeric constant for the specified operand. For example, the following
instruction fills the immediate data fields of the mov instruction with zeros:

mov ax, 0

Another simple form of an addressing mode is a symbol. Upon encountering a sym-
bol, MASM substitutes the value of that symbol. For example, the following two state-
ments emit the same object code as the instruction above:

Value equ 0
mov ax, Value

An address expression, however, can be much more complex than this. You can use vari-
ous arithmetic and logical operators to modify the basic value of some symbols or con-
stants.

Keep in mind that MASM computes address expressions during assembly, not at run
time. For example, the following instruction does not load ax from location Var and add
one to it:

mov ax, Var1+1

Instead, this instruction loads the al register with the byte stored at the address of Var1
plus one and then loads the ah register with the byte stored at the address of Var1 plus
two.

Beginning assembly language programmers often confuse computations done at
assembly time with those done at run time. Take extra care to remember that MASM com-
putes all address expressions at assembly time!

8.12.1 Symbol Types and Addressing Modes

Consider the following instruction:

jmp Location

Depending on how the label Location is defined, this jmp instruction will perform one
of several different operations. If you'll look back at the chapter on the 80x86 instruction
set, you'll notice that the jmp instruction takes several forms. As a recap, they are

jmp label (short)
jmp label (near)
jmp label (far)
jmp reg (indirect near, through register)
jmp mem/reg (indirect near, through memory)
jmp mem/reg (indirect far, thorugh memory)

Notice that MASM uses the same mnemonic (jmp) for each of these instructions; how
does it tell them apart? The secret lies with the operand. If the operand is a statement
label within the current segment, the assembler selects one of the first two forms depend-

Chapter 08

Page 388

ing on the distance to the target instruction. If the operand is a statement label within a
different segment, then the assembler selects jmp (far) label. If the operand following the
jmp instruction is a register, then MASM uses the indirect near jmp and the program jumps
to the address in the register. If a memory location is selected, the assembler uses one of
the following jumps:

• NEAR if the variable was declared with word/sword/dw
• FAR if the variable was declared with dword/sdword/dd

An error results if you've used byte/sbyte/db, qword/dq, or tbyte/dt or some other type.

If you've specified an indirect address, e.g., jmp [bx], the assembler will generate an
error because it cannot determine if bx is pointing at a word or a dword variable. For
details on how you specify the size, see the section on coercion in this chapter.

8.12.2 Arithmetic and Logical Operators

MASM recognizes several arithmetic and logical operators. The following tables pro-
vide a list of such operators:

Table 36: Arithmetic Operators

Operator Syntax Description

+ +expr Positive (unary)

- -expr Negation (unary)

+ expr + expr Addition

- expr - expr Subtraction

* expr * expr Multiplication

/ expr / expr Division

MOD expr MOD expr Modulo (remainder)

[] expr [expr] Addition (index operator)

Table 37: Logical Operators

Operator Syntax Description

SHR expr SHR expr Shift right

SHL expr SHL expr Shift left

NOT NOT expr Logical (bit by bit) NOT

AND expr AND expr Logical AND

OR expr OR expr Logical OR

XOR expr XOR expr Logical XOR

Table 38: Relational Operators

Operator Syntax Description

EQ expr EQ expr True (0FFh) if equal, false (0) otherwise

NE expr NE expr True (0FFh) if not equal, false (0) otherwise

LT expr LT expr True (0FFh) if less, false (0) otherwise

LE expr LE expr True (0FFh) if less or equal, false (0) otherwise

GT expr GT expr True (0FFh) if greater, false (0) otherwise

GE expr GE expr True (0FFh) if greater or equal, false (0) otherwise

Directives and Pseudo Opcodes

Page 389

You must not confuse these operators with 80x86 instructions! The addition operator
adds two values together, their sum becomes an operand to an instruction. This addition
is performed when assembling the program, not at run time. If you need to perform an
addition at execution time, use the add or adc instructions.

You're probably wondering “What are these operators used for?” The truth is, not
much. The addition operator gets used quite a bit, the subtraction somewhat, the compar-
isons once in a while, and the rest even less. Since addition and subtraction are the only
operators beginning assembly language programmers regularly employ, this discussion
considers only those two operators and brings up the others as required throughout this
text.

The addition operator takes two forms: expr+expr or expr[expr]. For example, the fol-
lowing instruction loads the accumulator, not from memory location COUNT, but from the
very next location in memory:

mov al, COUNT+1

The assembler, upon encountering this statement, will compute the sum of COUNT’s
address plus one. The resulting value is the memory address for this instruction. As you
may recall, the mov al, memory instruction is three bytes long and takes the form:

Opcode | L. O. Displacement Byte | H. O. Displacement Byte

The two displacement bytes of this instruction contain the sum COUNT+1.

The expr[expr] form of the addition operation is for accessing elements of arrays. If
AryData is a symbol that represents the address of the first element of an array, AryData[5]
represents the address of the fifth byte into AryData. The expression AryData+5 produces
the same result, and either could be used interchangeably, however, for arrays the
expr[expr] form is a little more self documenting. One trap to avoid: expr1[expr2][expr3]
does not automatically index (properly) into a two dimensional array for you. This sim-
ply computes the sum expr1+expr2+expr3.

The subtraction operator works just like the addition operator, except it computes the
difference rather than the sum. This operator will become very important when we deal
with local variables in Chapter 11.

Take care when using multiple symbols in an address expression. MASM restricts the
operations you can perform on symbols to addition and subtraction and only allows the
following forms:

Expression: Resulting type:

reloc + const Reloc, at address specified.

reloc - const Reloc, at address specified.

reloc - reloc Constant whose value is the number of bytes between
the first and second operands. Both variables must
physically appear in the same segment in the
current source file.

Reloc stands for relocatable symbol or expression. This can be a variable name, a statement
label, a procedure name, or any other symbol associated with a memory location in the
program. It could also be an expression that produces a relocatable result. MASM does not
allow any operations other than addition and subtraction on expressions whose resulting
type is relocatable. You cannot, for example, compute the product of two relocatable sym-
bols.

The first two forms above are very common in assembly language programs. Such an
address expression will often consist of a single relocatable symbol and a single constant
(e.g., “var + 1”). You won’t use the third form very often, but it is very useful once in a
while. You can use this form of an address expression to compute the distance, in bytes,
between two points in your program. The procsize symbol in the following code, for exam-
ple, computes the size of Proc1:

Chapter 08

Page 390

Proc1 proc near
push ax
push bx
push cx
mov cx, 10
lea bx, SomeArray
mov ax, 0

ClrArray: mov [bx], ax
add bx, 2
loop ClrArray
pop cx
pop bx
pop ax
ret

Proc1 endp

procsize = $ - Proc1

“$” is a special symbol MASM uses to denote the current offset within the segment (i.e.,
the location counter). It is a relocatable symbol, as is Proc1, so the equate above computes
the difference between the offset at the start of Proc1 and the end of Proc1. This is the
length of the Proc1 procedure, in bytes.

The operands to the operators other than addition and subtraction must be constants
or an expression yielding a constant (e.g., “$-Proc1” above produces a constant value).
You’ll mainly use these operators in macros and with the conditional assembly directives.

8.12.3 Coercion

Consider the following program segment:

DSEG segment public 'DATA'
I byte ?
J byte ?
DSEG ends

CSEG segment
 .
 .
 .
mov al, I
mov ah, J
 .
 .
 .

CSEG ends

Since I and J are adjacent, there is no need to use two mov instructions to load al and ah, a
simple mov ax, I instruction would do the same thing. Unfortunately, the assembler will
balk at mov ax, I since I is a byte. The assembler will complain if you attempt to treat it as a
word. As you can see, however, there are times when you'd probably like to treat a byte
variable as a word (or treat a word as a byte or double word, or treat a double word as a
something else).

Temporarily changing the type of a label for some particular occurrence is coercion.
Expressions can be coerced to a different type using the MASM ptr operator. You use the
ptr operator as follows:

 type PTR expression

Type is any of byte, word, dword, tbyte, near, far, or other type and expression is any general
expression that is the address of some object. The coercion operator returns an expression
with the same value as expression, but with the type specified by type. To handle the above
problem you'd use the assembly language instruction:

mov ax, word ptr I

Directives and Pseudo Opcodes

Page 391

This instructs the assembler to emit the code that will load the ax register with the word at
address I. This will, of course, load al with I and ah with J.

Code that uses double word values often makes extensive use of the coercion opera-
tor. Since lds and les are the only 32-bit instructions on pre-80386 processors, you cannot
(without coercion) store an integer value into a 32-bit variable using the mov instruction
on those earlier CPUs. If you've declared DBL using the dword pseudo-opcode, then an
instruction of the form mov DBL,ax will generate an error because it's attempting to move a
16 bit quantity into a 32 bit variable. Storing values into a double word variable requires
the use of the ptr operator. The following code demonstrates how to store the ds and bx
registers into the double word variable DBL:

mov word ptr DBL, bx
mov word ptr DBL+2, ds

You will use this technique often as various UCR Standard Library and MS-DOS calls
return a double word value in a pair of registers.

Warning: If you coerce a jmp instruction to perform a far jump to a near label, other
than performance degradation (the far jmp takes longer to execute), your program will
work fine. If you coerce a call to perform a far call to a near subroutine, you're headed for
trouble. Remember, far calls push the cs register onto the stack (with the return address).
When executing a near ret instruction, the old cs value will not be popped off the stack,
leaving junk on the stack. The very next pop or ret instruction will not operate properly
since it will pop the cs value off the stack rather than the original value pushed onto the
stack13.

 Expression coercion can come in handy at times. Other times it is essential. How-
ever, you shouldn't get carried away with coercion since data type checking is a powerful
debugging tool built in to MASM. By using coercion, you override this protection pro-
vided by the assembler. Therefore, always take care when overriding symbol types with
the ptr operator.

One place where you'll need coercion is with the mov memory, immediate instruction.
Consider the following instruction:

mov [bx], 5

Unfortunately, the assembler has no way of telling whether bx points at a byte, word, or
double word item in memory14. The value of the immediate operand isn't of any use.
Even though five is a byte quantity, this instruction might be storing the value 0005h into a
word variable, or 00000005 into a double word variable. If you attempt to assemble this
statement, the assembler will generate an error to the effect that you must specify the size
of the memory operand. You can easily accomplish this using the byte ptr, word ptr, and
dword ptr operators as follows:

mov byte ptr [bx], 5 ;For a byte variable
mov word ptr [bx], 5 ;For a word variable
mov dword ptr [bx], 5 ;For a dword variable

Lazy programmers might complain that typing strings like “word ptr” or “far ptr” is too
much work. Wouldn’t it have been nice had Intel chosen a single character symbol rather
than these long phrases? Well, quit complaining and remember the textequ directive. With
the equate directive you can substitute a long string like “word ptr” for a short symbol.
You’ll find equates like the following in many programs, including several in this text:

byp textequ <byte ptr> ;Remember, “bp” is a reserved symbol!
wp textequ <word ptr>
dp textequ <dword ptr>
np textequ <near ptr>
fp textequ <far ptr>

With equates like the above, you can use statements like the following:

13. The situation when you force a near call to a far procedure is even worse. See the exercises for more details.
14. Actually, you can use the assume directive to tell MASM what bx is pointing at. See the MASM reference man-
uals for details.

Chapter 08

Page 392

mov byp [bx], 5
mov ax, wp I
mov wp DBL, bx
mov wp DBL+2, ds

8.12.4 Type Operators

The “xxxx ptr” coercion operator is an example of a type operator. MASM expressions
possess two major attributes: a value and a type. The arithmetic, logical, and relational
operators change an expression's value. The type operators change its type. The previous
section demonstrated how the ptr operator could change an expression's type. There are
several additional type operators as well.

Table 39: Type Operators

Operator Syntax Description

PTR byte ptr expr
word ptr expr
dword ptr expr
qword ptr expr
tbyte ptr expr
near ptr expr
far ptr expr

Coerce expr to point at a byte.
Coerce expr to point at a word.
Coerce expr to point at a dword.
Coerce expr to point at a qword.
Coerce expr to point at a tbyte.
Coerce expr to a near value.
Coerce expr to a far value.

short short expr expr must be within ±128 bytes of the current jmp
instruction (typically a JMP instruction). This operator
forces the JMP instruction to be two bytes long (if pos-
sible).

this this type Returns an expression of the specified type whose
value is the current location counter.

seg seg label Returns the segment address portion of label.

offset offset label Returns the offset address portion of label.

.type type label Returns a byte that indicates whether this symbol is a
variable, statement label, or structure name. Super-
ceded by opattr.

opattr opattr label Returns a 16 bit value that gives information about
label.

length length variable Returns the number of array elements for a single
dimension array. If a multi-dimension array, this opera-
tor returns the number of elements for the first dimen-
sion.

lengthof lengthof variable Returns the number of items in array variable.

type type symbol Returns a expression whose type is the same as symbol
and whose value is the size, in bytes, for the specified
symbol.

size size variable Returns the number of bytes allocated for single
dimension array variable. Useless for multi-dimension
arrays. Superceded by sizeof.

sizeof sizeof variable Returns the size, in bytes, of array variable.

low low expr Returns the L.O. byte of expr.

lowword lowword expr Returns the L.O. word of expr.

high high expr Returns the H.O. byte of expr.

highword highword expr Returns the H.O. word of expr.

Directives and Pseudo Opcodes

Page 393

The short operator works exclusively with the jmp instruction. Remember, there are
two jmp direct near instructions, one that has a range of 128 bytes around the jmp, one that
has a range of 32,768 bytes around the current instruction. MASM will automatically gen-
erate a short jump if the target address is up to 128 bytes before the current instruction.
This operator is mainly present for compatibility with old MASM (pre-6.0) code.

The this operator forms an expression with the specified type whose value is the cur-
rent location counter. The instruction mov bx, this word, for example, will load the bx regis-
ter with the value 8B1Eh, the opcode for mov bx, memory. The address this word is the
address of the opcode for this very instruction! You mostly use the this operator with the
equ directive to give a symbol some type other than constant. For example, consider the
following statement:

HERE equ this near

This statement assigns the current location counter value to HERE and sets the type of
HERE to near. This, of course, could have been done much easier by simply placing the
label HERE: on the line by itself. However, the this operator with the equ directive does
have some useful applications, consider the following:

WArray equ this word
BArray byte 200 dup (?)

In this example the symbol BArray is of type byte. Therefore, instructions accessing BArray
must contain byte operands throughout. MASM would flag a mov ax, BArray+8 instruction
as an error. However, using the symbol WArray lets you access the same exact memory
locations (since WArray has the value of the location counter immediately before encoun-
tering the byte pseudo-opcode) so mov ax,WArray+8 accesses location BArray+8. Note that
the following two instructions are identical:

mov ax, word ptr BArray+8
mov ax, WArray+8

The seg operator does two things. First, it extracts the segment portion of the speci-
fied address, second, it converts the type of the specified expression from address to con-
stant. An instruction of the form mov ax, seg symbol always loads the accumulator with
the constant corresponding to the segment portion of the address of symbol. If the symbol
is the name of a segment, MASM will automatically substitute the paragraph address of
the segment for the name. However, it is perfectly legal to use the seg operator as well.
The following two statements are identical if dseg is the name of a segment:

mov ax, dseg
mov ax, seg dseg

Offset works like seg, except it returns the offset portion of the specified expression
rather than the segment portion. If VAR1 is a word variable, mov ax, VAR1 will always
load the two bytes at the address specified by VAR1 into the ax register. The
mov ax, offset VAR1 instruction, on the other hand, loads the offset (address) of VAR1 into
the ax register. Note that you can use the lea instruction or the mov instruction with the off-
set operator to load the address of a scalar variable into a 16 bit register. The following two
instructions both load bx with the address of variable J:

mov bx, offset J
lea bx, J

The lea instruction is more flexible since you can specify any memory addressing mode,
the offset operator only allows a single symbol (i.e., displacement only addressing). Most
programmers use the mov form for scalar variables and the lea instructor for other
addressing modes. This is because the mov instruction was faster on earlier processors.

One very common use for the seg and offset operators is to initialize a segment and
pointer register with the segmented address of some object. For example, to load es:di
with the address of SomeVar, you could use the following code:

mov di, seg SomeVar
mov es, di
mov di, offset SomeVar

Chapter 08

Page 394

Since you cannot load a constant directly into a segment register, the code above copies
the segment portion of the address into di and then copies di into es before copying the off-
set into di. This code uses the di register to copy the segment portion of the address into es
so that it will affect as few other registers as possible.

Opattr returns a 16 bit value providing specific information about the expression that
follows it. The .type operator is an older version of opattr that returns the L.O. eight bits of
this value. Each bit in the value of these operators has the following meaning:

The language bits are for programmers writing code that interfaces with high level lan-
guages like C++ or Pascal. Such programs use the simplified segment directives and
MASM’s HLL features.

You would normally use these values with MASM’s conditional assembly directives
and macros. This allows you to generate different instruction sequences depending on the
type of a macro parameter or the current assembly configuration. For more details, see
“Conditional Assembly” on page 397 and “Macros” on page 400.

The size, sizeof, length, and lengthof operators compute the sizes of variables (including
arrays) and return that size and their value. You shouldn’t normally use size and length.
The sizeof and lengthof operators have superceded these operators. Size and length do not
always return reasonable values for arbitrary operands. MASM 6.x includes them to
remain compatible with older versions of the assembler. However, you will see an exam-
ple later in this chapter where you can use these operators.

The sizeof variable operator returns the number of bytes directly allocated to the speci-
fied variable. The following examples illustrate the point:

a1 byte ? ;SIZEOF(a1) = 1
a2 word ? ;SIZEOF(a2) = 2
a4 dword ? ;SIZEOF(a4) = 4
a8 real8 ? ;SIZEOF(a8) = 8
ary0 byte 10 dup (0) ;SIZEOF(ary0) = 10
ary1 word 10 dup (10 dup (0)) ;SIZEOF(ary1) = 200

You can also use the sizeof operator to compute the size, in bytes, of a structure or other
data type. This is very useful for computing an index into an array using the formula from
Chapter Four:

Element_Address := base_address + index*Element_Size

You may obtain the element size of an array or structure using the sizeof operator. So if
you have an array of structures, you can compute an index into the array as follows:

Table 40: OPATTR/.TYPE Return Value

Bit(s) Meaning

0 References a label in the code segment if set.

1 References a memory variable or relocatable data object if set.

2 Is an immediate (absolute/constant) value if set.

3 Uses direct memory addressing if set.

4 Is a register name, if set.

5 References no undefined symbols and there is no error, if set.

6 Is an SS: relative reference, if set.

7 References an external name.

8-10 000 - no language type
001 - C/C++ language type
010 - SYSCALL language type
011 - STDCALL language type
100 - Pascal language type
101 - FORTRAN language type
110 - BASIC language type

Directives and Pseudo Opcodes

Page 395

.286 ;Allow 80286 instructions.
s struct

<some number of fields>
s ends

 .
 .
 .

array s 16 dup ({}) ;An array of 16 “s” elements

 .
 .
 .

imul bx, I, sizeof s ;Compute BX := I * elementsize
mov al, array[bx].fieldname

You can also apply the sizeof operator to other data types to obtain their size in bytes.
For example, sizeof byte returns 1, sizeof word returns two, and sizeof dword returns 4. Of
course, applying this operator to MASM’s built-in data types is questionable since the size
of those objects is fixed. However, if you create your own data types using typedef, it
makes perfect sense to compute the size of the object using the sizeof operator:

integer typedef word
Array integer 16 dup (?)

 .
 .
 .

imul bx, bx, sizeof integer
 .
 .
 .

In the code above, sizeof integer would return two, just like sizeof word. However, if you
change the typedef statement so that integer is a dword rather than a word, the sizeof integer
operand would automatically change its value to four to reflect the new size of an integer.

The lengthof operator returns the total number of elements in an array. For the Array
variable above, lengthof Array would return 16. If you have a two dimensional array,
lengthof returns the total number of elements in that array.

When you use the lengthof and sizeof operators with arrays, you must keep in mind
that it is possible for you to declare arrays in ways that MASM can misinterpret. For
example, the following statements all declare arrays containing eight words:

A1 word 8 dup (?)

A2 word 1, 2, 3, 4, 5, 6, 7, 8

; Note:the “\” is a “line continuation” symbol. It tells MASM to append
; the next line to the end of the current line.

A3 word 1, 2, 3, 4, \
5, 6, 7, 8

A4 word 1, 2, 3, 4
word 5, 6, 7, 8

Applying the sizeof and lengthof operators to A1, A2, and A3 produces sixteen (sizeof)
and eight (lengthof). However, sizeof(A4) produces eight and lengthof(A4) produces four.
This happens because MASM thinks that the arrays begin and end with a single data dec-
laration. Although the A4 declaration sets aside eight consecutive words, just like the
other three declarations above, MASM thinks that the two word directives declare two
separate arrays rather than a single array. So if you want to initialize the elements of a
large array or a multidimensional array and you also want to be able to apply the lengthof
and sizeof operators to that array, you should use A3’s form of declaration rather than A4’s.

The type operator returns a constant that is the number of bytes of the specified oper-
and. For example, type(word) returns the value two. This revelation, by itself, isn’t particu-
larly interesting since the size and sizeof operators also return this value. However, when
you use the type operator with the comparison operators (eq, ne, le, lt, gt, and ge), the
comparison produces a true result only if the types of the operands are the same. Consider
the following definitions:

Chapter 08

Page 396

Integer typedef word
J word ?
K sword ?
L integer ?
M word ?

byte type (J) eq word ;value = 0FFh
byte type (J) eq sword ;value = 0
byte type (J) eq type (L) ;value = 0FFh
byte type (J) eq type (M) ;value = 0FFh
byte type (L) eq integer ;value = 0FFh
byte type (K) eq dword ;value = 0

Since the code above typedef’d Integer to word, MASM treats integers and words as the
same type. Note that with the exception of the last example above, the value on either side
of the eq operator is two. Therefore, when using the comparison operations with the type
operator, MASM compares more than just the value. Therefore, type and sizeof are not syn-
onymous. E.g.,

byte type (J) eq type (K) ;value = 0
byte (sizeof J) equ (sizeof K) ;value = 0FFh

The type operator is especially useful when using MASM’s conditional assembly direc-
tives. See “Conditional Assembly” on page 397 for more details.

The examples above also demonstrate another interesting MASM feature. If you use a
type name within an expression, MASM treats it as though you’d entered “type(name)”
where name is a symbol of the given type. In particular, specifying a type name returns the
size, in bytes, of an object of that type. Consider the following examples:

Integer typedef word
s struct
d dword ?
w word ?
b byte ?
s ends

byte word ;value = 2
byte sword ;value = 2
byte byte ;value = 1
byte dword ;value = 4
byte s ;value = 7
byte word eq word ;value = 0FFh
byte word eq sword ;value = 0
byte b eq dword ;value = 0
byte s eq byte ;value = 0
byte word eq Integer ;value = 0FFh

The high and low operators, like offset and seg, change the type of expression from
whatever it was to a constant. These operators also affect the value of the expression –
they decompose it into a high order byte and a low order byte. The high operator extracts
bits eight through fifteen of the expression, the low operator extracts and returns bits zero
through seven. Highword and lowword extract the H.O. and L.O. 16 bits of an expression (see
Figure 8.7).

You can extract bits 16-23 and 24-31 using expressions of the form low(highword(expr))
and high(highword(expr))15, respectively.

8.12.5 Operator Precedence

Although you will rarely need to use a complex address expression employing more
than two operands and a single operator, the need does arise on occasion. MASM sup-
ports a simple operator precedence convention based on the following rules:

• MASM executes operators of a higher precedence first.

15. The parentheses make this expression more readable, they are not required.

Directives and Pseudo Opcodes

Page 397

• Operators of an equal precedence are left associative and evaluate from
left to right.

• Parentheses override the normal precedence.

Parentheses should only surround expressions. Some operators, like sizeof and
lengthof, require type names, not expressions. They do not allow you to put parentheses
around the name. Therefore, “(sizeof X)” is legal, but “sizeof(X)” is not. Keep this in mind
when using parentheses to override operator precedence in an expression. If MASM gen-
erates an error, you may need to rearrange the parentheses in your expression.

As is true for expressions in a high level language, it is a good idea to always use
parentheses to explicitly state the precedence in all complex address expressions (complex
meaning that the expression has more than one operator). This generally makes the
expression more readable and helps avoid precedence related bugs.

8.13 Conditional Assembly

MASM provides a very powerful conditional assembly facility. With conditional
assembly, you can decide, based on certain conditions, whether MASM will assemble the
code. There are several conditional assembly directives, the following section covers most
of them.

Table 41: Operator Precedence

Precedence Operators

(Highest)

1 length, lengthof, size, sizeof, (), [], < >

2 . (structure field name operator)

3 CS: DS: ES: FS: GS: SS: (Segment override prefixes)

4 ptr offset set type opattr this

5 high, low, highword, lowword

6 + - (unary)

7 * / mod shl shr

8 + - (binary)

9 eq ne lt le gt ge

10 not

11 and

12 or xor

13 short .type

(Lowest)

Figure 8.7 HIGHWORD, LOWWORD, HIGH, and LOW Operators

31 23 15 7 0

LOW extracts these
eight bits from an
expression.

HIGH extracts these
eight bits from an
expression.

LOWWORD extracts these 16 bits
from an expression.

HIGHWORD extracts these 16 bits
from an expression.

Chapter 08

Page 398

It is important that you realize that these directives evaluate their expressions at
assembly time, not at run time. The if conditional assembly directive is not the same as a
Pascal or C “if” statement. If you are familiar with C, the #ifdef directive in C is roughly
equivalent to some of MASM’s conditional assembly directives.

MASM’s conditional assembly directives are important because they let you generate
different object code for different operating environments and different situations. For
example, suppose you want to write a program that will run on all machines but you
would like to optimize the code for 80386 and later processors. Obviously, you cannot exe-
cute 80386 code on an 8086 processor, so how can you solve this problem?

One possible solution is to determine the processor type at run time and execute dif-
ferent sections of code in the program depending on the presence or absence of a 386 or
later CPU. The problem with this approach is that your program needs to contain two
code sequences – an optimal 80386 sequence and a compatible 8086 sequence. On any
given system the CPU will only execute one of these code sequences in the program, so
the other sequence will be wasting memory and may have adverse affects on any cache in
the system.

A second possibility is to write two versions of the code, one that uses only 8086
instructions and one that uses the full 80386 instruction set. During installation, the user
(or the installation program) selects the 80386 version if they have an 80386 or later pro-
cessor. Otherwise they select the 8086 version. While this marginally increases the cost of
the software since it will require more disk space, the program will consume less memory
while running. The problem with this approach is that you will need to maintain two sep-
arate versions of the program. If you correct a bug in the 8086 version of the code, you will
probably need to correct that same bug in the 80386 program. Maintaining multiple
source files is a difficult task.

A third solution is to use conditional assembly. With conditional assembly, you can
merge the 8086 and 80386 versions of the code into the same source file. During assembly,
you can conditionally choose whether MASM assembles the 8086 or the 80386 version. By
assembling the code twice, you can produce an 8086 and an 80386 version of the code.
Since both versions of the code appear in the same source file, the program will be much
easier to maintain since you will not have to correct the same bug in two separate source
files. You may need to correct the same bug twice in two separate code sequences in the
program, but generally the bug will appear in two adjacent code sequences, so it is less
likely that you will forget to make the change in both places.

MASM’s conditional assembly directives are especially useful within macros. They can
help you produce efficient code when a macro would normally produce sub-optimal
code. For more information about macros and how you can use conditional assembly
within a macro, see “Macros” on page 400.

Macros and conditional assembly actually provide “a programming language within
a programming language.” Macros and conditional assembly let you write programs (in
the “macro language”) that write segments of assembly language code for you. This intro-
duces an independent way to generate bugs in your application programs. Not only can a
bug develop in your assembly language code, you can also introduce bugs in your macro
code (e.g., conditional assembly), that wind up producing bugs in your assembly lan-
guage code. Keep in mind that if you get too sophisticated when using conditional assem-
bly, you can produce programs that are very difficult to read, understand, and debug.

8.13.1 IF Directive

The if directive uses the following syntax:

if expression
<sequence of statements>

else ;This is optional!
<sequence of statements>

endif

Directives and Pseudo Opcodes

Page 399

MASM evaluates expression. If it is a non-zero value, then MASM will assemble the
statements between the if and else directives (or endif, if the else isn't present). If the
expression evaluates to zero (false) and an else section is present, MASM will assemble the
statements between the else directive and the endif directive. If the else section is not
present and expression evaluates to false, then MASM will not assemble any of the code
between the if and endif directives.

The important thing to remember is that expression has to be an expression that MASM
can evaluate at assembly time. That is, it must evaluate to a constant. Manifest constants
(equates) and values that MASM’s type operators produce are commonly found in if direc-
tive expressions. For example, suppose you want to assemble code for two different pro-
cessors as described above. You could use statements like the following:

Processor = 80386 ;Set to 8086 for 8086-only code
.
.
.

if Processor eq 80386
shl ax, 4
else ;Must be 8086 processor.
mov cl, 4
shl ax, cl
endif

There are other ways to accomplish this same thing. MASM provides built-in variables
that tell you if you are assembling code for some specific processor. More on that later.

8.13.2 IFE directive

The ife directive is used exactly like the if directive, except it assembles the code after
the ife directive only if the expression evaluates to zero (false), rather than true (non-zero).

8.13.3 IFDEF and IFNDEF

These two directives require a single symbol as the operand. Ifdef will assemble the
associated code if the symbol is defined, Ifndef will assemble the associated code if the
symbol isn't defined. Use else and endif to terminate the conditional assembly sequences.

These directives are especially popular for including or not including code in an
assembly language program to handle certain special cases. For example, you could use
statements like the following to include debugging statements in your code:

ifdef DEBUG

<place debugging statements here>

endif

To activate the debugging code, simply define the symbol DEBUG somewhere at the
beginning of your program (before the first ifdef referencing DEBUG). To automatically
eliminate the debugging code, simply delete the definition of DEBUG. You may define
DEBUG using a simple statement like:

DEBUG = 0

Note that the value you assign to DEBUG is unimportant. Only the fact that you have
defined (or have not defined) this symbol is important.

8.13.4 IFB, IFNB

These directives, useful mainly in macros (see “Macros” on page 400) check to see if
an operand is blank (ifb) or not blank (ifnb). Consider the following code:

Chapter 08

Page 400

Blank textequ <>
NotBlank textequ <not blank>

ifb Blank
<this code will assemble>
endif

ifb NotBlank
<this code will not>
endif

The ifnb works in an opposite manner to ifb. That is, it would assemble the statements
above that ifb does not and vice versa.

8.13.5 IFIDN, IFDIF, IFIDNI, and IFDIFI

These conditional assembly directives take two operands and process the associated
code if the operands are identical (ifidn), different (ifdif), identical ignoring case (ifidni), or
different ignoring case (ifdifi). The syntax is

ifidn op1, op2
<statements to assemble if <op1> = <op2>>

endif

ifdif op1, op2
<statements to assemble if <op1> ≠ <op2>>

endif

ifidni op1, op2
<statements to assemble if <op1> = <op2>>

endif

ifdifi op1, op2
<statements to assemble if <op1> ≠ <op2>>

endif

The difference between the IFxxx and IFxxxI statements above is that the IFxxxI state-
ments ignore differences in alphabetic case when comparing operands.

8.14 Macros

A macro is like a procedure that inserts a block of statements at various points in your
program during assembly. There are three general types of macros that MASM supports:
procedural macros, functional macros, and looping macros. Along with conditional
assembly, these tools provide the traditional if, loop, procedure, and function constructs
found in many high level languages. Unlike the assembly instructions you write, the con-
ditional assembly and macro language constructs execute during assembly. The conditional
assembly and macros statements do not exist when your assembly language program is
running. The purpose of these statements is to control which statements MASM assembles
into your final “.exe” file. While the conditional assembly directives select or omit certain
statements for assembly, the macro directives let you emit repetitive sequences of instruc-
tions to an assembly language file like high level language procedures and loops let you
repetitively execute sequences of high level language statements.

8.14.1 Procedural Macros

The following sequence defines a macro:

name macro {parameter1 {parameter2 {,...}}}
 <statements>

endm

Directives and Pseudo Opcodes

Page 401

Name must be a valid and unique symbol in the source file. You will use this identifier
to invoke the macro. The (optional) parameter names are placeholders for values you
specify when you invoke the macro; the braces above denote the optional items, they
should not actually appear in your source code. These parameter names are local to the
macro and may appear elsewhere in the program.

Example of a macro definition:

COPY macro Dest, Source
mov ax, Source
mov Dest, ax
endm

This macro will copy the word at the source address to the word at the destination
address. The symbols Dest and Source are local to the macro and may appear elsewhere in
the program.

Note that MASM does not immediately assemble the instructions between the macro
and endm directives when MASM encounters the macro. Instead, the assembler stores the
text corresponding to the macro into a special table (called the symbol table). MASM
inserts these instructions into your program when you invoke the macro.

To invoke (use) a macro, simply specify the macro name as a MASM mnemonic.
When you do this, MASM will insert the statements between the macro and endm direc-
tives into your code at the point of the macro invocation. If your macro has parameters,
MASM will substitute the actual parameters appearing as operands for the formal param-
eters appearing in the macro definition. MASM does a straight textual substitution, just as
though you had created text equates for the parameters.

Consider the following code that uses the COPY macro defined above:

call SetUpX
copy Y, X
add Y, 5

This program segment will issue a call to SetUpX (which, presumably, does something
to the variable X) then invokes the COPY macro, that copies the value in the variable X into
the variable Y. Finally, it adds five to the value contained in variable Y.

Note that this instruction sequence is absolutely identical to:

call SetUpX
mov ax, X
mov Y, ax
add Y, 5

In some instances using macros can save a considerable amount of typing in your pro-
grams. For example, suppose you want to access elements of various two dimensional
arrays. As you may recall, the formula to compute the row-major address for an array ele-
ment is

element address = base address + (First Index * Row Size + Second Index) * element size

Suppose you want write some assembly code that achieves the same result as the follow-
ing C code:

int a[16][7], b[16][7], x[7][16];
int i,j;

for (i=0; i<16; i = i + 1)
for (j=0; j < 7; j = j + 1)

x[j][i] = a[i][j]*b[15-i][j];

The 80x86 code for this sequence is rather complex because of the number of array
accesses. The complete code is

Chapter 08

Page 402

.386 ;Uses some 286 & 386 instrs.
option segment:use16;Required for real mode programs
 .
 .
 .

a sword 16 dup (7 dup (?))
b sword 16 dup (7 dup (?))
x sword 7 dup (16 dup (?))

 .
 .
 .

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

mov I, 0 ;Initialize I loop index with zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I loop.

mov J, 0 ;Initialize J loop index with zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J loop.

imul bx, I, 7 ;Compute index for a[i][j].
add bx, J
add bx, bx ;Element size is two bytes.
mov ax, A[bx] ;Get a[i][j]

mov bx, 15 ;Compute index for b[15-I][j].
sub bx, I
imul bx, 7
add bx, J
add bx, bx ;Element size is two bytes.
imul ax, b[bx] ;Compute a[i][j] * b[16-i][j]

imul bx, J, 16 ;Compute index for X[J][I]
add bx, I
add bx, bx
mov X[bx], ax ;Store away result.

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

This is a lot of code for only five C/C++ statements! If you take a close look at this code,
you’ll notice that a large number of the statements simply compute the index into the
three arrays. Furthermore, the code sequences that compute these array indices are very
similar. If they were exactly the same, it would be obvious we could write a macro to
replace the three array index computations. Since these index computations are not identi-
cal, one might wonder if it is possible to create a macro that will simplify this code. The
answer is yes; by using macro parameters it is very easy to write such a macro. Consider
the following code:

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

NDX2 macro Index1, Index2, RowSize
imul bx, Index1, RowSize
add bx, Index2
add bx, bx
endm

mov I, 0 ;Initialize I loop index with zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I loop.

mov J, 0 ;Initialize J loop index with zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J loop.

NDX2 I, J, 7
mov ax, A[bx] ;Get a[i][j]

Directives and Pseudo Opcodes

Page 403

mov bx, 15 ;Compute index for b[15-I][j].
sub bx, I
NDX2 bx, J, 7
imul ax, b[bx] ;Compute a[i][j] * b[15-i][j]

NDX2 J, I, 16
mov X[bx], ax ;Store away result.

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

One problem with the NDX2 macro is that you need to know the row size of an array
(since it is a macro parameter). In a short example like this one, that isn’t much of a prob-
lem. However, if you write a large program you can easily forget the sizes and have to
look them up or, worse yet, “remember” them incorrectly and introduce a bug into your
program. One reasonable question to ask is if MASM could figure out the row size of the
array automatically. The answer is yes.

MASM’s length operator is a holdover from the pre-6.0 days. It was supposed to return
the number of elements in an array. However, all it really returns is the first value appear-
ing in the array’s operand field. For example, (length a) would return 16 given the defini-
tion for a above. MASM corrected this problem by introducing the lengthof operator that
properly returns the total number of elements in an array. (Lengthof a), for example, prop-
erly returns 112 (16 * 7). Although the (length a) operator returns the wrong value for our
purposes (it returns the column size rather than the row size), we can use its return value
to compute the row size using the expression (lengthof a)/(length a). With this knowledge,
consider the following two macros:

; LDAX-This macro loads ax with the word at address Array[Index1][Index2]
; Assumptions: You’ve declared the array using a statement like
; Array word Colsize dup (RowSize dup (?))
; and the array is stored in row major order.
;
; If you specify the (optional) fourth parameter, it is an 80x86
; machine instruction to substitute for the MOV instruction that
; loads AX from Array[bx].

LDAX macro Array, Index1, Index2, Instr
imul bx, Index1, (lengthof Array) / (length Array)
add bx, Index2
add bx, bx

; See if the caller has supplied the fourth operand.

ifb <Instr>
mov ax, Array[bx] ;If not, emit a MOV instr.
else
instr ax, Array[bx] ;If so, emit user instr.
endif
endm

; STAX-This macro stores ax into the word at address Array[Index1][Index2]
; Assumptions: Same as above

STAX macro Array, Index1, Index2
imul bx, Index1, (lengthof Array) / (length Array)
add bx, Index2
add bx, bx
mov Array[bx], ax
endm

With the macros above, the original program becomes:

Chapter 08

Page 404

i textequ <cx> ;Hold I in CX register.
j textequ <dx> ;Hold J in DX register.

mov I, 0 ;Initialize I loop index with
zero.
ForILp: cmp I, 16 ;Is I less than 16?

jnl ForIDone ;If so, fall into body of I
loop.

mov J, 0 ;Initialize J loop index with
zero.
ForJLp: cmp J, 7 ;Is J less than 7?

jnl ForJDone ;If so, fall into body of J
loop.

ldax A, I, J ;Fetch A[I][J]
mov bx, 16 ;Compute 16-I.
sub bx, I
ldax b, bx, J, imul ;Multiply in B[16-I][J].
stax x, J, I ;Store to X[J][I]

inc J ;Next loop iteration.
jmp ForJLp

ForJDone: inc I ;Next I loop iteration.
jmp ForILp

ForIDone: ;Done with nested loop.

As you can plainly see, the code for the loops above is getting shorter and shorter by
using these macros. Of course, the entire code sequence is actually longer because the mac-
ros represent more lines of code that they save in the original program. However, that is
an artifact of this particular program. In general, you’d probably have more than three
array accesses; furthermore, you can always put the LDAX and STAX macros in a library
file and automatically include them anytime you’re dealing with two dimensional arrays.
Although, technically, your program might actually contain more assembly language
statements if you include these macros in your code, you only had to write those macros
once. After that, it takes very little effort to include the macros in any new program.

We can shorten this code sequence even more using some additional macros. How-
ever, there are a few additional topics to cover before we can do that, so keep reading.

8.14.2 Macros vs. 80x86 Procedures

Beginning assembly language programmers often confuse macros and procedures. A
procedure is a single section of code that you call from various points in the program. A
macro is a sequence of instructions that MASM replicates in your program each time you
use the macro. Consider the following two code fragments:

Proc_1 proc near
mov ax, 0
mov bx, ax
mov cx, 5
ret

Proc_1 endp

Macro_1 macro
mov ax, 0
mov bx, ax
mov cx, 5
endm

call Proc_1
 .
 .

call Proc_1
 .
 .

Macro_1
 .
 .

Macro_1

Directives and Pseudo Opcodes

Page 405

 Although the macro and procedure produce the same result, they do it in different
ways. The procedure definition generates code when the assembler encounters the proc
directive. A call to this procedure requires only three bytes. At execution time, the 80x86:

• encounters the call instruction,
• pushes the return address onto the stack,
• jumps to Proc_1,
• executes the code therein,
• pops the return address off the stack, and
• returns to the calling code.

The macro, on the other hand, does not emit any code when processing the statements
between the macro and endm directives. However, upon encountering Macro_1 in the mne-
monic field, MASM will assemble every statement between the macro and endm directives
and emit that code to the output file. At run time, the CPU executes these instructions
without the call/ret overhead.

The execution of a macro expansion is usually faster than the execution of the same
code implemented with a procedure. However, this is another example of the classic
speed/space trade-off. Macros execute faster by eliminating the call/return sequence.
However, the assembler copies the macro code into your program at each macro invoca-
tion. If you have a lot of macro invocations within your program, it will be much larger
than the same program that uses procedures.

Macro invocations and procedure invocations are considerably different. To invoke a
macro, you simply specify the macro name as though it were an instruction or directive.
To invoke a procedure you need to use the call instruction. In many contexts it is unfortu-
nate that you use two separate invocation mechanisms for such similar operations. The
real problem occurs if you want to switch a macro to a procedure or vice versa. It might be
that you’ve been using macro expansion for a particular operation, but now you’ve
expanded the macro so many times it makes more sense to use a procedure. Maybe just
the opposite is true, you’ve been using a procedure but you want to expand the code
in-line to improve it’s performance. The problem with either conversion is that you will
have to find every invocation of the macro or procedure call and modify it. Modifying the
procedure or macro is easy, but locating and changing all the invocations can be quite a bit
of work. Fortunately, there is a very simple technique you can use so procedure calls share
the same syntax as macro invocation. The trick is to create a macro or a text equate for
each procedure you write that expands into a call to that procedure. For example, suppose
you write a procedure ClearArray that zeros out arrays. When writing the code, you could
do the following:

ClearArray textequ <call $$ClearArray>
$$ClearArray proc near

 .
 .
 .

$$ClearArray endm

To call the ClearArray procedure, you’d simply use a statement like the following:
 .
 .
 .

<Set up parameters for ClearArray>
ClearArray
 .
 .
 .

If you ever change the $$ClearArray procedure to a macro, all you need to do is name it
ClearArray and dispose of the textequ for the procedure. Conversely, if you already have a
macro and you want to convert it to a procedure, Simply name the procedure $$procname
and create a text equate that emits a call to this procedure. This allows you to use the same
invocation syntax for procedures or macros.

This text won’t normally use the technique described above, except for the UCR Stan-
dard Library routines. This is not because this isn’t a good way to invoke procedures.
Some people have trouble differentiating macros and procedures, so this text will use

Chapter 08

Page 406

explicit calls to help avoid that confusion. Standard Library calls are an exception because
using macro invocations is the standard way to call these routines.

8.14.3 The LOCAL Directive

Consider the following macro definition:

LJE macro Dest
jne SkipIt
jmp Dest

SkipIt:
endm

This macro does a “long jump if equal”. However, there is one problem with it. Since
MASM copies the macro text verbatim (allowing, of course, for parameter substitution),
the symbol SkipIt will be redefined each time the LJE macro appears. When this happens,
the assembler will generate a multiple definition error. To overcome this problem, the
local directive can be used to define a local symbol within the macro. Consider the follow-
ing macro definition:

LJE macro Dest
local SkipIt
jne SkipIt
jmp Dest

SkipIt:
endm

In this macro definition, SkipIt is a local symbol. Therefore, the assembler will gener-
ate a new copy of SkipIt each time you invoke the macro. This will prevent MASM from
generating an error.

The local directive, if it appears within your macro definition, must appear immedi-
ately after the macro directive. If you need multiple local symbols, you can specify several
of them in the local directive’s operand field. Simply separate each symbol with a comma:

IFEQUAL macro a, b
local ElsePortion, Done
mov ax, a
cmp ax, b
jne ElsePortion
inc bx
jmp Done

ElsePortion: dec bx
Done:

endm

8.14.4 The EXITM Directive

The exitm directive immediately terminates the expansion of a macro, exactly as
though MASM encountered endm. MASM ignores all text from the exitm directive to the
endm.

You're probably wondering why anyone would ever use the exitm directive. After all,
if MASM ignores all text between exitm and endm, why bother sticking an exitm directive
into your macro in the first place? The answer is conditional assembly. Conditional
assembly can be used to conditionally execute the exitm directive, thereby allowing further
macro expansion under certain conditions, consider the following:

Bytes macro Count
byte Count
if Count eq 0
exitm
endif
byte Count dup (?)
endm

Directives and Pseudo Opcodes

Page 407

Of course, this simple example could have been coded without using the exitm direc-
tive (the conditional assembly directive is all we require), but it does demonstrate how the
exitm directive can be used within a conditional assembly sequence to control its influence.

8.14.5 Macro Parameter Expansion and Macro Operators

Since MASM does a textual substitution for macro parameters when you invoke a
macro, there are times when a macro invocation might not produce the results you expect.
For example, consider the following (admittedly dumb) macro definition:

Index = 8

; Problem- This macro attempts to load AX with the element of a word
; array specified by the macro’s parameter. This parameter
; must be an assembly-time constant.

Problem macro Parameter
mov ax, Array[Parameter*2]
endm
 .
 .
 .

Problem 2
 .
 .
 .

Problem Index+2

When MASM expands the first invocation of Problem above, it produces the instruction:

mov ax, Array[2*2]

Okay, so far so good. This code loads element two of Array into ax. However, consider the
expansion of the second invocation to Problem, above:

mov ax, Array[Index+2*2]

Because MASM’s address expressions support operator precedence (see “Operator Prece-
dence” on page 396), this macro expansion will not produce the correct result. It will
access the sixth element of Array (at index 12) rather than the tenth element at index 20.

The problem above occurs because MASM simply replaces a formal parameter by the
actual parameter’s text, not the actual parameter’s value. This pass by name parameter pass-
ing mechanism should be familiar to long-time C and C++ programmers who use the
#define statement. If you think that macro (pass by name) parameters work just like Pascal
and C’s pass by value parameters, you are setting yourself up for eventual disaster.

One possible solution, that works well for macros like the above, is to put parentheses
around macro parameters that occur within expressions inside the macro. Consider the
following code:

Problem macro Parameter
mov ax, Array[(Parameter)*2]
endm
 .
 .
 .

Problem Index+2

This macro invocation expands to

mov ax, Array[(Index+2)*2]

This produces the expected result.

Textual parameter substitution is but one problem you’ll run into when using macros.
Another problem occurs because MASM has two types of assembly time values: numeric
and text. Unfortunately, MASM expects numeric values in some contexts and text values
in others. They are not fully interchangeable. Fortunately, MASM provides a set of opera-
tors that let you convert between one form and the other (if it is possible to do so). To

Chapter 08

Page 408

understand the subtle differences between these two types of values, look at the following
statements:

Numeric = 10+2
Textual textequ <10+2>

MASM evaluates the numeric expression “10+2” and associates the value twelve with the
symbol Numeric. For the symbol Textual, MASM simply stores away the string “10+2” and
substitutes it for Textual anywhere you use it in an expression.

In many contexts, you could use either symbol. For example, the following two state-
ments both load ax with twelve:

mov ax, Numeric ;Same as mov ax, 12
mov ax, Textual ;Same as mov ax, 10+2

However, consider the following two statements:

mov ax, Numeric*2 ;Same as mov ax, 12*2
mov ax, Textual*2 ;Same as mov ax, 10+2*2

As you can see, the textual substitution that occurs with text equates can lead to the same
problems you encountered with textual substitution of macro parameters.

MASM will automatically convert a text object to a numeric value, if the conversion is
necessary. Other than the textual substitution problem described above, you can use a text
value (whose string represents a numeric quantity) anywhere MASM requires a numeric
value.

Going the other direction, numeric value to text value, is not automatic. Therefore,
MASM provides an operator you can use to convert numeric data to textual data: the “%”
operator. This expansion operator forces an immediate evaluation of the following expres-
sion and then it converts the result of the expression into a string of digits. Look at these
invocations of the Problem macro:

Problem 10+2 ;Parameter is “10+2”
Problem %10+2 ;Parameter is “12”

In the second example above, the text expansion operator instructs MASM to evaluate the
expression “10+2” and convert the resulting numeric value to a text value consisting of
the digits that represent the value twelve. Therefore, these two macro expand into the fol-
lowing statements (respectively):

mov ax, Array[10+2*2] ;Problem 10+2 expansion
mov ax, Array[12*2] ;Problem %10+2 expansion

MASM provides a second operator, the substitution operator that lets you expand
macro parameter names where MASM does not normally expect a symbol. The substitu-
tion operator is the ampersand (“&”) character. If you surround a macro parameter name
with ampersands inside a macro, MASM will substitute the parameter’s text regardless of
the location of the symbol. This lets you expand macro parameters whose names appear
inside other identifiers or inside literal strings. The following macro demonstrates the use
of this operator:

DebugMsg macro Point, String
Msg&String& byte “At point &Point&: &String&”

endm
 .
 .
 .
DebugMsg 5, <Assertion fails>

The macro invocation immediately above produces the statement:

Msg5 byte “At point 5: Assertion failed”

Note how the substitution operator allowed this macro to concatenate “Msg” and “5” to
produce the label on the byte directive. Also note that the expansion operator lets you
expand macro identifiers even if they appear in a literal string constant. Without the
ampersands in the string, MASM would have emitted the statement:

Directives and Pseudo Opcodes

Page 409

Msg5 byte “At point point: String”

Another important operator active within macros is the literal character operator, the
exclamation mark (“!”). This symbol instructs MASM to pass the following character
through without any modification. You would normally use this symbol if you need to
include one of the following symbols as a character within a macro:

! & > %

For example, had you really wanted the string in the DebugMsg macro to display the
ampersands, you would use the definition:

DebugMsg macro Point, String
Msg&String& byte “At point !&Point!&: !&String!&”

endm

“Debug 5, <Assertion fails>” would produce the following statement:

Msg5 byte “At point &Point&: &String&”

Use the “<“ and “>” symbols to delimit text data inside MASM. The following two
invocations of the PutData macro show how you can use these delimiters in a macro:

PutData macro TheName, TheData
PD_&TheName& byte TheData

endm
 .
 .
 .
PutData MyData, 5, 4, 3 ;Emits “PD_MyData byte 5”
PutData MyData, <5, 4, 3> ;Emits “PD_MyData byte 5, 4,

3”

You can use the text delimiters to surround objects that you wish to treat as a single
parameter rather than as a list of multiple parameters. In the PutData example above, the
first invocation passes four parameters to PutData (PutData ignores the last two). In the sec-
ond invocation, there are two parameters, the second consisting of the text 5, 4, 3.

The last macro operator of interest is the “;;” operator. This operator begins a macro
comment. MASM normally copies all text from the macro into the body of the program
during assembly, including all comments. However, if you begin a comment with “;;”
rather than a single semicolon, MASM will not expand the comment as part of the code
during macro expansion. This increases the speed of assembly by a tiny amount and,
more importantly, it does not clutter a program listing with copies of the same comment
(see “Controlling the Listing” on page 424 to learn about program listings).

8.14.6 A Sample Macro to Implement For Loops

Remember the for loops and matrix operations used in a previous example? At the
conclusion of that section there was a brief comment that we could “improve” that code
even more using macros, but the example had to wait. With the description of macro oper-
ators out of the way, we can now finish that discussion. The macros that implement the for
loop are

Table 42: Macro Operators

Operator Description

& Text substitution operator

< > Literal text operator

! Literal character operator

% Expression operator

;; Macro comment

Chapter 08

Page 410

; First, three macros that let us construct symbols by concatenating others.
; This is necessary because this code needs to expand several components in
; text equates multiple times to arrive at the proper symbol.
;
; MakeLbl- Emits a label create by concatenating the two parameters
; passed to this macro.

MakeLbl macro FirstHalf, SecondHalf
&FirstHalf&&SecondHalf&:

endm

jgDone macro FirstHalf, SecondHalf
jg &FirstHalf&&SecondHalf&
endm

jmpLoop macro FirstHalf, SecondHalf
jmp &FirstHalf&&SecondHalf&
endm

; ForLp- This macro appears at the beginning of the for loop. To invoke
; this macro, use a statement of the form:
;
; ForLp LoopCtrlVar, StartVal, StopVal
;
; Note: “FOR” is a MASM reserved word, which is why this macro doesn’t
; use that name.

ForLp macro LCV, Start, Stop

; We need to generate a unique, global symbol for each for loop we create.
; This symbol needs to be global because we will need to reference it at the
; bottom of the loop. To generate a unique symbol, this macro concatenates
; “FOR” with the name of the loop control variable and a unique numeric value
; that this macro increments each time the user constructs a for loop with the
; same loop control variable.

ifndef $$For&LCV& ;;Symbol = $$FOR concatenated with LCV
$$For&LCV& = 0 ;;If this is the first loop w/LCV, use

else ;; zero, otherwise increment the value.
$$For&LCV& = $$For&LCV& + 1

endif

; Emit the instructions to initialize the loop control variable:

mov ax, Start
mov LCV, ax

; Output the label at the top of the for loop. This label takes the form
; $$FOR LCV x
; where LCV is the name of the loop control variable and X is a unique number
; that this macro increments for each for loop that uses the same loop control
; variable.

MakeLbl $$For&LCV&, %$$For&LCV&

; Okay, output the code to see if this for loop is complete.
; The jgDone macro generates a jump (if greater) to the label the
; Next macro emits below the bottom of the for loop.

mov ax, LCV
cmp ax, Stop
jgDone $$Next&LCV&, %$$For&LCV&
endm

; The Next macro terminates the for loop. This macro increments the loop
; control variable and then transfers control back to the label at the top of
; the for loop.

Next macro LCV
inc LCV
jmpLoop $$For&LCV&, %$$For&LCV&
MakeLbl $$Next&LCV&, %$$For&LCV&
endm

Directives and Pseudo Opcodes

Page 411

With these macros and the LDAX/STAX macros, the code from the array manipulation
example presented earlier becomes very simple. It is

ForLp I, 0, 15
ForLp J, 0, 6

ldax A, I, J ;Fetch A[I][J]
mov bx, 15 ;Compute 16-I.
sub bx, I
ldax b, bx, J, imul ;Multiply in B[15-I][J].
stax x, J, I ;Store to X[J][I]

Next J
Next I

Although this code isn’t quite as short as the original C/C++ example, it’s getting pretty
close!

While the main program became much simpler, there is a question of the macros
themselves. The ForLp and Next macros are extremely complex! If you had to go through
this effort every time you wanted to create a macro, assembly language programs would
be ten times harder to write if you decided to use macros. Fortunately, you only have to
write (and debug) a macro like this once. Then you can use it as many times as you like, in
many different programs, without having to worry much about it’s implementation.

Given the complexity of the For and Next macros, it is probably a good idea to carefully
describe what each statement in these macros is doing. However, before discussing the
macros themselves, we should discuss exactly how one might implement a for/next loop in
assembly language. This text fully explores the for loop a little later, but we can certainly
go over the basics here. Consider the following Pascal for loop:

for variable := StartExpression to EndExpression do
Some_Statement;

Pascal begins by computing the value of StartExpression. It then assigns this value to
the loop control variable (variable). It then evaluates EndExpression and saves this value in
a temporary location. Then the Pascal for statement enters the loop’s body. The first thing
the loop does is compare the value of variable against the value it computed for EndExpres-
sion. If the value of variable is greater than this value for EndExpression, Pascal transfers to
the first statement after the for loop, otherwise it executes Some_Statement. After the Pascal
for loop executes Some_Statement, it adds one to variable and jumps back to the point
where it compares the value of variable against the computed value for EndExpression.
Converting this code directly into assembly language yields the following code:

;Note: This code assumes StartExpression and EndExpression are simple variables.
;If this is not the case, compute the values for these expression and place
;them in these variables.

mov ax, StartExpression
mov Variable, ax

ForLoop: mov ax, Variable
cmp ax, EndExpression
jg ForDone

<Code for Some_Statement>

inc Variable
jmp ForLoop

ForDone:

To implement this as a set of macros, we need to be able to write a short piece of code
that will write the above assembly language statements for us. At first blush, this would
seem easy, why not use the following code?

ForLp macro Variable, Start, Stop
mov ax, Start
mov Variable, ax

ForLoop: mov ax, Variable
cmp ax, Stop
jg ForDone

Chapter 08

Page 412

endm

Next macro Variable
inc Variable
jmp ForLoop

ForDone:
endm

These two macros would produce correct code – exactly once. However, a problem
develops if you try to use these macros a second time. This is particularly evident when
using nested loops:

ForLp I, 1, 10
ForLp J, 1, 10
 .
 .
 .
Next J
Next I

The macros above emit the following 80x86 code:

mov ax, 1 ;The ForLp I, 1, 10
mov I, ax ; macro emits these

ForLoop: mov ax, I ; statements.
cmp ax, 10 ; .
jg ForDone ; .

mov ax, 1 ;The ForLp J, 1, 10
mov J, ax ; macro emits these

ForLoop: mov ax, J ; statements.
cmp ax, 10 ; .
jg ForDone ; .
 .
 .
 .
inc J ;The Next J macro emits these
jmp ForLp ; statements.

ForDone:
inc I ;The Next I macro emits these
jmp ForLp ; statements.

ForDone:

The problem, evident in the code above, is that each time you use the ForLp macro you
emit the label “ForLoop” to the code. Likewise, each time you use the Next macro, you emit
the label “ForDone” to the code stream. Therefore, if you use these macros more than once
(within the same procedure), you will get a duplicate symbol error. To prevent this error,
the macros must generate unique labels each time you use them. Unfortunately, the local
directive will not work here. The local directive defines a unique symbol within a single
macro invocation. If you look carefully at the code above, you’ll see that the ForLp macro
emits a symbol that the code in the Next macro references. Likewise, the Next macro emits
a label that the ForLp macro references. Therefore, the label names must be global since the
two macros can reference each other’s labels.

The solution the actual ForLp and Next macros use is to generate globally known labels
of the form “$$For” + “variable name” + “some unique number.” and “$$Next” + “variable
name” + “some unique number”. For the example given above, the real ForLp and Next mac-
ros would generate the following code:

mov ax, 1 ;The ForLp I, 1, 10
mov I, ax ; macro emits these

$$ForI0: mov ax, I ; statements.
cmp ax, 10 ; .
jg $$NextI0 ; .

mov ax, 1 ;The ForLp J, 1, 10
mov J, ax ; macro emits these

$$ForJ0: mov ax, J ; statements.
cmp ax, 10 ; .

Directives and Pseudo Opcodes

Page 413

jg $$NextJ0 ; .
 .
 .
 .
inc J ;The Next J macro emits these
jmp $$ForJ0 ; statements.

$$NextJ0:
inc I ;The Next I macro emits these
jmp $$ForI0 ; statements.

$$NextI0:

The real question is, “How does one generate such labels?”

Constructing a symbol of the form “$$ForI” or “$$NextJ” is pretty easy. Just create a
symbol by concatenating the string “$$For” or “$$Next” with the loop control variable’s
name. The problem occurs when you try to append a numeric value to the end of that
string. The actual ForLp and Next code accomplishes this creating assembly time variable
names of the form “$$Forvariable_name” and incrementing this variable for each loop with
the given loop control variable name. By calling the macros MakeLbl, jgDone, and jmpLoop,
ForLp and Next output the appropriate labels and ancillary instructions.

The ForLp and Next macros are very complex. Far more complex than you would typi-
cally find in a program. They do, however, demonstrate the power of MASM’s macro
facilities. By the way, there are much better ways to create these symbols using macro func-
tions. We’ll discuss macro functions next.

8.14.7 Macro Functions

A macro function is a macro whose sole purpose is to return a value for use in the
operand field of some other statement. Although there is the obvious parallel between
procedures and functions in a high level language and procedural macros and functional
macros, the analogy is far from perfect. Macro functions do not let you create sequences of
code that emit some instructions that compute a value when the program actually exe-
cutes. Instead, macro functions simply compute some value at assembly time that MASM
can use as an operand.

A good example of a macro function is the Date function. This macro function packs a
five bit day, four bit month, and seven bit year value into 16 bits and returns that 16 bit
value as the result. If you needed to create an initialized array of dates, you could use code
like the following:

DateArray word Date(2, 4, 84)
word Date(1, 1, 94)
word Date(7, 20, 60)
word Date(7, 19, 69)
word Date(6, 18, 74)
 .
 .
 .

The Date function would pack the data and the word directive would emit the 16 bit
packed value for each date to the object code file. You invoke macro functions by using
their name where MASM expects a text expression of some sort. If the macro function
requires any parameters, you must enclose them within parentheses, just like the parame-
ters to Date, above.

Macro functions look exactly like standard macros with two exceptions: they do not
contain any statements that generate code and they return a text value via an operand to
the exitm directive. Note that you cannot return a numeric value with a macro function. If
you need to return a numeric value, you must first convert it to a text value.

The following macro function implements Date using the 16 bit date format given in
Chapter One (see “Bit Fields and Packed Data” on page 28):

Chapter 08

Page 414

Date macro month, day, year
local Value

Value = (month shl 12) or (day shl 7) or year
exitm %Value
endm

The text expansion operator (“%”) is necessary in the operand field of the exitm directive
because macro functions always return textual data, not numeric data. The expansion
operator converts the numeric value to a string of digits acceptable to exitm.

One minor problem with the code above is that this function returns garbage if the
date isn’t legal. A better design would generate an error if the input date is illegal. You can
use the “.err” directive and conditional assembly to do this. The following implementation
of Date checks the month, day, and year values to see if they are somewhat reasonable:

Date macro month, day, year
local Value

if (month gt 12) or (month lt 1) or \
(day gt 31) or (day lt 1) or \
(year gt 99) (year lt 1)

.err
exitm <0> ;;Must return something!
endif

Value = (month shl 12) or (day shl 7) or year
exitm %Value
endm

With this version, any attempt to specify a totally outrageous date triggers the assembly of
the “.err” directive that forces an error at assembly time.

8.14.8 Predefined Macros, Macro Functions, and Symbols

MASM provides four built-in macros and four corresponding macro functions. In
addition, MASM also provides a large number of predefined symbols you can access dur-
ing assembly. Although you would rarely use these macros, functions, and variables out-
side of moderately complex macros, they are essential when you do need them.

Table 43: MASM Predefined Macros

Name operands Example Description

substr string, start, length

Returns: text data

NewStr substr Oldstr, 1, 3 Returns a string consisting of the characters
from start to start+length in the string operand.
The length operand is optional. If it is not
present, MASM returns all characters from
position start through the end of the string.

instr start, string, substr

Returns: numeric data

Pos instr 2, OldStr, <ax> Searches for “substr” within “string” starting at
position “start.” The starting value is optional.
If it is missing, MASM begins searching for the
string from position one. If MASM cannot find
the substring within the string operand, it
returns the value zero.

sizestr string

Returns: numeric data

StrSize sizestr OldStr Returns the size of the string in the operand
field.

catstr string, string, ...

Returns: text data

NewStr catstr OldStr, <$$> Creates a new string by concatenating each of
the strings appearing in the operand field of the
catstr macro.

Directives and Pseudo Opcodes

Page 415

The substr and catstr macros return text data. In some respects, they are similar to the
textequ directive since you use them to assign textual data to a symbol at assembly time.
The instr and sizestr are similar to the “=” directive insofar as they return a numeric value.

The catstr macro can eliminate the need for the MakeLbl macro found in the ForLp
macro. Compare the following version of ForLp to the previous version (see “A Sample
Macro to Implement For Loops” on page 409).

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV& = 0

else
$$For&LCV& = $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

; Due to bug in MASM, this won’t actually work. The idea is sound, though
; Read on for correct solution.

ForLoop textequ @catstr($For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jgDone $$Next&LCV&, %$$For&LCV&
endm

MASM also provides macro function forms for catstr, instr, sizestr, and substr. To differ-
entiate these macro functions from the corresponding predefined macros, MASM uses the
names @catstr, @instr, @sizestr, and @substr. The the following equivalences between
these operations:

Symbol catstr String1, String2, ...
Symbol textequ @catstr(String1, String2, ...)

Symbol substr SomeStr, 1, 5
Symbol textequ @substr(SomeStr, 1, 5)

Symbol instr 1, SomeStr, SearchStr
Symbol = @substr(1, SomeStr, SearchStr)

Symbol sizestr SomeStr
Symbol = @sizestr(SomeStr)

The last example above shows how to get rid of the jgDone and jmpLoop macros in the
ForLp macro. A final, improved, version of the ForLp and Next macros, eliminating the
three support macros and working around the bug in MASM might look something like
the following:

Table 44: MASM Predefined Macro Functions

Name Parameters Example

@substr string, start, length
Returns: text data

ifidn @substr(parm, 1, 4), <[bx]>

@instr start, string, substr
Returns: numeric data

if @instr(parm,<bx>)

@sizestr string
Returns: numeric data

byte @sizestr(SomeStr)

@catstr string, string, ...
Returns: text data

jg @catstr($$Next&LCV&, %$$For&LCV&)

Chapter 08

Page 416

ForLp macro LCV, Start, Stop
local ForLoop

ifndef $$For&LCV&
$$For&LCV& = 0

else
$$For&LCV& = $$For&LCV& + 1

endif

mov ax, Start
mov LCV, ax

ForLoop textequ @catstr($For&LCV&, %$$For&LCV&)
&ForLoop&:

mov ax, LCV
cmp ax, Stop
jg @catstr($$Next&LCV&, %$$For&LCV&)
endm

Next macro LCV
local NextLbl
inc LCV
jmp @catstr($$For&LCV&, %$$For&LCV&)

NextLbl textequ @catstr($Next&LCV&, %$$For&LCV&)
&NextLbl&:

endm

MASM also provides a large number of built in variables that return information
about the current assembly. The following table describes these built in assembly time
variables.

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Date & Time
Information

@Date Returns the date of assembly. Text value

@Time Returns a string denoting the time of assembly. Text value

Directives and Pseudo Opcodes

Page 417

Environment
Information

@CPU Returns a 16 bit value whose bits determine the
active processor directive. Specifying the .8086,
.186, .286, .386, .486, and .586 directives enable
additional instructions in MASM. They also set
the corresponding bits in the @cpu variable. Note
that MASM sets all the bits for the processors it
can handle at any one given time. For example, if
you use the .386 directive, MASM sets bits zero,
one, two, and three in the @cpu variable.

Bit 0 - 8086 instrs permissible.
Bit 1 - 80186 instrs permissible.
Bit 2 - 80286 instrs permissible.
Bit 3- 80386 instrs permissible.
Bit 4- 80486 instrs permissible.
Bit 5- Pentium instrs permissible.
Bit 6- Reserved for 80686 (?).
Bit 7- Protected mode instrs okay.

Bit 8- 8087 instrs permissible.
Bit 10- 80287 instrs permissible.
Bit 11- 80386 instrs permissible.
(bit 11 is also set for 80486 and
Pentium instr sets).

@Environ @Environ(name) returns the text associated with
DOS environment variable name. The parameter
must be a text value that evaluates to a valid DOS
environment variable name.

Text value

@Interface Returns a numeric value denoting the current lan-
guage type in use. Note that this information is
similar to that provided by the opattr attribute.

The H.O. bit determines if you are assembling
code for MS-DOS/Windows or OS/2.

This directive is mainly useful for those using
MASM’s simplified segment directives. Since this
text does not deal with the simplified directives,
further discussion of this variable is unwarranted.

Bits 0-2
000- No language type
001- C
010- SYSCALL
011- STDCALL
100- Pascal
101- FORTRAN
110- BASIC

Bit 7
0- MS-DOS or Windows
1- OS/2

@Version Returns a numeric value that is the current MASM
version number multiplied by 100. For example,
MASM 6.11’s @version variable returns 611.

Numeric value

File Information

@FileCur Returns the current source or include file name,
including any necessary pathname information.

Text value

@File-
Name

Returns the current source file name (base name
only, no path information). If in an include file,
this variable returns the name of the source file
that included the current file.

Text value

@Line Returns the current line number in the source file. Numeric value

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Chapter 08

Page 418

Although there is insufficient space to go into detail about the possible uses for each
of these variables, a few examples might demonstrate some of the possibilities. Other uses
of these variables will appear throughout the text; however, the most impressive uses will
be the ones you discover.

The @CPU variable is quite useful if you want to assemble different code sequences in
your program for different processors. The section on conditional assembly in this chapter
described how you could create a symbol to determine if you are assembling the code for
an 80386 and later processor or a stock 8086 processor. The @CPU symbol provides a sym-
bol that will tell you exactly which instructions are allowable at any given point in your
program. The following is a rework of that example using the @CPU variable:

if @CPU and 100b ;Need an 80286 or later processor
shl ax, 4 ; for this instruction.
else ;Must be 8086 processor.
mov cl, 4
shl ax, cl
endif

You can use the @Line directive to put special diagnostic messages in your code. The
following code would print an error message including the line number in the source file
of the offending assertion, if it detects an error at run-time:

mov ax, ErrorFlag
cmp ax, 0
je NoError
mov ax, @Line ;Load AX with current line #
call PrintError ;Go print error message and Line #
jmp Quit ;Terminate program.

8.14.9 Macros vs. Text Equates

Macros, macro functions, and text equates all substitute text in a program. While there
is some overlap between them, they really do serve different purposes in an assembly lan-
guage program.

a. These functions are intended for use with MASM’s simplified segment directives. This chapter does not discuss these
directives, so these functions will probably be of little use.

Segment a

Information

@code Returns the name of the current code segment. Text value

@data Returns the name of the current data segment. Text value

@FarData? Returns the name of the current far data segment. Text value

@Word-
Size

Returns two if this is a 16 bit segment, four if this
is a 32 bit segment.

Numeric value

@Code-
Size

Returns zero for Tiny, Small, Compact, and Flat
models. Returns one for Medium, Large, and
Huge models.

Numeric value

@DataSize Returns zero for Tiny, Small, Medium, and Flat
memory models. Returns one for Compact and
Large models. Returns two for Huge model pro-
grams.

Numeric value

@Model Returns one for Tiny model, two for Small model,
three for Compact model, four for Medium model,
five for Large model, six for Huge model, and
seven for Flag model.

Numeric value

@CurSeg Returns the name of the current code segment. Text value

@stack The name of the current stack segment. Text value

Table 45: MASM Predefined Assembly Time Variables

Category Name Description Return result

Directives and Pseudo Opcodes

Page 419

Text equates perform a single text substitution on a line. They do not allow any
parameters. However, you can replace text anywhere on a line with a text equate. You can
expand a text equate in the label, mnemonic, operand, or even the comment field. Further-
more, you can replace multiple fields, even an entire line with a single symbol.

Macro functions are legal in the operand field only. However, you can pass parame-
ters to macro functions making them considerably more general than simple text equates.

Procedural macros let you emit sequences of statements (with text equates you can
emit, at most, one statement).

8.14.10 Macros: Good and Bad News

Macros offer considerable convenience. They let you insert several instructions into
your source file by simply typing a single command. This can save you an incredible
amount of typing when entering huge tables, each line of which contains some bizarre,
but repeated calculation. It's useful (in certain cases) for helping make your programs
more readable. Few would argue that ForLp I,1,10 is not more readable than the corre-
sponding 80x86 code. Unfortunately, it's easy to get carried away and produce code that is
inefficient, hard to read, and hard to maintain.

A lot of so-called “advanced” assembly language programmers get carried away with
the idea that they can create their own instructions via macro definitions and they start
creating macros for every imaginable function under the sun. The COPY macro presented
earlier is a good example. The 80x86 doesn't support a memory to memory move opera-
tion. Fine, we'll create a macro that does the job for us. Soon, the assembly language pro-
gram doesn't look like 80x86 assembly language at all. Instead, a large number of the
statements are macro invocations. Now this may be great for the programmer who has
created all these macros and intimately understands their operation. To the 80x86 pro-
grammer who isn't familiar with those macros, however, it's all gibberish. Maintaining a
program someone else wrote, that contains “new” instructions implemented via macros,
is a horrible task. Therefore, you should rarely use macros as a device to create new
instructions on the 80x86.

Another problem with macros is that they tend to hide side effects. Consider the
COPY macro presented earlier. If you encountered a statement of the form
COPY VAR1,VAR2 in an assembly language program, you'd think that this was an innocu-
ous statement that copies VAR2 to VAR1. Wrong! It also destroys the current contents of
the ax register leaving a copy of the value in VAR2 in the ax register. This macro invoca-
tion doesn't make this very clear. Consider the following code sequence:

mov ax, 5
copy Var2, Var1
mov Var1, ax

This code sequence copies Var1 into Var2 and then (supposedly) stores five into Var1.
Unfortunately, the COPY macro has wiped out the value in ax (leaving the value originally
contained in Var1 alone), so this instruction sequence does not modify Var1 at all!

Another problem with macros is efficiency. Consider the following invocations of the
COPY macro:

copy Var3, Var1
copy Var2, Var1
copy Var0, Var1

These three statements generate the code:

mov ax, Var1
mov Var3, ax
mov ax, Var1
mov Var2, ax
mov ax, Var1
mov Var0, ax

Chapter 08

Page 420

Clearly, the last two mov ax,Var1 instructions are superfluous. The ax register already
contains a copy of Var1, there is no need to reload ax with this value. Unfortunately, this
inefficiency, while perfectly obvious in the expanded code, isn't obvious at all in the macro
invocations.

Another problem with macros is complexity. In order to generate efficient code, you
can create extremely complex macros using conditional assembly (especially ifb, ifidn, etc.),
repeat loops (described a little later), and other directives. Unfortunately, these macros are
small programs all on their own. You can have bugs in your macros just as you can have
bugs in your assembly language program. And the more complex your macros become,
the more likely they'll contain bugs that will, of course, become bugs in your program
when invoking the macro.

Overusing macros, especially complex ones, produces hard to read code that is hard
to maintain. Despite the enthusiastic claims of those who love macros, the unbridled use
of macros within a program generally causes more bugs than it helps to prevent. If you're
going to use macros, go easy on them.

There is a good side to macros, however. If you standardize on a set of macros and
document all your programs as using these macros, they may help make your programs
more readable. Especially if those macros have easily identifiable names. The UCR Stan-
dard Library for 80x86 Assembly Language Programmers uses macros for most library calls.
You’ll read more about the UCR Standard Library in the next chapter.

8.15 Repeat Operations

Another macro format (at least by Microsoft's definition) is the repeat macro. A repeat
macro is nothing more than a loop that repeats the statements within the loop some speci-
fied number of times. There are three types of repeat macros provided by MASM:
repeat/rept, for/irp, and forc/irpc. The repeat/rept macro uses the following syntax:

repeat expression
 <statements>

endm

Expression must be a numeric expression that evaluates to an unsigned constant. The
repeat directive duplicates all the statements between repeat and endm that many times.
The following code generates a table of 26 bytes containing the 26 uppercase characters:

ASCIICode = 'A'
repeat 26
byte ASCIICode

ASCIICode = ASCIICode+1
endm

The symbol ASCIICode is assigned the ASCII code for “A”. The loop repeats 26 times,
each time emitting a byte with the value of ASCIICode. Also, the loop increments the ASCI-
ICode symbol on each repetition so that it contains the ASCII code of the next character in
the ASCII table. This effectively generates the following statements:

byte ‘A’
byte ‘B’
 .
 .
 .

byte ‘Y’
byte ‘Z’

ASCIICode = 27

Note that the repeat loop executes at assembly time, not at run time. Repeat is not a
mechanism for creating loops within your program; use it for replicating sections of code
within your program. If you want to create a loop that executes some number of times
within your program, use the loop instruction. Although the following two code sequences
produce the same result, they are not the same:

Directives and Pseudo Opcodes

Page 421

; Code sequence using a run-time loop:

mov cx, 10
AddLp: add ax, [bx]

add bx, 2
loop AddLp

; Code sequence using an assembly-time loop:

repeat 10
add ax, [bx]
add bx, 2
endm

The first code sequence above emits four machine instructions to the object code file.
At assembly time, the 80x86 CPU executes the statements between AddLp and the loop
instruction ten times under the control of the loop instruction. The second code sequence
above emits 20 instructions to the object code file. At run time, the 80x86 CPU simply exe-
cutes these 20 instructions sequentially, with no control transfer. The second form will be
faster, since the 80x86 does not have to execute the loop instruction every third instruc-
tion. On the other hand, the second version is also much larger because it replicates the
body of the loop ten times in the object code file.

Unlike standard macros, you do not define and invoke repeat macros separately.
MASM emits the code between the repeat and endm directives upon encountering the
repeat directive. There isn't a separate invocation phase. If you want to create a repeat
macro that can be invoked throughout your program, consider the following:

REPTMacro macro Count
repeat Count

 <statements>
endm
endm

 By placing the repeat macro inside a standard macro, you can invoke the repeat macro
anywhere in your program by invoking the REPTMacro macro. Note that you need two
endm directives, one to terminate the repeat macro, one to terminate the standard macro.

Rept is a synonym for repeat. Repeat is the newer form, MASM supports Rept for com-
patibility with older source files. You should always use the repeat form.

8.16 The FOR and FORC Macro Operations

Another form of the repeat macro is the for macro. This macro takes the following
form:

for parameter,<item1 {,item2 {,item3 {,...}}}>

 <statements>

endm

The angle brackets are required around the items in the operand field of the for directive.
The braces surround optional items, the braces should not appear in the operand field.

The for directive replicates the instructions between for and endm once for each item
appearing in the operand field. Furthermore, for each iteration, the first symbol in the
operand field is assigned the value of the successive items from the second parameter.
Consider the following loop:

for value,<0,1,2,3,4,5>
byte value
endm

This loop emits six bytes containing the values zero, one, two, ..., five. It is absolutely
identical to the sequence of instructions:

Chapter 08

Page 422

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5

Remember, the for loop, like the repeat loop, executes at assembly time, not at run time.

For’s second operand need not be a literal text constant; you can supply a macro
parameter, macro function result, or a text equate for this value. Keep in mind, though,
that this parameter must expand to a text value with the text delimiters around it.

Irp is an older, obsolete, synonym for for. MASM allows irp to provide compatibility
with older source code. However, you should always use the for directive.

The third form of the loop macro is the forc macro. It differs from the for macro in that
it repeats a loop the number of times specified by the length of a character string rather
than by the number of operands present. The syntax for the forc directive is

forc parameter,<string>

<statements>

endm

The statements in the loop repeat once for each character in the string operand. The
angle brackets must appear around the string. Consider the following loop:

forc value,<012345>
byte value
endm

This loop produces the same code as the example for the for directive above.

Irpc is an old synonym for forc provided for compatibility reasons. You should always
use forc in your new code.

8.17 The WHILE Macro Operation

The while macro lets you repeat a sequence of code in your assembly language file an
indefinite number of times. An assembly time expression, that while evaluates before
emitting the code for each loop, determines whether it repeats. The syntax for this macro
is

while expression
 <Statements>

endm

This macro evaluates the assembly-time expression; if this expression’s value is zero,
the while macro ignores the statements up to the corresponding endm directive. If the
expression evaluates to a non-zero value (true), then MASM assembles the statements up
to the endm directive and reevaluates the expression to see if it should assemble the body
of the while loop again.

Normally, the while directive repeats the statements between the while and endm as
long as the expression evaluates true. However, you can also use the exitm directive to pre-
maturely terminate the expansion of the loop body. Keep in mind that you need to pro-
vide some condition that terminates the loop, otherwise MASM will go into an infinite
loop and continually emit code to the object code file until the disk fills up (or it will sim-
ply go into an infinite loop if the loop does not emit any code).

8.18 Macro Parameters

Standard MASM macros are very flexible. If the number of actual parameters (those
supplied in the operand field of the macro invocation) does not match the number of for-

Directives and Pseudo Opcodes

Page 423

mal parameters (those appearing in the operand field of the macro definition), MASM
won’t necessarily complain. If there are more actual parameters than formal parameters,
MASM ignores the extra parameters and generates a warning. If there are more formal
parameters than actual parameters, MASM substitutes the empty string (“<>”) for the
extra formal parameters. By using the ifb and ifnb conditional assembly directives, you can
test this last condition. While this parameter substitution technique is flexible, it also
leaves open the possibility of error. If you want to require that the programmer supply
exactly three parameters and they actually supply less, MASM will not generate an error.
If you forget to test for the presence of each parameter using ifb, you could generate bad
code. To overcome this limitation, MASM provides the ability to specify that certain
macro parameters are required. You can also assign a default value to a parameter if the
programming doesn’t supply one. Finally, MASM also provides facilities to allow a vari-
able number of macro arguments.

If you want to require a programmer to supply a particular macro parameters, simply
put “:req” after the macro parameter in the macro definition. At assembly time, MASM
will generate an error if that particular macro is missing.

Needs2Parms macro parm1:req, parm2:req
 .
 .
 .

endm
 .
 .
 .

Needs2Parms ax ;Generates an error.
Needs2Parms ;Generates an error.
Needs2Parms ax, bx ;Works fine.

Another possibility is to have the macro supply a default value for a macro if it is
missing from the actual parameter list. To do this, simply use the “:=<text>” operator
immediately after the parameter name in the formal parameter list. For example, the
int 10h BIOS function provides various video services. One of the most commonly used
video services is the ah=0eh function that outputs the character in al to the video display.
The following macro lets the caller specify which function they want to use, and defaults
to function 0eh if they don’t specify a parameter:

Video macro service := <0eh>
mov ah, service
int 10h
endm

The last feature MASM’s macros support is the ability to process a variable number of
parameters. To do this you simply place the operator “:vararg” after the last formal param-
eter in the parameter list. MASM associates the first n actual parameters with the corre-
sponding formal parameters appearing before the variable argument, it then creates a text
equate of all remaining parameters to the formal parameter suffixed with the “:vararg”
operator. You can use the for macro to extract each parameter from this variable argument
list. For example, the following macro lets you declare an arbitrary number of two dimen-
sional arrays, all the same size. The first two parameters specify the number of rows and
columns, the remaining optional parameters specify the names of the arrays:

MkArrays macro NumRows:req, NumCols:req, Names:vararg
for AryName, Names

&AryName& word NumRows dup (NumCols dup (?))
endm
endm

 .
 .
 .

MkArrays 8, 12, A, B, X, Y

Chapter 08

Page 424

8.19 Controlling the Listing

MASM provides several assembler directives that are useful for controlling the output
of the assembler. These directives include echo, %out, title, subttl, page, .list, .nolist, and .xlist.
There are several others, but these are the most important.

8.19.1 The ECHO and %OUT Directives

The echo and %out directives simply print whatever appears in its operand field to the
video display during assembly. Some examples of echo and %out appeared in the sections
on conditional assembly and macros. Note that %out is an older form of echo provided for
compatibility with old source code.. You should use echo in all your new code.

8.19.2 The TITLE Directive

The title assembler directive assigns a title to your source file. Only one title directive
may appear in your program. The syntax for this directive is

title text

MASM will print the specified text at the top of each page of the assembled listing.

8.19.3 The SUBTTL Directive

The subttl (subtitle) directive is similar to the title directive, except multiple subtitles
may appear within your source file. Subtitles appear immediately below the title at the
top of each page in the assembled listing. The syntax for the subttl directive is

 subttl text

The specified text will become the new subtitle. Note that MASM will not print the new
subtitle until the next page eject. If you wish to place the subtitle on the same page as the
code immediately following the directive, use the page directive (described next) to force a
page ejection.

8.19.4 The PAGE Directive

The page directive performs two functions- it can force a page eject in the assembly
listing and it can set the width and length of the output device. To force a page eject, the
following form of the page directive is used:

page

If you place a plus sign, “+”, in the operand field, then MASM performs a page break,
increments the section number, and resets the page number to one. MASM prints page
numbers using the format

section-page

If you want to take advantage of the section number facility, you will have to manually
insert page breaks (with a “+” operand) in front of each new section.

The second form of the page command lets you set the printer page width and length
values. It takes the form:

page length, width

where length is the number of lines per page (defaults to 50, but 56-60 is a better choice for
most printers) and width is the number of characters per line. The default page width is

Directives and Pseudo Opcodes

Page 425

80 characters. If your printer is capable of printing 132 columns, you should change this
value to 132 so your listings will be easier to read. Note that some printers, even if their
carriage is only 8-1/2" wide, will print at least 132 columns across in a condensed mode.
Typically some control character must be sent to the printer to place it in condensed mode.
You can insert such a control character in a comment at the beginning of your source list-
ing.

8.19.5 The .LIST, .NOLIST, and .XLIST Directives

The .list, .nolist, and .xlist directives can be used to selectively list portions of your
source file during assembly. .List turns the listing on, .Nolist turns the listing off. .Xlist is an
obsolete form of .Nolist for older code.

By sprinkling these three directives throughout your source file, you can list only
those sections of code that interest you. None of these directives accept any operands.
They take the following forms:

.list

.nolist

.xlist

8.19.6 Other Listing Directives

MASM provides several other listing control directives that this chapter will not
cover. These let you control the output of macros, conditional assembly segments, and so
on to the listing file. Please see the appendices for details on these directives.

8.20 Managing Large Programs

Most assembly language programs are not totally stand alone programs. In general,
you will call various standard library or other routines which are not defined in your main
program. For example, you’ve probably noticed by now that the 80x86 doesn’t provide
any instructions like “read”, “write”, or “printf” for doing I/O operations. In fact, the only
instructions you’ve seen that do I/O include the 80x86 in and out instructions, which are
really just special mov instructions, and the echo/%out directives that perform assem-
bly-time output, not the run-time output you want. Is there no way to do I/O from assem-
bly language? Of course there is. You can write procedures that perform the I/O
operations like “read” and “write”. Unfortunately, writing such routines is a complex
task, and beginning assembly language programmers are not ready for such tasks. That’s
where the UCR Standard Library for 80x86 Assembly Language Programmers comes in.
This is a package of procedures you can call to perform simple I/O operations like
“printf”.

The UCR Standard Library contains thousands of lines of source code. Imagine how
difficult programming would be if you had to merge these thousands of lines of code into
your simple programs. Fortunately, you don’t have to.

For small programs, working with a single source file is fine. For large programs this
gets very cumbersome (consider the example above of having to include the entire UCR
Standard Library into each of your programs). Furthermore, once you’ve debugged and
tested a large section of your code, continuing to assemble that same code when you make
a small change to some other part of your program is a waste of time. The UCR Standard
Library, for example, takes several minutes to assemble, even on a fast machine. Imagine
having to wait five or ten minutes on a fast Pentium machine to assemble a program to
which you’ve made a one line change!

As with HLLs, the solution is separate compilation (or separate assembly in MASM’s
case). First, you break up your large source files into manageable chunks. Then you

Chapter 08

Page 426

assemble the separate files into object code modules. Finally, you link the object modules
together to form a complete program. If you need to make a small change to one of the
modules, you only need to reassemble that one module, you do not need to reassemble
the entire program.

The UCR Standard Library works in precisely this way. The Standard Library is
already assembled and ready to use. You simply call routines in the Standard Library and
link your code with the Standard Library using a linker program. This saves a tremendous
amount of time when developing a program that uses the Standard Library code. Of
course, you can easily create your own object modules and link them together with your
code. You could even add new routines to the Standard Library so they will be available
for use in future programs you write.

“Programming in the large” is a term software engineers have coined to describe the
processes, methodologies, and tools for handling the development of large software
projects. While everyone has their own idea of what “large” is, separate compilation, and
some conventions for using separate compilation, are one of the big techniques for “pro-
gramming in the large.” The following sections describe the tools MASM provides for
separate compilation and how to effectively employ these tools in your programs.

8.20.1 The INCLUDE Directive

The include directive, when encountered in a source file, switches program input from
the current file to the file specified in the parameter list of the include. This allows you to
construct text files containing common equates, macros, source code, and other assembler
items, and include such a file into the assembly of several separate programs. The syntax
for the include directive is

include filename

Filename must be a valid DOS filename. MASM merges the specified file into the assembly
at the point of the include directive. Note that you can nest include statements inside files
you include. That is, a file being included into another file during assembly may itself
include a third file.

Using the include directive by itself does not provide separate compilation. You could
use the include directive to break up a large source file into separate modules and join
these modules together when you assemble your file. The following example would
include the PRINTF.ASM and PUTC.ASM files during the assembly of your program:

include printf.asm
include putc.asm

<Code for your program goes here>

end

Now your program will benefit from the modularity gained by this approach. Alas,
you will not save any development time. The include directive inserts the source file at the
point of the include during assembly, exactly as though you had typed that code in your-
self. MASM still has to assemble the code and that takes time. Were you to include all the
files for the Standard Library routines, your assemblies would take forever.

In general, you should not use the include directive to include source code as shown
above16. Instead, you should use the include directive to insert a common set of constants
(equates), macros, external procedure declarations, and other such items into a program.
Typically an assembly language include file does not contain any machine code (outside of
a macro). The purpose of using include files in this manner will become clearer after you
see how the public and external declarations work.

16. There is nothing wrong with this, other than the fact that it does not take advantage of separate compilation.

Directives and Pseudo Opcodes

Page 427

8.20.2 The PUBLIC, EXTERN, and EXTRN Directives

Technically, the include directive provides you with all the facilities you need to create
modular programs. You can build up a library of modules, each containing some specific
routine, and include any necessary modules into an assembly language program using the
appropriate include commands. MASM (and the accompanying LINK program) provides
a better way: external and public symbols.

One major problem with the include mechanism is that once you've debugged a rou-
tine, including it into an assembly wastes a lot of time since MASM must reassemble
bug-free code every time you assemble the main program. A much better solution would
be to preassemble the debugged modules and link the object code modules together
rather than reassembling the entire program every time you change a single module. This
is what the public and extern directives provide for you. Extrn is an older directive that is a
synonym for extern. It provides compatibility with old source files. You should always use
the extern directive in new source code.

To use the public and extern facilities, you must create at least two source files. One file
contains a set of variables and procedures used by the second. The second file uses those
variables and procedures without knowing how they're implemented. To demonstrate,
consider the following two modules:

;Module #1:

public Var1, Var2, Proc1
DSEG segment para public 'data'
Var1 word ?
Var2 word ?
DSEG ends

CSEG segment para public 'code'
assume cs:cseg, ds:dseg

Proc1 proc near
mov ax, Var1
add ax, Var2
mov Var1, ax
ret

Proc1 endp
CSEG ends

end

;Module #2:
extern Var1:word, Var2:word, Proc1:near

CSEG segment para public 'code'
 .
 .
 .

mov Var1, 2
mov Var2, 3
call Proc1
 .
 .
 .

CSEG ends
end

Module #2 references Var1, Var2, and Proc1, yet these symbols are external to module
#2. Therefore, you must declare them external with the extern directive. This directive
takes the following form:

 extern name:type {,name:type...}

Name is the name of the external symbol, and type is the type of that symbol. Type may be
any of near, far, proc, byte, word, dword, qword, tbyte, abs (absolute, which is a constant), or
some other user defined type.

The current module uses this type declaration. Neither MASM nor the linker checks
the declared type against the module defining name to see if the types agree. Therefore,
you must exercise caution when defining external symbols. The public directive lets you
export a symbol's value to external modules. A public declaration takes the form:

Chapter 08

Page 428

public name {,name ...}

Each symbol appearing in the operand field of the public statement is available as an exter-
nal symbol to another module. Likewise, all external symbols within a module must
appear within a public statement in some other module.

Once you create the source modules, you should assemble the file containing the pub-
lic declarations first. With MASM 6.x, you would use a command like

ML /c pubs.asm

The “/c” option tells MASM to perform a “compile-only” assembly. That is, it will not try
to link the code after a successful assembly. This produces a “pubs.obj” object module.

Next, assemble the file containing the external definitions and link in the code using
the MASM command:

ML exts.asm pubs.obj

Assuming there are no errors, this will produce a file “exts.exe” which is the linked and
executable form of the program.

Note that the extern directive defines a symbol in your source file. Any attempt to
redefine that symbol elsewhere in your program will produce a “duplicate symbol” error.
This, as it turns out, is the source of problems which Microsoft solved with the externdef
directive.

8.20.3 The EXTERNDEF Directive

The externdef directive is a combination of public and extern all rolled into one. It uses
the same syntax as the extern directive, that is, you place a list of name:type entries in the
operand field. If MASM does not encounter another definition of the symbol in the cur-
rent source file, externdef behaves exactly like the extern statement. If the symbol does
appear in the source file, then externdef behaves like the public command. With externdef
there really is no need to use the public or extern statements unless you feel somehow com-
pelled to do so.

The important benefit of the externdef directive is that it lets you minimize duplication
of effort in your source files. Suppose, for example, you want to create a module with a
bunch of support routines for other programs. In addition to sharing some routines and
some variables, suppose you want to share constants and macros as well. The include file
mechanism provides a perfect way to handle this. You simply create an include file con-
taining the constants, macros, and externdef definitions and include this file in the module
that implements your routines and in the modules that use those routines (see Figure 8.8).

Note that extern and public wouldn’t work in this case because the implementation
module needs the public directive and the using module needs the extern directive. You
would have to create two separate header files. Maintaining two separate header files that

Figure 8.8 Using a Single Include file for Implementation and Using Modules

Implementation Module Using Module

INCLUDE Header.aINCLUDE Header.a

Header.a

Directives and Pseudo Opcodes

Page 429

contain mostly identical definitions is not a good idea. The externdef directive provides a
solution.

Within your headers files you should create segment definitions that match those in
the including modules. Be sure to put the externdef directives inside the same segments in
which the symbol is actually defined. This associates a segment value with the symbol so
that MASM can properly make appropriate optimizations and other calculations based on
the symbol’s full address:

; From “HEADER.A” file:

cseg segment para public ‘code’

externdef Routine1:near, Routine2:far

cseg ends

dseg segment para public ‘data’

externdef i:word, b:byte, flag:byte

dseg ends

This text adopts the UCR Standard Library convention of using an “.a” suffix for
assembly language header files. Other common suffixes in use include “.inc” and “.def”.

8.21 Make Files

Although using separate compilation reduces assembly time and promotes code reuse
and modularity, it is not without its own drawbacks. Suppose you have a program that
consists of two modules: pgma.asm and pgmb.asm. Also suppose that you’ve already
assembled both modules so that the files pgma.obj and pgmb.obj exist. Finally, you make
changes to pgma.asm and pgmb.asm and assemble the pgma.asm but forget to assemble the
pgmb.asm file. Therefore, the pgmb.obj file will be out of date since this object file does not
reflect the changes made to the pgmb.asm file. If you link the program’s modules together,
the resulting .exe file will only contain the changes to the pgma.asm file, it will not have
the updated object code associated with pgmb.asm. As projects get larger, as they have
more modules associated with them, and as more programmers begin working on the
project, it gets very difficult to keep track of which object modules are up to date.

This complexity would normally cause someone to reassemble (or recompile) all mod-
ules in a project, even if many of the .obj files are up to date, simply because it might seem
too difficult to keep track of which modules are up to date and which are not. Doing so, of
course, would eliminate many of the benefits that separate compilation offers. Fortu-
nately, there is a tool that can help you manage large projects: nmake. The nmake pro-
gram, will a little help from you, can figure out which files need to be reassemble and
which files have up to date .obj files. With a properly defined make file, you can easily
assemble only those modules that absolutely must be assembled to generate a consistent
program.

A make file is a text file that lists assembly-time dependencies between files. An .exe
file, for example, is dependent on the source code whose assembly produce the executable.
If you make any changes to the source code you will (probably) need to reassemble or
recompile the source code to produce a new .exe file17.

Typical dependencies include the following:

• An executable file (.exe) generally depends only on the set of object files
(.obj) that the linker combines to form the executable.

• A given object code file (.obj) depends on the assembly language source
files that were assembled to produce that object file. This includes the

17. Obviously, if you only change comments or other statements in the source file that do not affect the executable
file, a recompile or reassembly will not be necessary. To be safe, though, we will assume any change to the source
file will require a reassembly.

Chapter 08

Page 430

assembly language source files (.asm) and any files included during that
assembly (generally .a files).

• The source files and include files generally don’t depend on anything.

A make file generally consists of a dependency statement followed by a set of com-
mands to handle that dependency. A dependency statement takes the following form:

dependent-file : list of files

Example:

pgm.exe: pgma.obj pgmb.obj

This statement says that “pgm.exe” is dependent upon pgma.obj and pgmb.obj. Any
changes that occur to pgma.obj or pgmb.obj will require the generate of a new pgm.exe
file.

The nmake.exe program uses a time/date stamp to determine if a dependent file is out
of date with respect to the files it depends upon. Any time you make a change to a file,
MS-DOS and Windows will update a modification time and date associated with the file. The
nmake.exe program compares the modification date/time stamp of the dependent file
against the modification date/time stamp of the files it depends upon. If the dependent
file’s modification date/time is earlier than one or more of the files it depends upon, or
one of the files it depends upon is not present, then nmake.exe assumes that some opera-
tion must be necessary to update the dependent file.

When an update is necessary, nmake.exe executes the set of (MS-DOS) commands fol-
lowing the dependency statement. Presumably, these commands would do whatever is
necessary to produce the updated file.

The dependency statement must begin in column one. Any commands that must exe-
cute to resolve the dependency must start on the line immediately following the depen-
dency statement and each command must be indented one tabstop. The pgm.exe
statement above would probably look something like the following:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

(The “/Fepgm.exe” option tells MASM to name the executable file “pgm.exe.”)

If you need to execute more than one command to resolve the dependencies, you can
place several commands after the dependency statement in the appropriate order. Note
that you must indent all commands one tab stop. Nmake.exe ignores any blank lines in a
make file. Therefore, you can add blank lines, as appropriate, to make the file easier to
read and understand.

There can be more than a single dependency statement in a make file. In the example
above, for example, pgm.exe depends upon the pgma.obj and pgmb.obj files. Obviously,
the .obj files depend upon the source files that generated them. Therefore, before attempt-
ing to resolve the dependencies for pgm.exe, nmake.exe will first check out the rest of the
make file to see if pgma.obj or pgmb.obj depends on anything. If they do, nmake.exe will
resolve those dependencies first. Consider the following make file:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.asm
ml /c pgma.asm

pgmb.obj: pgmb.asm
ml /c pgmb.asm

The nmake.exe program will process the first dependency line it finds in the file. How-
ever, the files pgm.exe depends upon themselves have dependency lines. Therefore,
nmake.exe will first ensure that pgma.obj and pgmb.obj are up to date before attempting
to execute MASM to link these files together. Therefore, if the only change you’ve made
has been to pgmb.asm, nmake.exe takes the following steps (assuming pgma.obj exists
and is up to date).

Directives and Pseudo Opcodes

Page 431

1. Nmake.exe processes the first dependency statement. It notices that dependency
lines for pgma.obj and pgmb.obj (the files on which pgm.exe depends) exist. So it
processes those statements first.

2. Nmake.exe processes the pgma.obj dependency line. It notices that the pgma.obj
file is newer than the pgma.asm file, so it does not execute the command follow-
ing this dependency statement.

3. Nmake.exe processes the pgmb.obj dependency line. It notes that pgmb.obj is
older than pgmb.asm (since we just changed the pgmb.asm source file). There-
fore, nmake.exe executes the DOS command following on the next line. This gen-
erates a new pgmb.obj file that is now up to date.

4. Having process the pgma.obj and pgmb.obj dependencies, nmake.exe now
returns its attention to the first dependency line. Since nmake.exe just created a
new pgmb.obj file, its date/time stamp will be newer than pgm.exe’s. Therefore,
nmake.exe will execute the ml command that links pgma.obj and pgmb.obj
together to form the new pgm.exe file.

Note that a properly written make file will instruct nmake.exe to assembly only those
modules absolutely necessary to produce a consistent executable file. In the example
above, nmake.exe did not bother to assemble pgma.asm since its object file was already
up to date.

There is one final thing to emphasize with respect to dependencies. Often, object files
are dependent not only on the source file that produces the object file, but any files that the
source file includes as well. In the previous example, there (apparently) were no such
include files. Often, this is not the case. A more typical make file might look like the fol-
lowing:

pgm.exe: pgma.obj pgmb.obj
ml /Fepgm.exe pgma.obj pgmb.obj

pgma.obj: pgma.asm pgm.a
ml /c pgma.asm

pgmb.obj: pgmb.asm pgm.a
ml /c pgmb.asm

Note that any changes to the pgm.a file will force nmake.exe to reassemble both pgma.asm
and pgmb.asm since the pgma.obj and pgmb.obj files both depend upon the pgm.a
include file. Leaving include files out of a dependency list is a common mistake program-
mers make that can produce inconsistent .exe files.

Note that you would not normally need to specify the UCR Standard Library include
files nor the Standard Library .lib files in the dependency list. True, your resulting .exe file
does depend on this code, but the Standard Library rarely changes, so you can safely leave
it out of your dependency list. Should you make a modification to the Standard Library,
simply delete any old .exe and .obj files and force a reassembly of the entire system.

Nmake.exe, by default, assumes that it will be processing a make file named “make-
file”. When you run nmake.exe, it looks for “makefile” in the current directory. If it doesn’t
find this file, it complains and terminates18. Therefore, it is a good idea to collect the files
for each project you work on into their own subdirectory and give each project its own
makefile. Then to create an executable, you need only change into the appropriate subdi-
rectory and run the nmake.exe program.

Although this section discusses the nmake program in sufficient detail to handle most
projects you will be working on, keep in mind that nmake.exe provides considerable func-
tionality that this chapter does not discuss. To learn more about the nmake.exe program,
consult the documentation that comes with MASM.

18. There is a command line option that lets you specify the name of the makefile. See the nmake documentation
in the MASM manuals for more details.

Chapter 08

Page 432

8.22 Sample Program

Here is a single program that demonstrates most of the concepts from this chapter.
This program consists of several files, including a makefile, that you can assemble and
link using the nmake.exe program. This particular sample program computes “cross
products” of various functions. The multiplication table you learned in school is a good
example of a cross product, so are the truth tables found in Chapter Two of your textbook.
This particular program generates cross product tables for addition, subtraction, division,
and, optionally, remainder (modulo). In addition to demonstrating several concepts from
this chapter, this sample program also demonstrates how to manipulate dynamically allo-
cated arrays. This particular program asks the user to input the matrix size (row and col-
umn sizes) and then computes an appropriate set of cross products for that array.

8.22.1 EX8.MAK

The cross product program contains several modules. The following make file assem-
bles all necessary files to ensure a consistent .EXE file.

ex8.exe:ex8.obj geti.obj getarray.obj xproduct.obj matrix.a
ml ex8.obj geti.obj getarray.obj xproduct.obj

ex8.obj: ex8.asm matrix.a
ml /c ex8.asm

geti.obj: geti.asm matrix.a
ml /c geti.asm

getarray.obj: getarray.asm matrix.a
ml /c getarray.asm

xproduct.obj: xproduct.asm matrix.a
ml /c xproduct.asm

8.22.2 Matrix.A

MATRIX.A is the header file containing definitions that the cross product program
uses. It also contains all the externdef statements for all externally defined routines.

; MATRIX.A
;
; This include file provides the external definitions
; and data type definitions for the matrix sample program
; in Chapter Eight.
;
; Some useful type definitions:

Integer typedef word
Char typedef byte

; Some common constants:

Bell equ 07;ASCII code for the bell character.

; A “Dope Vector” is a structure containing information about arrays that
; a program allocates dynamically during program execution. This particular
; dope vector handles two dimensional arrays. It uses the following fields:
;
; TTL- Points at a zero terminated string containing a description
; of the data in the array.
;
; Func- Pointer to function to compute for this matrix.

Directives and Pseudo Opcodes

Page 433

;
; Data- Pointer to the base address of the array.
;
; Dim1- This is a word containing the number of rows in the array.
;
; Dim2- This is a word containing the number of elements per row
; in the array.
;
; ESize- Contains the number of bytes per element in the array.

DopeVec struct
TTL dword ?
Func dword ?
Data dword ?
Dim1 word ?
Dim2 word ?
ESize word ?
DopeVec ends

; Some text equates the matrix code commonly uses:

Base textequ <es:[di]>

byp textequ <byte ptr>
wp textequ <word ptr>
dp textequ <dword ptr>

; Procedure declarations.

InpSeg segment para public ‘input’

externdef geti:far
externdef getarray:far

InpSeg ends

cseg segment para public ‘code’

externdef CrossProduct:near

cseg ends

; Variable declarations

dseg segment para public ‘data’

externdef InputLine:byte

dseg ends

; Uncomment the following equates if you want to turn on the
; debugging statements or if you want to include the MODULO function.

;debug equ 0
;DoMOD equ 0

8.22.3 EX8.ASM

This is the main program. It calls appropriate routines to get the user input, compute
the cross product, and print the result.

; Sample program for Chapter Eight.
; Demonstrates the use of many MASM features discussed in Chapter Six
; including label types, constants, segment ordering, procedures, equates,
; address expressions, coercion and type operators, segment prefixes,

Chapter 08

Page 434

; the assume directive, conditional assembly, macros, listing directives,
; separate assembly, and using the UCR Standard Library.
;
; Include the header files for the UCR Standard Library. Note that the
; “stdlib.a” file defines two segments; MASM will load these segments into
; memory before “dseg” in this program.
;
; The “.nolist” directive tells MASM not to list out all the macros for
; the standard library when producing an assembly listing. Doing so would
; increase the size of the listing by many tens of pages and would tend to
; obscure the real code in this program.
;
; The “.list” directive turns the listing back on after MASM gets past the
; standard library files. Note that these two directives (“.nolist” and
; “.list”) are only active if you produce an assembly listing using MASM’s
; “/Fl” command line parameter.

.nolist
include stdlib.a
includelib stdlib.lib
.list

; The following statement includes the special header file for this
; particular program. The header file contains external definitions
; and various data type definitions.

include matrix.a

; The following two statements allow us to use 80386 instructions
; in the program. The “.386” directive turns on the 80386 instruction
; set, the “option” directive tells MASM to use 16-bit segments by
; default (when using 80386 instructions, 32-bit segments are the default).
; DOS real mode programs must be written using 16-bit segments.

.386
option segment:use16

dseg segment para public ‘data’

Rows integer ? ;Number of rows in matrices
Columns integer ? ;Number of columns in matrices

; Input line is an input buffer this code uses to read a string of text
; from the user. In particular, the GetWholeNumber procedure passes the
; address of InputLine to the GETS routine that reads a line of text
; from the user and places each character into this array. GETS reads
; a maximum of 127 characters plus the enter key from the user. It zero
; terminates that string (replacing the ASCII code for the ENTER key with
; a zero). Therefore, this array needs to be at least 128 bytes long to
; prevent the possibility of buffer overflow.
;
; Note that the GetArray module also uses this array.

InputLine char 128 dup (0)

; The following two pointers point at arrays of integers.
; This program dynamically allocates storage for the actual array data
; once the user tells the program how big the arrays should be. The
; Rows and Columns variables above determine the respective sizes of
; these arrays. After allocating the storage with a call to MALLOC,
; this program stores the pointers to these arrays into the following
; two pointer variables.

Directives and Pseudo Opcodes

Page 435

RowArray dword ? ;Pointer to Row values
ColArray dword ? ;Pointer to column values.

; ResultArrays is an array of dope vectors(*) to hold the results
; from the matrix operations:
;
; [0]- addition table
; [1]- subtraction table
; [2]- multiplication table
; [3]- division table
;
; [4]- modulo (remainder) table -- if the symbol “DoMOD” is defined.
;
; The equate that follows the ResultArrays declaration computes the number
; of elements in the array. “$” is the offset into dseg immediately after
; the last byte of ResultArrays. Subtracting this value from ResultArrays
; computes the number of bytes in ResultArrays. Dividing this by the size
; of a single dope vector produces the number of elements in the array.
; This is an excellent example of how you can use address expressions in
; an assembly language program.
;
; The IFDEF DoMOD code demonstrates how easy it is to extend this matrix.
; Defining the symbol “DoMOD” adds another entry to this array. The
; rest of the program adjusts for this new entry automatically.
;
; You can easily add new items to this array of dope vectors. You will
; need to supply a title and a function to compute the matrice’s entries.
; Other than that, however, this program automatically adjusts to any new
; entries you add to the dope vector array.
;
; (*) A “Dope Vector” is a data structure that describes a dynamically
; allocated array. A typical dope vector contains the maximum value for
; each dimension, a pointer to the array data in memory, and some other
; possible information. This program also stores a pointer to an array
; title and a pointer to an arithmetic function in the dope vector.

ResultArrays DopeVec {AddTbl,Addition}, {SubTbl,Subtraction}
DopeVec {MulTbl,Multiplication}, {DivTbl,Division}

ifdef DoMOD
DopeVec {ModTbl,Modulo}
endif

; Add any new functions of your own at this point, before the following equate:

RASize = ($-ResultArrays) / (sizeof DopeVec)

; Titles for each of the four (five) matrices.

AddTbl char “Addition Table”,0
SubTbl char “Subtraction Table”,0
MulTbl char “Multiplication Table”,0
DivTbl char “Division Table”,0

ifdef DoMOD
ModTbl char “Modulo (Remainder) Table”,0

endif

; This would be a good place to put a title for any new array you create.

dseg ends

Chapter 08

Page 436

; Putting PrintMat inside its own segment demonstrates that you can have
; multiple code segments within a program. There is no reason we couldn’t
; have put “PrintMat” in CSEG other than to demonstrate a far call to a
; different segment.

PrintSeg segment para public ‘PrintSeg’

; PrintMat- Prints a matrix for the cross product operation.
;
; On Entry:
;
; DS must point at DSEG.
; DS:SI points at the entry in ResultArrays for the
; array to print.
;
; The output takes the following form:
;
; Matrix Title
;
; <- column matrix values ->
;
; ^ *------------------------*
; | | |
; R | |
; o | Cross Product Matrix |
; w | Values |
; | |
; V | |
; a | |
; l | |
; u | |
; e | |
; s | |
; | | |
; v *------------------------*

PrintMat proc far
assume ds:dseg

; Note the use of conditional assembly to insert extra debugging statements
; if a special symbol “debug” is defined during assembly. If such a symbol
; is not defined during assembly, the assembler ignores the following
; statements:

ifdef debug
print
char “In PrintMat”,cr,lf,0
endif

; First, print the title of this table. The TTL field in the dope vector
; contains a pointer to a zero terminated title string. Load this pointer
; into es:di and call PUTS to print that string.

putcr
les di, [si].DopeVec.TTL
puts

; Now print the column values. Note the use of PUTISIZE so that each
; value takes exactly six print positions. The following loop repeats
; once for each element in the Column array (the number of elements in
; the column array is given by the Dim2 field in the dope vector).

print ;Skip spaces to move past the
char cr,lf,lf,” “,0 ; row values.

mov dx, [si].DopeVec.Dim2 ;# times to repeat the loop.
les di, ColArray ;Base address of array.

ColValLp: mov ax, es:[di] ;Fetch current array element.

Directives and Pseudo Opcodes

Page 437

mov cx, 6 ;Print the value using a
putisize ; minimum of six positions.
add di, 2 ;Move on to next element.
dec dx ;Repeat this loop DIM2 times.
jne ColValLp
putcr ;End of column array output
putcr ;Insert a blank line.

; Now output each row of the matrix. Note that we need to output the
; RowArray value before each row of the matrix.
;
; RowLp is the outer loop that repeats for each row.

mov Rows, 0 ;Repeat for 0..Dim1-1 rows.
RowLp: les di, RowArray ;Output the current RowArray

mov bx, Rows ; value on the left hand side
add bx, bx ; of the matrix.
mov ax, es:[di][bx] ;ES:DI is base, BX is index.
mov cx, 5 ;Output using five positions.
putisize
print
char “: “,0

; ColLp is the inner loop that repeats for each item on each row.

mov Columns, 0 ;Repeat for 0..Dim2-1 cols.
ColLp: mov bx, Rows ;Compute index into the array

imul bx, [si].DopeVec.Dim2 ; index := (Rows*Dim2 +
add bx, Columns ; columns) * 2
add bx, bx

; Note that we only have a pointer to the base address of the array, so we
; have to fetch that pointer and index off it to access the desired array
; element. This code loads the pointer to the base address of the array into
; the es:di register pair.

les di, [si].DopeVec.Data ;Base address of array.
mov ax, es:[di][bx] ;Get array element

; The functions that compute the values for the array store an 8000h into
; the array element if some sort of error occurs. Of course, it is possible
; to produce 8000h as an actual result, but giving up a single value to
; trap errors is worthwhile. The following code checks to see if an error
; occurred during the cross product. If so, this code prints “ ****”,
; otherwise, it prints the actual value.

cmp ax, 8000h ;Check for error value
jne GoodOutput
print
char “ ****”,0 ;Print this for errors.
jmp DoNext

GoodOutput: mov cx, 6 ;Use six print positions.
putisize ;Print a good value.

DoNext: mov ax, Columns ;Move on to next array
inc ax ; element.
mov Columns, ax
cmp ax, [si].DopeVec.Dim2 ;See if we’re done with
jb ColLp ; this column.

putcr ;End each column with CR/LF

mov ax, Rows ;Move on to the next row.
inc ax
mov Rows, ax
cmp ax, [si].DopeVec.Dim1 ;Have we finished all the
jb RowLp ; rows? Repeat if not done.
ret

PrintMat endp

Chapter 08

Page 438

PrintSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

;GetWholeNum- This routine reads a whole number (an integer greater than
; zero) from the user. If the user enters an illegal whole
; number, this procedure makes the user re-enter the data.

GetWholeNum proc near
lesi InputLine ;Point es:di at InputLine array.
gets

call Geti ;Get an integer from the line.
jc BadInt ;Carry set if error reading integer.
cmp ax, 0 ;Must have at least one row or column!
jle BadInt
ret

BadInt: print
char Bell
char “Illegal integer value, please re-enter”,cr,lf,0
jmp GetWholeNum

GetWholeNum endp

; Various routines to call for the cross products we compute.
; On entry, AX contains the first operand, dx contains the second.
; These routines return their result in AX.
; They return AX=8000h if an error occurs.
;
; Note that the CrossProduct function calls these routines indirectly.

addition proc far
add ax, dx
jno AddDone ;Check for signed arithmetic overflow.
mov ax, 8000h ;Return 8000h if overflow occurs.

AddDone: ret
addition endp

subtraction proc far
sub ax, dx
jno SubDone
mov ax, 8000h ;Return 8000h if overflow occurs.

SubDone: ret
subtraction endp

multiplication proc far
 imul ax, dx
 jno MulDone
 mov ax, 8000h ;Error if overflow occurs.

MulDone: ret
multiplication endp

division proc far
push cx ;Preserve registers we destory.

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx

mov dx, cx ;Restore the munged register.
pop cx
ret

BadDivide: mov ax, 8000h

Directives and Pseudo Opcodes

Page 439

mov dx, cx
pop cx
ret

division endp

; The following function computes the remainder if the symbol “DoMOD”
; is defined somewhere prior to this point.

ifdef DoMOD
modulo proc far

push cx

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx
mov ax, dx ;Need to put remainder in AX.
mov dx, cx ;Restore the munged registers.
pop cx
ret

BadMod: mov ax, 8000h
mov dx, cx
pop cx
ret

modulo endp
endif

; If you decide to extend the ResultArrays dope vector array, this is a good
; place to define the function for those new arrays.

; The main program that reads the data from the user, calls the appropriate
; routines, and then prints the results.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Prompt the user to enter the number of rows and columns:

GetRows: print
byte “Enter the number of rows for the matrix:”,0

call GetWholeNum
mov Rows, ax

; Okay, read each of the row values from the user:

print
char “Enter values for the row (vertical) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want; multiply this value
; by two since we want an array of words. On return from malloc, es:di
; points at the array allocated on the “heap”. Save away this pointer in
; the “RowArray” variable.
;
; Note the use of the “wp” symbol. This is an equate to “word ptr” appearing
; in the “matrix.a” include file. Also note the use of the address expression
; “RowArray+2” to access the segment portion of the double word pointer.

mov cx, ax
shl cx, 1
malloc
mov wp RowArray, di

Chapter 08

Page 440

mov wp RowArray+2, es

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter row data:”,0

mov ax, Rows ;# of values to read.
call GetArray ;ES:DI still points at array.

; Okay, time to repeat this for the column (horizontal) array.

GetCols: print
byte “Enter the number of columns for the matrix:”,0

call GetWholeNum ;Get # of columns from the user.
mov Columns, ax ;Save away number of columns.

; Okay, read each of the column values from the user:

print
char “Enter values for the column (horz.) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want; multiply this value
; by two since we want an array of words. On return from malloc, es:di
; points at the array allocated on the “heap”. Save away this pointer in
; the “RowArray” variable.

mov cx, ax ;Convert # Columns to # bytes
shl cx, 1 ; by multiply by two.
malloc ;Get the memory.
mov wp ColArray, di ;Save pointer to the
mov wp ColArray+2, es ;columns vector (array).

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter Column data:”,0

mov ax, Columns ;# of values to read.
call GetArray ;ES:DI points at column array.

; Okay, initialize the matrices that will hold the cross products.
; Generate RASize copies of the following code.
; The “repeat” macro repeats the statements between the “repeat” and the “endm”
; directives RASize times. Note the use of the Item symbol to automatically
; generate different indexes for each repetition of the following code.
; The “Item = Item+1” statement ensures that Item will take on the values
; 0, 1, 2, ..., RASize on each repetition of this loop.
;
; Remember, the “repeat..endm” macro copies the statements multiple times
; within the source file, it does not execute a “repeat..until” loop at
; run time. That is, the following macro is equivalent to making “RASize”
; copies of the code, substituting different values for Item for each
; copy.
;
; The nice thing about this code is that it automatically generates the
; proper amount of initialization code, regardless of the number of items
; placed in the ResultArrays array.

Item = 0

Directives and Pseudo Opcodes

Page 441

repeat RASize

mov cx, Columns ;Compute the size, in bytes,
imul cx, Rows ; of the matrix and allocate
add cx, cx ; sufficient storage for the
malloc ; array.

mov wp ResultArrays[Item * (sizeof DopeVec)].Data, di
mov wp ResultArrays[Item * (sizeof DopeVec)].Data+2, es

mov ax, Rows
mov ResultArrays[Item * (sizeof DopeVec)].Dim1, ax

mov ax, Columns
mov ResultArrays[Item * (sizeof DopeVec)].Dim2, ax

mov ResultArrays[Item * (sizeof DopeVec)].ESize, 2

Item = Item+1
endm

; Okay, we’ve got the input values from the user,
; now let’s compute the addition, subtraction, multiplication,
; and division tables. Once again, a macro reduces the amount of
; typing we need to do at this point as well as automatically handling
; however many items are present in the ResultArrays array.

element = 0

repeat RASize
lfs bp, RowArray ;Pointer to row data.
lgs bx, ColArray ;Pointer to column data.

lea cx, ResultArrays[element * (sizeof DopeVec)]
call CrossProduct

element = element+1
endm

; Okay, print the arrays down here. Once again, note the use of the
; repeat..endm macro to save typing and automatically handle additions
; to the ResultArrays array.

Item = 0

repeat RASize
mov si, offset ResultArrays[item * (sizeof DopeVec)]
call PrintMat

Item = Item+1
endm

; Technically, we don’t have to free up the storage malloc’d for each
; of the arrays since the program is about to quit. However, it’s a
; good idea to get used to freeing up all your storage when you’re done
; with it. For example, were you to add code later at the end of this
; program, you would have that extra memory available to that new code.

les di, ColArray
free
les di, RowArray
free

Item = 0
repeat RASize
les di, ResultArrays[Item * (sizeof DopeVec)].Data
free

Chapter 08

Page 442

Item = Item+1
endm

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

8.22.4 GETI.ASM

GETI.ASM contains a routine (geti) that reads an integer value from the user.

; GETI.ASM
;
; This module contains the integer input routine for the matrix
; example in Chapter Eight.

.nolist
include stdlib.a
.list

include matrix.a

InpSeg segment para public ‘input’

; Geti-On entry, es:di points at a string of characters.
; This routine skips any leading spaces and comma characters and then
; tests the first (non-space/comma) character to see if it is a digit.
; If not, this routine returns the carry flag set denoting an error.
; If the first character is a digit, then this routine calls the
; standard library routine “atoi2” to convert the value to an integer.
; It then ensures that the number ends with a space, comma, or zero
; byte.
;
; Returns carry clear and value in AX if no error.
; Returns carry set if an error occurs.
;
; This routine leaves ES:DI pointing at the character it fails on when
; converting the string to an integer. If the conversion occurs without
; an error, the ES:DI points at a space, comma, or zero terminating byte.

geti proc far

ifdef debug
print
char “Inside GETI”,cr,lf,0
endif

; First, skip over any leading spaces or commas.
; Note the use of the “byp” symbol to save having to type “byte ptr”.
; BYP is a text equate appearing in the macros.a file.
; A “byte ptr” coercion operator is required here because MASM cannot
; determine the size of the memory operand (byte, word, dword, etc)
; from the operands. I.e., “es:[di]” and ‘ ‘ could be any of these
; three sizes.
;
; Also note a cute little trick here; by decrementing di before entering

Directives and Pseudo Opcodes

Page 443

; the loop and then immediately incrementing di, we can increment di before
; testing the character in the body of the loop. This makes the loop
; slightly more efficient and a lot more elegant.

dec di
SkipSpcs: inc di

cmp byp es:[di], ‘ ‘
je SkipSpcs
cmp byp es:[di], ‘,’
je SkipSpcs

; See if the first non-space/comma character is a decimal digit:

mov al, es:[di]
cmp al, ‘-’ ;Minus sign is also legal in integers.
jne TryDigit
mov al, es:[di+1] ;Get next char, if “-”

TryDigit: isdigit
jne BadGeti ;Jump if not a digit.

; Okay, convert the characters that follow to an integer:

ConvertNum: atoi2 ;Leaves integer in AX
jc BadGeti ;Bomb if illegal conversion.

; Make sure this number ends with a reasonable character (space, comma,
; or a zero byte):

cmp byp es:[di], ‘ ‘
je GoodGeti
cmp byp es:[di], ‘,’
je GoodGeti
cmp byp es:[di], 0
je GoodGeti

ifdef debug
print
char “GETI: Failed because number did not end with “
char “a space, comma, or zero byte”,cr,lf,0
endif

BadGeti: stc ;Return an error condition.
ret

GoodGeti: clc ;Return no error and an integer in AX
ret

geti endp

InpSeg ends
end

8.22.5 GetArray.ASM

GetArray.ASM contains the GetArray input routine. This reads the data for the array
from the user to produce the cross products. Note that GetArray reads the data for a single
dimension array (or one row in a multidimensional array). The cross product program
reads two such vectors: one for the column values and one for the row values in the cross
product. Note: This routine uses subroutines from the UCR Standard Library that appear
in the next chapter.

; GETARRAY.ASM
;
; This module contains the GetArray input routine. This routine reads a
; set of values for a row of some array.

.386

Chapter 08

Page 444

option segment:use16

.nolist
include stdlib.a
.list

include matrix.a

; Some local variables for this module:

localdseg segment para public ‘LclData’

NumElements word ?
ArrayPtr dword ?

Localdseg ends

InpSeg segment para public ‘input’
assume ds:Localdseg

; GetArray- Read a set of numbers and store them into an array.
;
; On Entry:
;
; es:di points at the base address of the array.
; ax contains the number of elements in the array.
;
; This routine reads the specified number of array elements
; from the user and stores them into the array. If there
; is an input error of some sort, then this routine makes
; the user reenter the data.

GetArray proc far
pusha ;Preserve all the registers
push ds ; that this code modifies
push es
push fs

ifdef debug
print
char “Inside GetArray, # of input values =”,0
puti
putcr
endif

mov cx, Localdseg ;Point ds at our local
mov ds, cx ; data segment.

mov wp ArrayPtr, di ;Save in case we have an
mov wp ArrayPtr+2, es ; error during input.
mov NumElements, ax

; The following loop reads a line of text from the user containing some
; number of integer values. This loop repeats if the user enters an illegal
; value on the input line.
;
; Note: LESI is a macro from the stdlib.a include file. It loads ES:DI
; with the address of its operand (as opposed to les di, InputLine that would
; load ES:DI with the dword value at address InputLine).

RetryLp: lesi InputLine ;Read input line from user.
gets
mov cx, NumElements ;# of values to read.
lfs si, ArrayPtr ;Store input values here.

; This inner loop reads “ax” integers from the input line. If there is
; an error, it transfers control to RetryLp above.

ReadEachItem: call geti ;Read next available value.

Directives and Pseudo Opcodes

Page 445

jc BadGA
mov fs:[si], ax ;Save away in array.
add si, 2 ;Move on to next element.
loop ReadEachItem ;Repeat for each element.

pop fs ;Restore the saved registers
pop es ; from the stack before
pop ds ; returning.
popa
ret

; If an error occurs, make the user re-enter the data for the entire
; row:

BadGA: print
char “Illegal integer value(s).”,cr,lf
char “Re-enter data:”,0
jmp RetryLp

getArray endp

InpSeg ends
end

8.22.6 XProduct.ASM

This file contains the code that computes the actual cross-product.

; XProduct.ASM-
;
; This file contains the cross-product module.

.386
option segment:use16

.nolist
include stdlib.a
includelib stdlib.lib
.list

include matrix.a

; Local variables for this module.

dseg segment para public ‘data’
DV dword ?
RowNdx integer ?
ColNdx integer ?
RowCntr integer ?
ColCntr integer ?
dseg ends

cseg segment para public ‘code’
assume ds:dseg

; CrossProduct- Computes the cartesian product of two vectors.
;
; On entry:
;
; FS:BP-Points at the row matrix.
; GS:BX-Points at the column matrix.
; DS:CX-Points at the dope vector for the destination.
;
; This code assume ds points at dseg.
; This routine only preserves the segment registers.

RowMat textequ <fs:[bp]>
ColMat textequ <gs:[bx]>

Chapter 08

Page 446

DVP textequ <ds:[bx].DopeVec>

CrossProduct proc near

ifdef debug
print
char “Entering CrossProduct routine”,cr,lf,0
endif

xchg bx, cx ;Get dope vector pointer
mov ax, DVP.Dim1 ;Put Dim1 and Dim2 values
mov RowCntr, ax ; where they are easy to access.
mov ax, DVP.Dim2
mov ColCntr, ax
xchg bx, cx

; Okay, do the cross product operation. This is defined as follows:
;
; for RowNdx := 0 to NumRows-1 do
; for ColNdx := 0 to NumCols-1 do
; Result[RowNdx, ColNdx] = Row[RowNdx] op Col[ColNdx];

mov RowNdx, -1 ;Really starts at zero.
OutsideLp: add RowNdx, 1

mov ax, RowNdx
cmp ax, RowCntr
jge Done

mov ColNdx, -1 ;Really starts at zero.
InsideLp: add ColNdx, 1

mov ax, ColNdx
cmp ax, ColCntr
jge OutSideLp

mov di, RowNdx
add di, di
mov ax, RowMat[di]

mov di, ColNdx
add di, di
mov dx, ColMat[di]

push bx ;Save pointer to column matrix.
mov bx, cx ;Put ptr to dope vector where we can

; use it.

call DVP.Func ;Compute result for this guy.

mov di, RowNdx ;Index into array is
imul di, DVP.Dim2 ; (RowNdx*Dim2 + ColNdx) * ElementSize
add di, ColNdx
imul di, DVP.ESize

les bx, DVP.Data ;Get base address of array.
mov es:[bx][di], ax ;Save away result.

pop bx ;Restore ptr to column array.
jmp InsideLp

Done: ret
CrossProduct endp
cseg ends

end

Directives and Pseudo Opcodes

Page 447

8.23 Laboratory Exercises

In this set of laboratory exercises you will assemble various short programs, produce
assembly listings, and observe the object code the assembler produces for some simple
instruction sequences. You will also experiment with a make file to observe how it prop-
erly handles dependencies.

8.23.1 Near vs. Far Procedures

The following short program demonstrates how MASM automatically generates near
and far call and ret instructions depending on the operand field of the proc directive (this
program is on the companion CD-ROM in the chapter eight subdirectory).

Assemble this program with the /Fl option to produce an assembly listing. Look up
the opcodes for near and far call and ret instructions in Appendix D. Compare those val-
ues against the opcodes this program emits. For your lab report: describe how MASM fig-
ures out which instructions need to be near or far. Include the assembled listing with your
report and identify which instructions are near or far calls and returns.

; EX8_1.asm (Laboratory Exercise 8.1)

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Procedure1 proc near

; MASM will emit a *far* call to procedure2
; since it is a far procedure.

call Procedure2

; Since this return instruction is inside
; a near procedure, MASM will emit a near
; return.

ret
Procedure1 endp

Procedure2 proc far

; MASM will emit a *near* call to procedure1
; since it is a near procedure.

call Procedure1

; Since this return instruction is inside
; a far procedure, MASM will emit a far
; return.

ret
Procedure2 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; MASM emits the appropriate call instructions
; to the following procedures.

call Procedure1
call Procedure2

Quit: mov ah, 4ch

Chapter 08

Page 448

int 21h
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

end Main

8.23.2 Data Alignment Exercises

In this exercise you will compile two different programs using the MASM “/Fl” com-
mand line option so you can observe the addresses MASM assigns to the variables in the
program. The first program (Ex8_2a.asm) uses the even directive to align objects on a
word boundary. The second program (Ex8_2b.asm) uses the align directive to align objects
on different sized boundaries. For your lab report: Include the assembly listings in your
lab report. Describe what the even and align directives are doing in the program and com-
ment on how this produces faster running programs.

; EX8_2a.asm
;
; Example demonstrating the EVEN directive.

dseg segment

; Force an odd location counter within
; this segment:

i byte 0

; This word is at an odd address, which is bad!

j word 0

; Force the next word to align itself on an
; even address so we get faster access to it.

even
k word 0

; Note that even has no effect if we're already
; at an even address.

even
l word 0
dseg ends

cseg segment
assume ds:dseg

procedure proc
mov ax, [bx]
mov i, al
mov bx, ax

; The following instruction would normally lie on
; an odd address. The EVEN directive inserts a
; NOP so that it falls on an even address.

even
mov bx, cx

; Since we're already at an even address, the
; following EVEN directive has no effect.

even
mov dx, ax

Directives and Pseudo Opcodes

Page 449

ret
procedure endp
cseg ends

end

; EX8_2b.asm
;
; Example demonstrating the align
; directive.

dseg segment

; Force an odd location counter
; within this segment:

i byte 0

; This word is at an odd address,
; which is bad!

j word 0

; Force the next word to align itself
; on an even address so we get faster
; access to it.

align 2
k word 0

; Force odd address again:

k_odd byte 0

; Align the next entry on a double
; word boundary.

align 4
l dword 0

; Align the next entry on a quad
; word boundary:

align 8
RealVar real8 3.14159

; Start the following on a paragraph
; boundary:

align 16
Table dword 1,2,3,4,5
dseg ends

end

8.23.3 Equate Exercise

In this exercise you will discover a major difference between a numeric equate and a
textual equate (program Ex8_3.asm on the companion CD-ROM). MASM evaluates the
operand field of a numeric equate when it encounters the equate. MASM defers evalua-
tion of a textual equate until it expands the equate (i.e., when you use the equate in a pro-
gram). For your lab report: assemble the following program using MASM’s “/Fl”
command line option and look at the object code emitted for the two equates. Explain

Chapter 08

Page 450

why the instruction operands are different even though the two equates are nearly identi-
cal.

; Ex8_3.asm
;
; Comparison of numeric equates with textual equates
; and the differences they produce at assembly time.
;
cseg segment
equ1 equ $+2 ;Evaluates "$" at this stmt.
equ2 equ <$+2> ;Evaluates "$" on use.
MyProc proc

mov ax, 0
lea bx, equ1
lea bx, equ2
lea bx, equ1
lea bx, equ2

MyProc endp
cseg ends

end

8.23.4 IFDEF Exercise

In this exercise, you will assemble a program that uses conditional assembly and
observe the results. The Ex8_4.asm program uses the ifdef directive to test for the presence
of DEBUG1 and DEBUG2 symbols. DEBUG1 appears in this program while DEBUG2 does
not. For your lab report: assemble this code using the “/Fl” command line parameter.
Include the listing in your lab report and explain the actions of the ifdef directives.

; Ex8_4.asm
;
; Demonstration of IFDEF to control
; debugging features. This code
; assumes there are two levels of
; debugging controlled by the two
; symbols DEBUG1 and DEBUG2. In
; this code example DEBUG1 is
; defined while DEBUG2 is not.

.xlist
include stdlib.a
.list
.nolistmacro
.listif

DEBUG1 = 0

cseg segment
DummyProc proc

ifdef DEBUG2
print
byte "In DummyProc"
byte cr,lf,0
endif
ret

DummyProc endp

Main proc
ifdef DEBUG1
print
byte "Calling DummyProc"
byte cr,lf,0
endif

call DummyProc

ifdef DEBUG1

Directives and Pseudo Opcodes

Page 451

print
byte "Return from DummyProc"
byte cr,lf,0
endif
ret

Main endp
cseg ends

end

8.23.5 Make File Exercise

In this exercise you will experiment with a make file to see how nmake.exe chooses
which files to reassemble. In this exercise you will be using the Ex8_5a.asm, Ex8_5b.asm,
Ex8_5.a, and Ex8_5.mak files found in the Chapter Eight subdirectory on the companion
CD-ROM. Copy these files to a local subdirectory on your hard disk (if they are not
already there). These files contain a program that reads a string of text from the user and
prints out any vowels in the input string. You will make minor changes to the .asm and .a
files and run the make file and observe the results.

The first thing you should do is assemble the program and create up to date .exe and
.obj files for the project. You can do this with the following DOS command:

nmake Ex8_5.mak

Assuming that the .obj and .exe files were not already present in the current directory, the
nmake command above will assemble and link the Ex8_5a.asm and Ex8_5b.asm files pro-
ducing the Ex8.exe executable.

Using the editor, make a minor change (such as inserting a single space on a line con-
taining a comment) to the Ex8_5a.asm file. Execute the above nmake command. Record
what the make file does in your lab report.

Next, make a minor change to the Ex8_5b.asm file. Run the above nmake command
and record the result in your lab report. Explain the results.

Finally, make a minor change to the Ex8_5.a file. Run the nmake command and
describe the results in your lab report.

For your lab report: explain how the changes to each of the files above affects the
make operation. Explain why nmake does what it does. For additional credit: Try delet-
ing (one at a time) the Ex8_5a.obj, Ex8_5b.obj, and Ex8_5.exe files and run the nmake com-
mand. Explain why nmake does what it does when you individually delete each of these
files.

Ex8_5.mak makefile:

ex8_5.exe: ex8_5a.obj ex8_5b.obj
 ml /Feex8_5.exe ex8_5a.obj ex8_5b.obj

ex8_5a.obj: ex8_5a.asm ex8_5.a
 ml /c ex8_5a.asm

ex8_5b.obj: ex8_5b.asm ex8_5.a
 ml /c ex8_5b.asm

Ex8_5.a Header File:

; Header file for Ex8_5 project.
; This file includes the EXTERNDEF
; directive which makes the PrintVowels
; name public/external. It also includes
; the PrtVowels macro which lets us call
; the PrintVowels routine in a manner
; similar to the UCR Standard Library

Chapter 08

Page 452

; routines.

externdef PrintVowels:near

PrtVowels macro
call PrintVowels
endm

Ex8_5a.asm source file:

; Ex8_5a.asm
;
; Randall Hyde
; 2/7/96
;
; This program reads a string of symbols from the
; user and prints the vowels. It demonstrates the use of
; make files

.xlist
include stdlib.a
includelib stdlib.lib
.list

; The following include file brings in the external
; definitions of the routine(s) in the Lab6x10b
; module. In particular, it gives this module
; access to the "PrtVowels" routine found in
; Lab8_5b.asm.

include Ex8_5.a

cseg segment para public 'code'

Main proc

meminit

; Read a string from the user, print all the vowels
; present in that string, and then free up the memory
; allocated by the GETSM routine:

print
byte "I will find all your vowels"
byte cr,lf
byte "Enter a line of text: ",0

getsm
print
byte "Vowels on input line: ",0
PrtVowels
putcr
free

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)

Directives and Pseudo Opcodes

Page 453

zzzzzzseg ends
end Main

8.24 Programming Projects

1) Write a program that inputs two 4x4 integer matrices from the user and compute their
matrix product. The matrix multiply algorithm (computing C := A * B) is

for i := 0 to 3 do
for j := 0 to 3 do begin

c[i,j] := 0;
for k := 0 to 3 do
 c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Feel free to use the ForLp and Next macros from Chapter Six.
2) Modify the sample program (“Sample Program” on page 432) to use the FORLP and

NEXT macros provided in the textbook. Replace all for loop simulations in the program
with the corresponding macros.

3) Write a program that asks the user to input three integer values, m, p, and n. This program
should allocate storage for three arrays: A[0..m-1, 0..p-1], B[0..p-1, 0..n-1], and C[0..m-1,
0..n-1]. The program should then read values for arrays A and B from the user. Next, this
program should compute the matrix product of A and B using the algorithm:

for i := 0 to m-1 do
for j := 0 to n-1 do begin

c[i,j] := 0;
for k := 0 to p-1 do
 c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Finally, the program should print arrays A, B, and C. Feel free to use the ForLp and Next
macro given in this chapter. You should also take a look at the sample program (see “Sam-
ple Program” on page 432) to see how to dynamically allocate storage for arrays and
access arrays whose dimensions are not known until run time.

4) The ForLp and Next macros provide in this chapter only increment their loop control vari-
able by one on each iteration of the loop. Write a new macro, ForTo, that lets you specify
an increment constant. Increment the loop control variable by this constant on each itera-
tion of the for loop. Write a program to demonstrate the use of this macro. Hint: you will
need to create a global label to pass the increment information to the NEXT macro, or you
will need to perform the increment operation inside the ForLp macro.

5) Write a third version for ForLp and Next (see Program #7 above) that lets you specify neg-
ative increments (like the for..downto statement in Pascal). Call this macro ForDT
(for..downto).

8.25 Summary

This chapter introduced several assembler directives and pseudo-opcodes supported
by MASM. This chapter, by no means, is a complete description of what MASM has to
offer. It does provide enough information to get you going.

Assembly language statements are free format and there is usually one statement per
line in your source file. Although MASM allows free format input, you should carefully
structure your source files to make them easier to read.

• See “Assembly Language Statements” on page 355.

Chapter 08

Page 454

MASM keeps track of the offset of an instruction or variable in a segment using the
location counter. MASM increments the location counter by one for each byte of object code
it writes to the output file.

• See “The Location Counter” on page 357.

Like HLLs, MASM lets you use symbolic names for variables and statement labels.
Dealing with symbols is much easier than numeric offsets in an assembly language pro-
gram. MASM symbols look a whole lot like their HLL with a few extensions.

• See “Symbols” on page 358

MASM provides several different types of literal constants including binary, decimal,
and hexadecimal integer constants, string constants, and text constants.

• See “Literal Constants” on page 359.
• See “Integer Constants” on page 360.
• See “String Constants” on page 361.
• See “Text Constants” on page 362.

To help you manipulate segments within your program, MASM provides the seg-
ment/ends directives. With the segment directive you can control the loading order and
alignment of modules in memory.

• See “Segments” on page 366.
• See “Segment Names” on page 367.
• See “Segment Loading Order” on page 368.
• See “Segment Operands” on page 369.
• See “The CLASS Type” on page 374.
• See “Typical Segment Definitions” on page 376.
• See “Why You Would Want to Control the Loading Order” on page 376.

MASM provides the proc/endp directives for declaring procedures within your assem-
bly language programs. Although not strictly necessary, the proc/endp directives make
your programs much easier to read and maintain. The proc/endp directives also let you use
local statement names within your procedures.

• See “Procedures” on page 365.

Equates let you define symbolic constants of various sorts in your program. MASM
provides three directives for defining such constants: “=”, equ, and textequ. As with HLLs,
the judicious use of equates can help make your program easier to read.

• See “Declaring Manifest Constants Using Equates” on page 362.

As you saw in Chapter Four, MASM gives you the ability to declare variables in the
data segment using the byte, word, dword and other directives. MASM is a strongly typed
assembler and attaches a type as well as a location to variable names (most assemblers
only attach a location). This helps MASM locate obscure bugs in your program.

• See “Variables” on page 384.
• See“Label Types” on page 385.
• See “How to Give a Symbol a Particular Type” on page 385.
• See “Label Values” on page 386.
• See “Type Conflicts” on page 386.

MASM supports address expressions that let you use arithmetic operators to build con-
stant address values at assembly time. It also lets you override the type of an address
value and extract various pieces of information about a symbol. This is very useful for
writing maintainable programs.

• See “Address Expressions” on page 387.
• See “Symbol Types and Addressing Modes” on page 387.
• See “Arithmetic and Logical Operators” on page 388.
• See “Coercion” on page 390.
• See “Type Operators” on page 392.

Directives and Pseudo Opcodes

Page 455

• See “Operator Precedence” on page 396.

MASM provides several facilities for telling the assembler which segment associates
with which segment register. It also gives you the ability to override a default choice. This
lets your program manage several segments at once with a minimum of fuss.

• See “Segment Prefixes” on page 377.
• See “Controlling Segments with the ASSUME Directive” on page 377.

MASM provides you with a “conditional assembly” capability that lets you choose
which segments of code are actually assembled during the assembly process. This is use-
ful for inserting debugging code into your programs (that you can easily remove with a
single statement) and for writing programs that need to run in different environments (by
inserting and removing different sections of code).

• See “Conditional Assembly” on page 397.
• See “IF Directive” on page 398.
• See “IFE directive” on page 399.
• See “IFDEF and IFNDEF” on page 399.
• See “IFB, IFNB” on page 399.
• See “IFIDN, IFDIF, IFIDNI, and IFDIFI” on page 400.

MASM, living up to its name, provides a powerful macro facility. Macros are sections
of code you can replicate by simply placing the macro’s name in your code. Macros, prop-
erly used, can help you write shorter, easier to read, and more robust programs. Alas,
improperly used, macros produce hard to maintain, inefficient programs.

• See “Macros” on page 400.
• See “Procedural Macros” on page 400.
• See “The LOCAL Directive” on page 406.
• See“The EXITM Directive” on page 406.
• See “Macros: Good and Bad News” on page 419.
• See “Repeat Operations” on page 420.

MASM provides several directives you can use to produce “assembled listings” or
print-outs of your program with lots of assembler generated (useful!) information. These
directives let you turn on and off the listing operation, display information on the display
during assembly, and set titles on the output.

• See “Controlling the Listing” on page 424.
• See “The ECHO and %OUT Directives” on page 424.
• See “The TITLE Directive” on page 424.
• See “The SUBTTL Directive” on page 424.
• See “The PAGE Directive” on page 424.
• See “The .LIST, .NOLIST, and .XLIST Directives” on page 425.
• See “Other Listing Directives” on page 425.

To handle large projects (“Programming in the Large”) requires separate compilation
(or separate assembly in MASM’s case). MASM provides several directives that let you
merge source files during assembly, separately assemble modules, and communicate pro-
cedure and variables names between the modules.

• See “Managing Large Programs” on page 425.
• See “The INCLUDE Directive” on page 426.
• See “The PUBLIC, EXTERN, and EXTRN Directives” on page 427.
• See “The EXTERNDEF Directive” on page 428.

Chapter 08

Page 456

8.26 Questions

1) What is the difference between the following instruction sequences?

MOV AX, VAR+1

and MOV AX, VAR
 INC AX

2) What is the source line format for an assembly language statement?

3) What is the purpose of the ASSUME directive?

4) What is the location counter?

 5) Which of the following symbols are valid?

a) ThisIsASymbol b) This_Is_A_Symbol

c) This.Is.A.Symbol d) .Is_This_A_Symbol?

e) ________________ f) @_$?_To_You

g) 1WayToGo h) %Hello

i) F000h j) ?A_0$1

 k) $1234 l) Hello there

6) How do you specify segment loading order?

7) What is the type of the symbols declared by the following statements?

a)symbol1 equ 0
b)symbol2:
c)symbol3 proc
d)symbol4 db ?
e)symbol5 dw ?
f)symbol6 proc far
g)symbol7 equ this word
h)symbol8 equ byte ptr symbol7
i)symbol9 dd ?
j)symbol10 macro
k)symbol11 segment para public 'data'
l)symbol12 equ this near
m)symbol13 equ 'ABCD'
n)symbol14 equ <MOV AX, 0>

8) Which of the symbols in question 7 are not assigned the current location counter value?

9) Explain the purpose of the following operators:

a) PTR b) SHORT c) THIS d) HIGH e) LOW

f) SEG g) OFFSET

 10) What is the difference between the values loaded into the BX register (if any) in the fol-
lowing code sequence?

mov bx, offset Table
lea bx, Table

11) What is the difference between the REPEAT macro and the DUP operator?

12) In what order will the following segments be loaded into memory?

CSEG segment para public 'CODE'
…

CSEG ends
DSEG segment para public 'DATA'

…
DSEG ends
ESEG segment para public 'CODE'

…

Directives and Pseudo Opcodes

Page 457

ESEG ends

13) Which of the following address expressions do not produce the same result as the others:

a) Var1[3][5] b) 15[Var1] c) Var1[8] d) Var1+2[6]

e) Var1*3*5 f) Var1+3+5

Chapter 08

Page 458

