

Page 1153

The PC Keyboard Chapter 20

The PC’s keyboard is the primary human input device on the system. Although it seems rather mun-
dane, the keyboard is the primary input device for most software, so learning how to program the key-
board properly is very important to application developers.

IBM and countless keyboard manufacturers have produced numerous keyboards for PCs and com-
patibles. Most modern keyboards provide at least 101 different keys and are reasonably compatible with
the IBM PC/AT 101 Key Enhanced Keyboard. Those that do provide extra keys generally program those
keys to emit a sequence of other keystrokes or allow the user to program a sequence of keystrokes on the
extra keys. Since the 101 key keyboard is ubiquitous, we will assume its use in this chapter.

When IBM first developed the PC, they used a very simple interface between the keyboard and the
computer. When IBM introduced the PC/AT, they completely redesigned the keyboard interface. Since the
introduction of the PC/AT, almost every keyboard has conformed to the PC/AT standard. Even when IBM
introduced the PS/2 systems, the changes to the keyboard interface were minor and upwards compatible
with the PC/AT design. Therefore, this chapter will also limit its attention to PC/AT compatible devices
since so few PC/XT keyboards and systems are still in use.

There are five main components to the keyboard we will consider in this chapter – basic keyboard
information, the DOS interface, the BIOS interface, the int 9 keyboard interrupt service routine, and the
hardware interface to the keyboard. The last section of this chapter will discuss how to fake keyboard
input into an application.

20.1 Keyboard Basics

The PC’s keyboard is a computer system in its own right. Buried inside the keyboards case is an 8042
microcontroller chip that constantly scans the switches on the keyboard to see if any keys are down. This
processing goes on in parallel with the normal activities of the PC, hence the keyboard never misses a key-
stroke because the 80x86 in the PC is busy.

A typical keystroke starts with the user pressing a key on the keyboard. This closes an electrical con-
tact in the switch so the microcontroller and sense that you’ve pressed the switch. Alas, switches (being
the mechanical things that they are) do not always close (make contact) so cleanly. Often, the contacts
bounce off one another several times before coming to rest making a solid contact. If the microcontroller
chip reads the switch constantly, these bouncing contacts will look like a very quick series of key presses
and releases. This could generate

multiple

 keystrokes to the main computers, a phenomenon known as

keybounce

, common to many cheap and old keyboards. But even on the most expensive and newest key-
boards, keybounce is a problem if you look at the switch a million times a second; mechanical switches
simply cannot settle down that quickly. Most keyboard scanning algorithms, therefore, control how often
they scan the keyboard. A typical inexpensive key will settle down within five milliseconds, so if the key-
board scanning software only looks at the key every ten milliseconds, or so, the controller will effectively
miss the keybounce

1

.

Simply noting that a key is pressed is not sufficient reason to generate a key code. A user may hold a
key down for many tens of milliseconds before releasing it. The keyboard controller must not generate a
new key sequence every time it scans the keyboard and finds a key held down. Instead, it should generate
a single key code value when the key goes from an up position to the down position (a

down key

 opera-
tion). Upon detecting a down key stroke, the microcontroller sends a keyboard

scan code

 to the PC. The
scan code is

not

 related to the ASCII code for that key, it is an arbitrary value IBM chose when they first
developed the PC’s keyboard.

1. A typical user cannot type 100 characters/sec nor reliably press a key for less than 1/50th of a second, so scanning the keyboard at 10 msec inter-
vals will not lose any keystrokes.

Thi d t t d ith F M k 4 0 2

Chapter 20

Page 1154

The PC keyboard actually generates

two

 scan codes for every key you press. It generates a

down
code

 when you press a key and an

up code

 when you release the key. The 8042 microcontroller chip
transmits these scan codes to the PC where they are processed by the keyboard’s interrupt service routine.
Having separate up and down codes is important because certain keys (like shift, control, and alt) are only
meaningful when held down. By generating up codes for all the keys, the keyboard ensures that the key-
board interrupt service routine knows which keys are pressed while the user is holding down one of these

modifier

 keys. The following table lists the scan codes that the keyboard microcontroller transmits to the
PC:

The keys in italics are found on the numeric keypad. Note that certain keys transmit two or more scan
codes to the system. The keys that transmit more than one scan code were new keys added to the key-
board when IBM designed the 101 key enhanced keyboard.

Table 72: PC Keyboard Scan Codes (in hex)

Key Down Up Key Down Up Key Down Up Key Down Up

Esc 1 81 [{ 1A 9A , < 33 B3

center

4C CC

1 ! 2 82] } 1B 9B . > 34 B4

right

4D CD

2 @ 3 83 Enter 1C 9C / ? 35 B5

+

4E CE

3 # 4 84 Ctrl 1D 9D R shift 36 B6

end

4F CF

4 $ 5 85 A 1E 9E * PrtSc 37 B7

down

50 D0

5 % 6 86 S 1F 9F alt 38 B8

pgdn

51 D1

6 ^ 7 87 D 20 A0 space 39 B9

ins

52 D2

7 & 8 88 F 21 A1 CAPS 3A BA

del

53 D3

8 * 9 89 G 22 A2 F1 3B BB

/

E0 35 B5

9 (0A 8A H 23 A3 F2 3C BC

enter

E0 1C 9C

0) 0B 8B J 24 A4 F3 3D BD F11 57 D7

- _ 0C 8C K 25 A5 F4 3E BE F12 58 D8

= + 0D 8D L 26 A6 F5 3F BF ins E0 52 D2

Bksp 0E 8E ; : 27 A7 F6 40 C0 del E0 53 D3

Tab 0F 8F ‘ “ 28 A8 F7 41 C1 home E0 47 C7

Q 10 90 ` ~ 29 A9 F8 42 C2 end E0 4F CF

W 11 91 L shift 2A AA F9 43 C3 pgup E0 49 C9

E 12 92 \ | 2B AB F10 44 C4 pgdn E0 51 D1

R 13 93 Z 2C AC NUM 45 C5 left E0 4B CB

T 14 94 X 2D AD SCRL 46 C6 right E0 4D CD

Y 15 95 C 2E AE

home

47 C7 up E0 48 C8

U 16 96 V 2F AF

up

48 C8 down E0 50 D0

I 17 97 B 30 B0

pgup

49 C9 R alt E0 38 B8

O 18 98 N 31 B1

-

4A CA R ctrl E0 1D 9D

P 19 99 M 32 B2

left

4B CB Pause E1 1D
45 E1
9D C5

-

The PC Keyboard

Page 1155

When the scan code arrives at the PC, a second microcontroller chip receives the scan code, does a
conversion on the scan code

2

, makes the scan code available at I/O port 60h, and then interrupts the pro-
cessor and leaves it up to the keyboard ISR to fetch the scan code from the I/O port.

The keyboard (int 9) interrupt service routine reads the scan code from the keyboard input port and
processes the scan code as appropriate. Note that the scan code the system receives from the keyboard
microcontroller is a single value, even though some keys on the keyboard represent up to four different
values. For example, the “A” key on the keyboard can produce A, a, ctrl-A, or alt-A. The actual code the
system yields depends upon the current state of the modifier keys (shift, ctrl, alt, capslock, and numlock).
For example, if an A key scan code comes along (1Eh) and the shift key is down, the system produces the
ASCII code for an uppercase A. If the user is pressing

multiple

 modifier keys the system prioritizes them
from low to high as follows:

• No modifier key down
• Numlock/Capslock (same precedence, lowest priority)
• shift
• ctrl
• alt (highest priority)

Numlock and capslock affect different sets of keys

3

, so there is no ambiguity resulting from their equal
precedence in the above chart. If the user is pressing two modifier keys at the same time, the system only
recognizes the modifier key with the highest priority above. For example, if the user is pressing the ctrl
and alt keys at the same time, the system only recognizes the alt key. The numlock, capslock, and shift
keys are a special case. If numlock or capslock is active, pressing the shift key makes it inactive. Likewise,
if numlock or capslock is inactive, pressing the shift key effectively “activates” these modifiers.

Not all modifiers are legal for every key. For example, ctrl-8 is not a legal combination. The keyboard
interrupt service routine ignores all keypresses combined with illegal modifier keys. For some unknown
reason, IBM decided to make certain key combinations legal and others illegal. For example, ctrl-left and
ctrl-right are legal, but ctrl-up and ctrl-down are not. You’ll see how to fix this problem a little later.

The shift, ctrl, and alt keys are

active

 modifiers. That is, modification to a keypress occurs only while
the user holds down one of these modifier keys. The keyboard ISR keeps track of whether these keys are
down or up by setting an associated bit upon receiving the down code and clearing that bit upon receiving
the up code for shift, ctrl, or alt. In contrast, the numlock, scroll lock, and capslock keys are

toggle

 modifi-
ers

4

. The keyboard ISR inverts an associated bit every time it sees a down code followed by an up code for
these keys.

Most of the keys on the PC’s keyboard correspond to ASCII characters. When the keyboard ISR
encounters such a character, it translates it to a 16 bit value whose L.O. byte is the ASCII code and the H.O.
byte is the key’s scan code. For example, pressing the “A” key with no modifier, with shift, and with con-
trol produces 1E61h, 1E41h, and 1E01h, respectively (“a”, “A”, and ctrl-A). Many key sequences do not
have corresponding ASCII codes. For example, the function keys, the cursor control keys, and the alt key
sequences do not have corresponding ASCII codes. For these special

extended

 code, the keyboard ISR
stores a zero in the L.O. byte (where the ASCII code typically goes) and the extended code goes in the
H.O. byte. The extended code is usually, though certainly not always, the scan code for that key.

The only problem with this extended code approach is that the value zero is a legal ASCII character
(the NUL character). Therefore, you cannot directly enter NUL characters into an application. If an applica-
tion must input NUL characters, IBM has set aside the extended code 0300h (ctrl-3) for this purpose. You
application must explicitly convert this extended code to the NUL character (actually, it need only recog-

2. The keyboard doesn’t actually transmit the scan codes appearing in the previous table. Instead, it transmits its own scan code that the PC’s micro-
controller translates to the scan codes in the table. Since the programmer never sees the native scan codes so we will ignore them.
3. Numlock only affects the keys on the numeric keypad, capslock only affects the alphabetic keys.
4. It turns out the INS key is also a toggle modifier, since it toggles a bit in the BIOS variable area. However, INS also returns a scan code, the other
modifiers do not.

Chapter 20

Page 1156

nize the H.O. value 03, since the L.O. byte already is the NUL character). Fortunately, very few programs
need to allow the input of the NUL character from the keyboard, so this problem is rarely an issue.

The following table lists the scan and extended key codes the keyboard ISR generates for applications
in response to a keypress with various modifiers. Extended codes are in italics. All other values (except the
scan code column) represent the L.O. eight bits of the 16 bit code. The H.O. byte comes from the scan
code column.

Table 73: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift
Caps

Shift
Num

Esc 01 1B 1B 1B 1B 1B 1B 1B

1 ! 02 31 21

7800

31 31 31 31

2 @ 03 32 40

0300 7900

32 32 32 32

3 # 04 33 23

7A00

33 33 33 33

4 $ 05 34 24

7B00

34 34 34 34

5 % 06 35 25

7C00

35 35 35 35

6 ^ 07 36 5E 1E

7D00

36 36 36 36

7 & 08 37 26

7E00

37 37 37 37

8 * 09 38 2A

7F00

38 38 38 38

9 (0A 39 28

8000

39 39 39 39

0) 0B 30 29

8100

30 30 30 30

- _ 0C 2D 5F 1F

8200

2D 2D 5F 5F

= + 0D 3D 2B

8300

3D 3D 2B 2B

Bksp 0E 08 08 7F 08 08 08 08

Tab 0F 09

0F00

09 09

0F00 0F00

Q 10 71 51 11

1000

71 51 71 51

W 11 77 57 17

1100

77 57 77 57

E 12 65 45 05

1200

65 45 65 45

R 13 72 52 12

1300

72 52 72 52

T 14 74 54 14

1400

74 54 74 54

Y 15 79 59 19

1500

79 59 79 59

U 16 75 55 15

1600

75 55 75 55

I 17 69 49 09

1700

69 49 69 49

O 18 6F 4F 0F

1800

6F 4F 6F 4F

P 19 70 50 10

1900

70 50 70 50

[{ 1A 5B 7B 1B 5B 5B 7B 7B

] } 1B 5D 7D 1D 5D 5D 7D 7D

enter 1C 0D 0D 0A 0D 0D 0A 0A

ctrl 1D

A 1E 61 41 01

1E00

61 41 61 41

S 1F 73 53 13

1F00

73 53 73 53

D 20 64 44 04

2000

64 44 64 44

F 21 66 46 06

2100

66 46 66 46

G 22 67 47 07

2200

67 47 67 47

H 23 68 48 08

2300

68 48 68 48

J 24 6A 4A 0A

2400

6A 4A 6A 4A

K 25 6B 4B 0B

2500

6B 4B 6B 4B

L 26 6C 4C 0C

2600

6C 4C 6C 4C

; : 27 3B 3A 3B 3B 3A 3A

‘ “ 28 27 22 27 27 22 22

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift
Caps

Shift
Num

The PC Keyboard

Page 1157

a. For the alphabetic characters, if capslock is active then see the shift-capslock column.
b. Pressing the PrtSc key does not produce a scan code. Instead, BIOS executes an int 5 instruction which
should print the screen.
c. This is the control-P character that will activate the printer under MS-DOS.
d. This is the minus key on the keypad.
e. This is the plus key on the keypad.

` ~ 29 60 7E 60 60 7E 7E

Lshift 2A

\ | 2B 5C 7C 1C 5C 5C 7C 7C

Z 2C 7A 5A 1A

2C00

7A 5A 7A 5A

X 2D 78 58 18

2D00

78 58 78 58

C 2E 63 43 03

2E00

63 43 63 43

V 2F 76 56 16

2F00

76 56 76 56

B 30 62 42 02

3000

62 42 62 42

N 31 6E 4E 0E

3100

6E 4E 6E 4E

M 32 6D 4D 0D

3200

6D 4D 6D 4D

, < 33 2C 3C 2C 2C 3C 3C

. > 34 2E 3E 2E 2E 3E 3E

/ ? 35 2F 3F 2F 2F 3F 3F

Rshift 36

* PrtSc 37 2A INT 5

b

10

c

2A 2A INT 5 INT 5

alt 38

space 39 20 20 20 20 20 20 20

caps 3A

F1 3B

3B00 5400 5E00 6800 3B00 3B00 5400 5400

F2 3C

3C00 5500 5F00 6900 3C00 3C00 5500 5500

F3 3D

3D00 5600 6000 6A00 3D00 3D00 5600 5600

F4 3E

3E00 5700 6100 6B00 3E00 3E00 5700 5700

F5 3F

3F00 5800 6200 6C00 3F00 3F00 5800 5800

F6 40

4000 5900 6300 6D00 4000 4000 5900 5900

F7 41

4100 5A00 6400 6E00 4100 4100 5A00 5A00

F8 42

4200 5B00 6500 6F00 4200 4200 5B00 5B00

F9 43

4300 5C00 6600 7000 4300 4300 5C00 5C00

F10 44

4400 5D00 6700 7100 4400 4400 5D00 5D00

num 45

scrl 46

home 47

4700

37

7700

37 4700 37 4700

up 48

4800

38 38 4800 38 4800

pgup 49

4900

39

8400

39 4900 39 4900

-

d

4A 2D 2D 2D 2D 2D 2D

left 4B

4B00

34

7300

34 4B00 34 4B00

center 4C

4C00

35 35 4C00 35 4C00

right 4D

4D00

36

7400

36 4D00 36 4D00

+

e

4E 2B 2B 2B 2B 2B 2B

end 4F

4F00

31

7500

31 4F00 31 4F00

down 50

5000

32 32 5000 32 5000

pgdn 51

5100

33

7600

33 5100 33 5100

ins 52

5200

30 30 5200 30 5200

del 53

5300

2E 2E 5300 2E 5300

Table 73: Keyboard Codes (in hex)

Key Scan
Code

ASCII Shift

a

Ctrl Alt Num Caps Shift
Caps

Shift
Num

Key Scan
Code

ASCII Shift Ctrl Alt Num Caps Shift
Caps

Shift
Num

Chapter 20

Page 1158

The 101-key keyboards generally provide an enter key and a “/” key on the numeric keypad. Unless
you write your own int 9 keyboard ISR, you will not be able to differentiate these keys from the ones on
the main keyboard. The separate cursor control pad also generates the same extended codes as the
numeric keypad, except it never generates numeric ASCII codes. Otherwise, you cannot differentiate these
keys from the equivalent keys on the numeric keypad (assuming numlock is off, of course).

The keyboard ISR provides a special facility that lets you enter the ASCII code for a keystroke directly
from the keyboard. To do this, hold down the alt key and typing out the

decimal

 ASCII code (0..255) for a
character on the numeric keypad. The keyboard ISR will convert these keystrokes to an eight-bit value,
attach at H.O. byte of zero to the character, and use that as the character code.

The keyboard ISR inserts the 16 bit value into the PC’s

type ahead buffer

. The system type ahead
buffer is a circular queue that uses the following variables

40:1A - HeadPtr word ?
40:1C - TailPtr word ?
40:1E - Buffer word 16 dup (?)

The keyboard ISR inserts data at the location pointed at by

TailPtr

. The BIOS keyboard function
removes characters from the location pointed at by the

HeadPtr

 variable. These two pointers almost
always contain an offset into the

Buffer

 array

5

. If these two pointers are equal, the type ahead buffer is
empty. If the value in

HeadPtr

 is two greater than the value in

TailPtr

 (or

HeadPtr

 is 1Eh and

TailPtr

 is 3Ch), then the buffer is full and the keyboard ISR will reject any additional keystrokes.

Note that the

TailPtr

 variable always points at the next available location in the type ahead buffer.
Since there is no “count” variable providing the number of entries in the buffer, we must always leave one
entry free in the buffer area; this means the type ahead buffer can only hold 15 keystrokes, not 16.

In addition to the type ahead buffer, the BIOS maintains several other keyboard-related variables in
segment 40h. The following table lists these variables and their contents:

5. It is possible to change these pointers so they point elsewhere in the 40H segment, but this is not a good idea because many applications assume
that these two pointers contain a value in the range 1Eh..3Ch.

Table 74: Keyboard Related BIOS Variables

Name Address

a

Size Description

KbdFlags1
(modifier
flags)

40:17 Byte This byte maintains the current status of the modifier
keys on the keyboard. The bits have the following
meanings:
bit 7: Insert mode toggle
bit 6: Capslock toggle (1=capslock on)
bit 5: Numlock toggle (1=numlock on)
bit 4: Scroll lock toggle (1=scroll lock on)
bit 3: Alt key (1=alt is down)
bit 2: Ctrl key (1=ctrl is down)
bit 1: Left shift key (1=left shift is down)
bit 0: Right shift key (1=right shift is down)

The PC Keyboard

Page 1159

One comment is in order about

KbdFlags1

 and

KbdFlags4

. Bits zero through two of the

KbdFlags4 variable is BIOS’ current settings for the LEDs on the keyboard. periodically, BIOS compares
the values for capslock, numlock, and scroll lock in KbdFlags1 against these three bits in KbdFlags4.
If they do not agree, BIOS will send an appropriate command to the keyboard to update the LEDs and it
will change the values in the KbdFlags4 variable so the system is consistent. Therefore, if you mask in
new values for numlock, scroll lock, or caps lock, the BIOS will automatically adjust KbdFlags4 and set
the LEDs accordingly.

20.2 The Keyboard Hardware Interface

IBM used a very simple hardware design for the keyboard port on the original PC and PC/XT
machines. When they introduced the PC/AT, IBM completely resigned the interface between the PC and

a. Addresses are all given in hexadecimal

KbdFlags2
(Toggle
keys
down)

40:18 Byte Specifies if a toggle key is currently down.
bit 7: Insert key (currently down if 1)
bit 6: Capslock key (currently down if 1)
bit 5: Numlock key (currently down if 1)
bit 4: Scroll lock key (currently down if 1)
bit 3: Pause state locked (ctrl-Numlock) if one
bit 2: SysReq key (currently down if 1)
bit 1: Left alt key (currently down if 1)
bit 0: Left ctrl key (currently down if 1)

AltKpd 40:19 Byte BIOS uses this to compute the ASCII code for an alt--
Keypad sequence.

BufStart 40:80 Word Offset of start of keyboard buffer (1Eh). Note: this vari-
able is not supported on many systems, be careful if
you use it.

BufEnd 40:82 Word Offset of end of keyboard buffer (3Eh). See the note
above.

KbdFlags3 40:96 Byte Miscellaneous keyboard flags.
bit 7: Read of keyboard ID in progress
bit 6: Last char is first kbd ID character
bit 5: Force numlock on reset
bit 4: 1 if 101-key kbd, 0 if 83/84 key kbd.
bit 3: Right alt key pressed if 1
bit 2: Right ctrl key pressed if 1
bit 1: Last scan code was E0h
bit 0: Last scan code was E1h

KbdFlags4 40:97 Byte More miscellaneous keyboard flags.
bit 7: Keyboard transmit error
bit 6: Mode indicator update
bit 5: Resend receive flag
bit 4: Acknowledge received
bit 3: Must always be zero
bit 2: Capslock LED (1=on)
bit 1: Numlock LED (1=on)
bit 0: Scroll lock LED (1=on)

Table 74: Keyboard Related BIOS Variables

Name Addressa Size Description

Chapter 20

Page 1160

the keyboard. Since then, almost every PC model and PC clone has followed this keyboard interface stan-
dard6. Although IBM extended the capabilities of the keyboard controller when they introduced their PS/2
systems, the PS/2 models are still upwards compatible from the PC/AT design. Since there are so few orig-
inal PCs in use today (and fewer people write original software for them), we will ignore the original PC
keyboard interface and concentrate on the AT and later designs.

There are two keyboard microcontrollers that the system communicates with – one on the PC’s moth-
erboard (the on-board microcontroller) and one inside the keyboard case (the keyboard microcontrol-
ler). Communication with the on-board microcontroller is through I/O port 64h. Reading this byte
provides the status of the keyboard controller. Writing to this byte sends the on-board microcontroller a
command. The organization of the status byte is

Communication to the microcontroller in the keyboard unit is via the bytes at I/O addresses 60h and
64h. Bits zero and one in the status byte at port 64h provide the necessary handshaking control for these
ports. Before writing any data to these ports, bit zero of port 64h must be zero; data is available for reading
from port 60h when bit one of port 64h contains a one. The keyboard enable and disable bits in the com-
mand byte (port 64h) determine whether the keyboard is active and whether the keyboard will interrupt
the system when the user presses (or releases) a key, etc.

Bytes written to port 60h are sent to the keyboard microcontroller and bytes written to port 64h are
sent to the on-board microcontroller. Bytes read from port 60h generally come from the keyboard,
although you can program the on-board microcontroller to return certain values at this port, as well. The
following tables lists the commands sent to the keyboard microcontroller and the values you can expect
back. The following table lists the allowable commands you can write to port 64h:

6. We will ignore the PCjr machine in this discussion.

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

20 Transmit keyboard controller’s command byte to system as a scan code at port 60h.

60 The next byte written to port 60h will be stored in the keyboard controller’s command
byte.

7 6 5 4 3 2 1 0

Output Buffer Status (1 = full, 0 = empty)
Input Buffer Status (1= full, 0 = empty)
System Flag (1 = self test passed, 0 = failed)
Command/Data Available (0 = data available at port 60h,
 1 = command available at port 64h)
Keyboard active (1=enabled, 0=disabled)
Error detected (1 = error in transmission, 0 = no error)
Time-out error (1 = keyboard timed out, 0 = no time out error)
Parity error (1 = parity error on transmission, 0 = no error)

On-Board 8042 Keyboard Microcontroller Status Byte (Read Port 64h)

The PC Keyboard

Page 1161

A4 Test if a password is installed (PS/2 only). Result comes back in port 60h. 0FAh means a
password is installed, 0F1h means no password.

A5 Transmit password (PS/2 only). Starts receipt of password. The next sequence of scan
codes written to port 60h, ending with a zero byte, are the new password.

A6 Password match. Characters from the keyboard are compared to password until a match
occurs.

A7 Disable mouse device (PS/2 only). Identical to setting bit five of the command byte.

A8 Enable mouse device (PS/2 only). Identical to clearing bit five of the command byte.

A9 Test mouse device. Returns 0 if okay, 1 or 2 if there is a stuck clock, 3 or 4 if there is a
stuck data line. Results come back in port 60h.

AA Initiates self-test. Returns 55h in port 60h if successful.

AB Keyboard interface test. Tests the keyboard interface. Returns 0 if okay, 1 or 2 if there is
a stuck clock, 3 or 4 if there is a stuck data line. Results come back in port 60h.

AC Diagnostic. Returns 16 bytes from the keyboard’s microcontroller chip. Not available on
PS/2 systems.

AD Disable keyboard. Same operation as setting bit four of the command register.

AE Enable keyboard. Same operation as clearing bit four of the command register.

C0 Read keyboard input port to port 60h. This input port contains the following values:
bit 7: Keyboard inhibit keyswitch (0 = inhibit, 1 = enabled).
bit 6: Display switch (0=color, 1=mono).
bit 5: Manufacturing jumper.
bit 4: System board RAM (always 1).
bits 0-3: undefined.

C1 Copy input port (above) bits 0-3 to status bits 4-7. (PS/2 only)

C2 Copy input pot (above) bits 4-7 to status port bits 4-7. (PS/2 only).

D0 Copy microcontroller output port value to port 60h (see definition below).

D1 Write the next data byte written to port 60h to the microcontroller output port. This port
has the following definition:
bit 7: Keyboard data.
bit 6: Keyboard clock.
bit 5: Input buffer empty flag.
bit 4: Output buffer full flag.
bit 3: Undefined.
bit 2: Undefined.
bit 1: Gate A20 line.
bit 0: System reset (if zero).

Note: writing a zero to bit zero will reset the machine.
Writing a one to bit one combines address lines 19 and 20 on the PC’s address bus.

D2 Write keyboard buffer. The keyboard controller returns the next value sent to port 60h as
though a keypress produced that value. (PS/2 only).

D3 Write mouse buffer. The keyboard controller returns the next value sent to port 60h as
though a mouse operation produced that value. (PS/2 only).

D4 Writes the next data byte (60h) to the mouse (auxiliary) device. (PS/2 only).

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

Chapter 20

Page 1162

Commands 20h and 60h let you read and write the keyboard controller command byte. This byte is
internal to the on-board microcontroller and has the following layout:

The system transmits bytes written to I/O port 60h directly to the keyboard’s microcontroller. Bit zero
of the status register must contain a zero before writing any data to this port. The commands the keyboard
recognizes are

E0 Read test inputs. Returns in port 60h the status of the keyboard serial lines. Bit zero con-
tains the keyboard clock input, bit one contains the keyboard data input.

Fx Pulse output port (see definition for D1). Bits 0-3 of the keyboard controller command
byte are pulsed onto the output port. Resets the system if bit zero is a zero.

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) Description

ED Send LED bits. The next byte written to port 60h updates the LEDs on the keyboard. The
parameter (next) byte contains:
bits 3-7: Must be zero.
bit 2: Capslock LED (1 = on, 0 = off).
bit 1: Numlock LED (1 = on, 0 = off).
bit 0: Scroll lock LED (1 = on, 0 = off).

EE Echo commands. Returns 0EEh in port 60h as a diagnostic aid.

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) Description

7 6 5 4 3 2 1 0

Keyboard interrupt (1 = enabled, 0= disabled)
Mouse device interrupt (1 = enabled, 0 = disabled)
System Flag (1 = self test passed, 0 = failed)
PC/AT inhibit override (1 = enabled always)
 Must be zero on PS/2 systems
Keyboard disable (1 = disable keyboard, 0 = no action)
PC/AT keyboard enable (1 = enable keyboard, 0 = no action)
 PS/2 mouse disable (1 = disable, 0 = no action)
PC Compatibility mode (1 = translate kbd codes to PC scan codes)
Must be zero.

On-Board 8042 Keyboard Microcontroller Command byte (see commands 20h and 60h)

The PC Keyboard

Page 1163

The following short program demonstrates how to send commands to the keyboard’s controller. This
little TSR utility programs a “light show” on the keyboard’s LEDs.

; LEDSHOW.ASM
;
; This short TSR creates a light show on the keyboard’s LEDs. For space
; reasons, this code does not implement a multiplex handler nor can you
; remove this TSR once installed. See the chapter on resident programs
; for details on how to do this.
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

F0 Select alternate scan code set (PS/2 only). The next byte written to port 60h selects one
of the following options:
00: Report current scan code set in use (next value read from port 60h).
01: Select scan code set #1 (standard PC/AT scan code set).
02: Select scan code set #2.
03: Select scan code set #3.

F2 Send two-byte keyboard ID code as the next two bytes read from port 60h (PS/2 only).

F3 Set Autorepeat delay and repeat rate. Next byte written to port 60h determines rate:
bit 7: must be zero
bits 5,6: Delay. 00- 1/4 sec, 01- 1/2 sec, 10- 3/4 sec, 11- 1 sec.
bits 0-4: Repeat rate. 0- approx 30 chars/sec to 1Fh- approx 2 chars/sec.

F4 Enable keyboard.

F5 Reset to power on condition and wait for enable command.

F6 Reset to power on condition and begin scanning keyboard.

F7 Make all keys autorepeat (PS/2 only).

F8 Set all keys to generate an up code and a down code (PS/2 only).

F9 Set all keys to generate an up code only (PS/2 only).

FA Set all keys to autorepeat and generate up and down codes (PS/2 only).

FB Set an individual key to autorepeat. Next byte contains the scan code of the desired key.
(PS/2 only).

FC Set an individual key to generate up and down codes. Next byte contains the scan code
of the desired key. (PS/2 only).

FD Set an individual key to generate only down codes. Next byte contains the scan code of
the desired key. (PS/2 only).

FE Resend last result. Use this command if there is an error receiving data.

FF Reset keyboard to power on state and start the self-test.

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) Description

Chapter 20

Page 1164

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov al, 0ADh ;Disable kbd for now.
call SetCmd

cli ;Disable ints while accessing HW.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al

mov al, 0AEh ;Reenable keyboard.
call SetCmd
sti ;Allow interrupts now.

pop cx
pop bx
pop ds
ret

SendCmd endp

The PC Keyboard

Page 1165

; SetLEDs- Writes the value in AL to the LEDs on the keyboard.
; Bits 0..2 correspond to scroll, num, and caps lock,
; respectively.

SetLEDs proc near
push ax
push cx

mov ah, al ;Save LED bits.

mov al, 0EDh ;8042 set LEDs cmd.
call SendCmd ;Send the command to 8042.
mov al, ah ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

pop cx
pop ax
ret

SetLEDs endp

; MyInt1C- Every 1/4 seconds (every 4th call) this routine
; rotates the LEDs to produce an interesting light show.

CallsPerIter equ 4
CallCnt byte CallsPerIter
LEDIndex word LEDTable
LEDTable byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b

byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b
byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b
byte 111b, 110b, 101b, 011b,111b, 110b, 101b, 011b

byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byte 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b

byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byte 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b

byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byte 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b

byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byte 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b

TableEnd equ this byte

OldInt1C dword ?

MyInt1C proc far
assume ds:cseg

push ds
push ax
push bx

mov ax, cs
mov ds, ax

dec CallCnt
jne NotYet
mov CallCnt, CallsPerIter ;Reset call count.
mov bx, LEDIndex
mov al, [bx]
call SetLEDs

Chapter 20

Page 1166

inc bx
cmp bx, offset TableEnd
jne SetTbl
lea bx, LEDTable

SetTbl: mov LEDIndex, bx
NotYet: pop bx

pop ax
pop ds
jmp cs:OldInt1C

MyInt1C endp

Main proc

mov ax, cseg
mov ds, ax

print
byte “LED Light Show”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 1Ch interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 1Ch values directly into
; the OldInt1C variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[1Ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1Ch*4 + 2]
mov word ptr OldInt1C+2, ax
mov es:[1Ch*4], offset MyInt1C
mov es:[1Ch*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The keyboard microcontroller also sends data to the on-board microcontroller for processing and
release to the system through port 60h. Most of these values are key press scan codes (up or down codes),
but the keyboard transmits several other values as well. A well designed keyboard interrupt service rou-
tine should be able to handle (or at least ignore) the non-scan code values. Any particular, any program
that sends commands to the keyboard needs to be able to handle the resend and acknowledge commands

The PC Keyboard

Page 1167

that the keyboard microcontroller returns in port 60h. The keyboard microcontroller sends the following
values to the system:

Assuming you have not disabled keyboard interrupts (see the keyboard controller command byte),
any value the keyboard microcontroller sends to the system through port 60h will generate an interrupt on
IRQ line one (int 9). Therefore, the keyboard interrupt service routine normally handles all the above
codes. If you are patching into int 9, don’t forget to send and end of interrupt (EOI) signal to the 8259A PIC
at the end of your ISR code. Also, don’t forget you can enable or disable the keyboard interrupt at the
8259A.

In general, your application software should not access the keyboard hardware directly. Doing so
will probably make your software incompatible with utility software such as keyboard enhancers (key-
board macro programs), pop-up software, and other resident programs that read the keyboard or insert
data into the system’s type ahead buffer. Fortunately, DOS and BIOS provide an excellent set of functions
to read and write keyboard data. Your programs will be much more robust if you stick to using those func-
tions. Accessing the keyboard hardware directly should be left to keyboard ISRs and those keyboard
enhancers and pop-up programs that absolutely have to talk directly to the hardware.

20.3 The Keyboard DOS Interface

MS-DOS provides several calls to read characters from the keyboard (see “MS-DOS, PC-BIOS, and File
I/O” on page 699). The primary thing to note about the DOS calls is that they only return a single byte.
This means that you lose the scan code information the keyboard interrupt service routine saves in the
type ahead buffer.

If you press a key that has an extended code rather than an ASCII code, MS-DOS returns two key-
codes. On the first call MS-DOS returns a zero value. This tells you that you must call the get character rou-
tine again. The code MS-DOS returns on the second call is the extended key code.

Note that the Standard Library routines call MS-DOS to read characters from the keyboard. Therefore,
the Standard Library getc routine also returns extended keycodes in this manner. The gets and getsm

Table 77: Keyboard to System Transmissions

Value (hex) Description

00 Data overrun. System sends a zero byte as the last value when the keyboard controller’s
internal buffer overflows.

1..58
81..D8

Scan codes for key presses. The positive values are down codes, the negative values
(H.O. bit set) are up codes.

83AB Keyboard ID code returned in response to the F2 command (PS/2 only).

AA Returned during basic assurance test after reset. Also the up code for the left shift key.

EE Returned by the ECHO command.

F0 Prefix to certain up codes (N/A on PS/2).

FA Keyboard acknowledge to keyboard commands other than resend or ECHO.

FC Basic assurance test failed (PS/2 only).

FD Diagnostic failure (not available on PS/2).

FE Resend. Keyboard requests the system to resend the last command.

FF Key error (PS/2 only).

Chapter 20

Page 1168

routines throw away any non-ASCII keystrokes since it would not be a good thing to insert zero bytes into
the middle of a zero terminated string.

20.4 The Keyboard BIOS Interface

Although MS-DOS provides a reasonable set of routines to read ASCII and extended character codes
from the keyboard, the PC’s BIOS provides much better keyboard input facilities. Furthermore, there are
lots of interesting keyboard related variables in the BIOS data area you can poke around at. In general, if
you do not need the I/O redirection facilities provided by MS-DOS, reading your keyboard input using
BIOS functions provides much more flexibility.

To call the MS-DOS BIOS keyboard services you use the int 16h instruction. The BIOS provides the
following keyboard functions:

Table 78: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

0 al- ASCII character
ah- scan code

Read character. Reads next available character from the
system’s type ahead buffer. Wait for a keystroke if the
buffer is empty.

1 ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Checks to see if a character is available in the type ahead
buffer. Sets the zero flag if not key is available, clears the
zero flag if a key is available. If there is an available key,
this function returns the ASCII and scan code value in ax.
The value in ax is undefined if no key is available.

2 al- shift flags Returns the current status of the shift flags in al. The shift
flags are defined as follows:

bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Alt key is down
bit 2: Ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

3 al = 5
bh = 0, 1, 2, 3 for
1/4, 1/2, 3/4, or 1
second delay
bl= 0..1Fh for
30/sec to 2/sec.

Set auto repeat rate. The bh register contains the amount
of time to wait before starting the autorepeat operation,
the bl register contains the autorepeat rate.

5 ch = scan code
cl = ASCII code

Store keycode in buffer. This function stores the value in
the cx register at the end of the type ahead buffer. Note
that the scan code in ch doesn’t have to correspond to the
ASCII code appearing in cl. This routine will simply insert
the data you provide into the system type ahead buffer.

The PC Keyboard

Page 1169

Note that many of these functions are not supported in every BIOS that was ever written. In fact, only
the first three functions were available in the original PC. However, since the AT came along, most BIOSes
have supported at least the functions above. Many BIOS provide extra functions, and there are many TSR
applications you can buy that extend this list even farther. The following assembly code demonstrates
how to write an int 16h TSR that provides all the functions above. You can easily extend this if you desire.

; INT16.ASM
;
; A short passive TSR that replaces the BIOS’ int 16h handler.
; This routine demonstrates the function of each of the int 16h
; functions that a standard BIOS would provide.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
cseg ends

; Marker segment, to find the end of the resident section.

10h al- ASCII character
ah- scan code

Read extended character. Like ah=0 call, except this one
passes all key codes, the ah=0 call throws away codes that
are not PC/XT compatible.

11h ZF- Set if no key.
ZF- Clear if key
available.
al- ASCII code
ah- scan code

Like the ah=01h call except this one does not throw away
keycodes that are not PC/XT compatible (i.e., the extra
keys found on the 101 key keyboard).

12h al- shift flags
ah- extended shift
flags

Returns the current status of the shift flags in ax. The shift
flags are defined as follows:

bit 15: SysReq key pressed
bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down
bit 10:Right ctrl key is down
bit 9: Left alt key is down
bit 8: Left ctrl key is down
bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Either alt key is down (some machines, left only)
bit 2: Either ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

Table 78: BIOS Keyboard Support Functions

Function #
(AH)

Input
Parameters

Output
Parameters

Description

Chapter 20

Page 1170

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

OldInt16 dword ?

; BIOS variables:

KbdFlags1 equ <ds:[17h]>
KbdFlags2 equ <ds:[18h]>
AltKpd equ <ds:[19h]>
HeadPtr equ <ds:[1ah]>
TailPtr equ <ds:[1ch]>
Buffer equ 1eh
EndBuf equ 3eh

KbdFlags3 equ <ds:[96h]>
KbdFlags4 equ <ds:[97h]>

incptr macro which
local NoWrap
add bx, 2
cmp bx, EndBuf
jb NoWrap
mov bx, Buffer

NoWrap: mov which, bx
endm

; MyInt16- This routine processes the int 16h function requests.
;
; AH Description
; -- --
; 00h Get a key from the keyboard, return code in AX.
; 01h Test for available key, ZF=1 if none, ZF=0 and
; AX contains next key code if key available.
; 02h Get shift status. Returns shift key status in AL.
; 03h Set Autorepeat rate. BH=0,1,2,3 (delay time in
; quarter seconds), BL=0..1Fh for 30 char/sec to
; 2 char/sec repeat rate.
; 05h Store scan code (in CX) in the type ahead buffer.
; 10h Get a key (same as 00h in this implementation).
; 11h Test for key (same as 01h).
; 12h Get extended key status. Returns status in AX.

MyInt16 proc far
test ah, 0EFh ;Check for 0h and 10h
je GetKey
cmp ah, 2 ;Check for 01h and 02h
jb TestKey
je GetStatus
cmp ah, 3 ;Check for AutoRpt function.
je SetAutoRpt
cmp ah, 5 ;Check for StoreKey function.
je StoreKey
cmp ah, 11h ;Extended test key opcode.
je TestKey
cmp ah, 12h ;Extended status call
je ExtStatus

; Well, it’s a function we don’t know about, so just return to the caller.

The PC Keyboard

Page 1171

iret

; If the user specified ah=0 or ah=10h, come down here (we will not
; differentiate between extended and original PC getc calls).

GetKey: mov ah, 11h
int 16h ;See if key is available.
je GetKey ;Wait for keystroke.

push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Critical region! Ints off.
mov bx, HeadPtr ;Ptr to next character.
mov ax, [bx] ;Get the character.
incptr HeadPtr ;Bump up HeadPtr
pop bx
pop ds
iret ;Restores interrupt flag.

; TestKey- Checks to see if a key is available in the keyboard buffer.
; We need to turn interrupts on here (so the kbd ISR can
; place a character in the buffer if one is pending).
; Generally, you would want to save the interrupt flag here.
; But BIOS always forces interrupts on, so there may be some
; programs out there that depend on this, so we won’t “fix”
; this problem.
;
; Returns key status in ZF and AX. If ZF=1 then no key is
; available and the value in AX is indeterminate. If ZF=0
; then a key is available and AX contains the scan/ASCII
; code of the next available key. This call does not remove
; the next character from the input buffer.

TestKey: sti ;Turn on the interrupts.
push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Critical region, ints off!
mov bx, HeadPtr
mov ax, [bx] ;BIOS returns avail keycode.
cmp bx, TailPtr ;ZF=1, if empty buffer
pop bx
pop ds
sti ;Inst back on.
retf 2 ;Pop flags (ZF is important!)

; The GetStatus call simply returns the KbdFlags1 variable in AL.

GetStatus: push ds
mov ax, 40h
mov ds, ax
mov al, KbdFlags1 ;Just return Std Status.
pop ds
iret

; StoreKey- Inserts the value in CX into the type ahead buffer.

StoreKey: push ds
push bx
mov ax, 40h
mov ds, ax
cli ;Ints off, critical region.
mov bx, TailPtr ;Address where we can put
push bx ; next key code.
mov [bx], cx ;Store the key code away.
incptr TailPtr ;Move on to next entry in buf.
cmp bx, HeadPtr ;Data overrun?
jne StoreOkay ;If not, jump, if so
pop TailPtr ; ignore key entry.

Chapter 20

Page 1172

sub sp, 2 ;So stack matches alt path.
StoreOkay: add sp, 2 ;Remove junk data from stk.

pop bx
pop ds
iret ;Restores interrupts.

; ExtStatus- Retrieve the extended keyboard status and return it in
; AH, also returns the standard keyboard status in AL.

ExtStatus: push ds
mov ax, 40h
mov ds, ax

mov ah, KbdFlags2
and ah, 7Fh ;Clear final sysreq field.
test ah, 100b ;Test cur sysreq bit.
je NoSysReq ;Skip if it’s zero.
or ah, 80h ;Set final sysreq bit.

NoSysReq:
and ah, 0F0h ;Clear alt/ctrl bits.
mov al, KbdFlags3
and al, 1100b ;Grab rt alt/ctrl bits.
or ah, al ;Merge into AH.
mov al, KbdFlags2
and al, 11b ;Grab left alt/ctrl bits.
or ah, al ;Merge into AH.

mov al, KbdFlags1 ;AL contains normal flags.
pop ds
iret

; SetAutoRpt- Sets the autorepeat rate. On entry, bh=0, 1, 2, or 3 (delay
; in 1/4 sec before autorepeat starts) and bl=0..1Fh (repeat
; rate, about 2:1 to 30:1 (chars:sec).

SetAutoRpt: push cx
push bx

mov al, 0ADh ;Disable kbd for now.
call SetCmd

and bh, 11b ;Force into proper range.
mov cl, 5
shl bh, cl ;Move to final position.
and bl, 1Fh ;Force into proper range.
or bh, bl ;8042 command data byte.
mov al, 0F3h ;8042 set repeat rate cmd.
call SendCmd ;Send the command to 8042.
mov al, bh ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

mov al, 0AEh ;Reenable keyboard.
call SetCmd
mov al, 0F4h ;Restart kbd scanning.
call SendCmd

pop bx
pop cx
iret

MyInt16 endp

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

The PC Keyboard

Page 1173

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov bh, 3 ;Retry cnt.
RetryLp: cli ;Disable ints while accessing HW.

; Clear the Error, Acknowledge received, and resend received flags
; in KbdFlags4

and byte ptr KbdFlags4, 4fh

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al
sti ;Allow interrupts now.

; Wait for the arrival of an acknowledgement from the keyboard ISR:

xor cx, cx ;Wait a long time, if need be.
Wait4Ack: test byp KbdFlags4, 10 ;Acknowledge received bit.

jnz GotAck
loop Wait4Ack
dec bh ;Do a retry on this guy.
jne RetryLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFlags4, 80h ;Set error bit.

GotAck: pop cx
pop bx
pop ds
ret

SendCmd endp

Main proc

Chapter 20

Page 1174

mov ax, cseg
mov ds, ax

print
byte “INT 16h Replacement”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 and INT 16 interrupt vectors. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 and INT 16 values directly into
; the OldInt9 and OldInt16 variables.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.5 The Keyboard Interrupt Service Routine

The int 16h ISR is the interface between application programs and the keyboard. In a similar vein, the
int 9 ISR is the interface between the keyboard hardware and the int 16h ISR. It is the job of the int 9 ISR to
process keyboard hardware interrupts, convert incoming scan codes to scan/ASCII code combinations
and place them in the typeahead buffer, and process other messages the keyboard generates.

To convert keyboard scan codes to scan/ASCII codes, the int 9 ISR must keep track of the current
state of the modifier keys. When a scan code comes along, the int 9 ISR can use the xlat instruction to
translate the scan code to an ASCII code using a table int 9 selects on the basis of the modifier flags.
Another important issue is that the int 9 handler must handle special key sequences like ctrl-alt-del (reset)
and PrtSc. The following assembly code provides a simple int 9 handler for the keyboard. It does not sup-
port alt-Keypad ASCII code entry or a few other minor features, but it does support almost everything you
need for a keyboard interrupt service routine. Certainly it demonstrates all the techniques you need to
know when programming the keyboard.

The PC Keyboard

Page 1175

; INT9.ASM
;
; A short TSR to provide a driver for the keyboard hardware interrupt.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

NumLockScan equ 45h
ScrlLockScan equ 46h
CapsLockScan equ 3ah
CtrlScan equ 1dh
AltScan equ 38h
RShiftScan equ 36h
LShiftScan equ 2ah
InsScanCode equ 52h
DelScanCode equ 53h

; Bits for the various modifier keys

RShfBit equ 1
LShfBit equ 2
CtrlBit equ 4
AltBit equ 8
SLBit equ 10h
NLBit equ 20h
CLBit equ 40h
InsBit equ 80h

KbdFlags equ <byte ptr ds:[17h]>
KbdFlags2 equ <byte ptr ds:[18h]>
KbdFlags3 equ <byte ptr ds:[96h]>
KbdFlags4 equ <byte ptr ds:[97h]>

byp equ <byte ptr>

cseg segment para public ‘code’
assume ds:nothing

; Scan code translation table.
; The incoming scan code from the keyboard selects a row.
; The modifier status selects the column.
; The word at the intersection of the two is the scan/ASCII code to
; put into the PC’s type ahead buffer.
; If the value fetched from the table is zero, then we do not put the
; character into the type ahead buffer.
;
; norm shft ctrl alt num caps shcap shnum

ScanXlat word 0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h
word 011bh, 011bh, 011bh, 011bh, 011bh, 011bh, 011bh, 011bh ;ESC
word 0231h, 0231h, 0000h, 7800h, 0231h, 0231h, 0231h, 0321h ;1 !

Chapter 20

Page 1176

word 0332h, 0340h, 0300h, 7900h, 0332h, 0332h, 0332h, 0332h ;2 @
word 0433h, 0423h, 0000h, 7a00h, 0433h, 0433h, 0423h, 0423h ;3 #
word 0534h, 0524h, 0000h, 7b00h, 0534h, 0534h, 0524h, 0524h ;4 $
word 0635h, 0625h, 0000h, 7c00h, 0635h, 0635h, 0625h, 0625h ;5 %
word 0736h, 075eh, 071eh, 7d00h, 0736h, 0736h, 075eh, 075eh ;6 ^

word 0837h, 0826h, 0000h, 7e00h, 0837h, 0837h, 0826h, 0826h ;7 &
word 0938h, 092ah, 0000h, 7f00h, 0938h, 0938h, 092ah, 092ah ;8 *
word 0a39h, 0a28h, 0000h, 8000h, 0a39h, 0a39h, 0a28h, 0a28h ;9 (
word 0b30h, 0b29h, 0000h, 8100h, 0b30h, 0b30h, 0b29h, 0b29h ;0)
word 0c2dh, 0c5fh, 0000h, 8200h, 0c2dh, 0c2dh, 0c5fh, 0c5fh ;- _
word 0d3dh, 0d2bh, 0000h, 8300h, 0d3dh, 0d3dh, 0d2bh, 0d2bh ;= +
word 0e08h, 0e08h, 0e7fh, 0000h, 0e08h, 0e08h, 0e08h, 0e08h ;bksp
word 0f09h, 0f00h, 0000h, 0000h, 0f09h, 0f09h, 0f00h, 0f00h ;Tab

; norm shft ctrl alt num caps shcap shnum
word 1071h, 1051h, 1011h, 1000h, 1071h, 1051h, 1051h, 1071h ;Q
word 1177h, 1057h, 1017h, 1100h, 1077h, 1057h, 1057h, 1077h ;W
word 1265h, 1245h, 1205h, 1200h, 1265h, 1245h, 1245h, 1265h ;E
word 1372h, 1352h, 1312h, 1300h, 1272h, 1252h, 1252h, 1272h ;R
word 1474h, 1454h, 1414h, 1400h, 1474h, 1454h, 1454h, 1474h ;T
word 1579h, 1559h, 1519h, 1500h, 1579h, 1559h, 1579h, 1559h ;Y
word 1675h, 1655h, 1615h, 1600h, 1675h, 1655h, 1675h, 1655h ;U
word 1769h, 1749h, 1709h, 1700h, 1769h, 1749h, 1769h, 1749h ;I

word 186fh, 184fh, 180fh, 1800h, 186fh, 184fh, 186fh, 184fh ;O
word 1970h, 1950h, 1910h, 1900h, 1970h, 1950h, 1970h, 1950h ;P
word 1a5bh, 1a7bh, 1a1bh, 0000h, 1a5bh, 1a5bh, 1a7bh, 1a7bh ;[{
word 1b5dh, 1b7dh, 1b1dh, 0000h, 1b5dh, 1b5dh, 1b7dh, 1b7dh ;] }
word 1c0dh, 1c0dh, 1c0ah, 0000h, 1c0dh, 1c0dh, 1c0ah, 1c0ah ;enter
word 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h, 1d00h ;ctrl
word 1e61h, 1e41h, 1e01h, 1e00h, 1e61h, 1e41h, 1e61h, 1e41h ;A
word 1f73h, 1f5eh, 1f13h, 1f00h, 1f73h, 1f53h, 1f73h, 1f53h ;S

; norm shft ctrl alt num caps shcap shnum
word 2064h, 2044h, 2004h, 2000h, 2064h, 2044h, 2064h, 2044h ;D
word 2166h, 2146h, 2106h, 2100h, 2166h, 2146h, 2166h, 2146h ;F
word 2267h, 2247h, 2207h, 2200h, 2267h, 2247h, 2267h, 2247h ;G
word 2368h, 2348h, 2308h, 2300h, 2368h, 2348h, 2368h, 2348h ;H
word 246ah, 244ah, 240ah, 2400h, 246ah, 244ah, 246ah, 244ah ;J
word 256bh, 254bh, 250bh, 2500h, 256bh, 254bh, 256bh, 254bh ;K
word 266ch, 264ch, 260ch, 2600h, 266ch, 264ch, 266ch, 264ch ;L
word 273bh, 273ah, 0000h, 0000h, 273bh, 273bh, 273ah, 273ah ;; :

word 2827h, 2822h, 0000h, 0000h, 2827h, 2827h, 2822h, 2822h ;’ “
word 2960h, 297eh, 0000h, 0000h, 2960h, 2960h, 297eh, 297eh ;` ~
word 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h, 2a00h ;LShf
word 2b5ch, 2b7ch, 2b1ch, 0000h, 2b5ch, 2b5ch, 2b7ch, 2b7ch ;\ |
word 2c7ah, 2c5ah, 2c1ah, 2c00h, 2c7ah, 2c5ah, 2c7ah, 2c5ah ;Z
word 2d78h, 2d58h, 2d18h, 2d00h, 2d78h, 2d58h, 2d78h, 2d58h ;X
word 2e63h, 2e43h, 2e03h, 2e00h, 2e63h, 2e43h, 2e63h, 2e43h ;C
word 2f76h, 2f56h, 2f16h, 2f00h, 2f76h, 2f56h, 2f76h, 2f56h ;V

; norm shft ctrl alt num caps shcap shnum
word 3062h, 3042h, 3002h, 3000h, 3062h, 3042h, 3062h, 3042h ;B
word 316eh, 314eh, 310eh, 3100h, 316eh, 314eh, 316eh, 314eh ;N
word 326dh, 324dh, 320dh, 3200h, 326dh, 324dh, 326dh, 324dh ;M
word 332ch, 333ch, 0000h, 0000h, 332ch, 332ch, 333ch, 333ch ;, <
word 342eh, 343eh, 0000h, 0000h, 342eh, 342eh, 343eh, 343eh ;. >
word 352fh, 353fh, 0000h, 0000h, 352fh, 352fh, 353fh, 353fh ;/ ?
word 3600h, 3600h, 3600h, 3600h, 3600h, 3600h, 3600h, 3600h ;rshf
word 372ah, 0000h, 3710h, 0000h, 372ah, 372ah, 0000h, 0000h ;* PS

word 3800h, 3800h, 3800h, 3800h, 3800h, 3800h, 3800h, 3800h ;alt
word 3920h, 3920h, 3920h, 0000h, 3920h, 3920h, 3920h, 3920h ;spc
word 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h, 3a00h ;caps
word 3b00h, 5400h, 5e00h, 6800h, 3b00h, 3b00h, 5400h, 5400h ;F1
word 3c00h, 5500h, 5f00h, 6900h, 3c00h, 3c00h, 5500h, 5500h ;F2
word 3d00h, 5600h, 6000h, 6a00h, 3d00h, 3d00h, 5600h, 5600h ;F3
word 3e00h, 5700h, 6100h, 6b00h, 3e00h, 3e00h, 5700h, 5700h ;F4
word 3f00h, 5800h, 6200h, 6c00h, 3f00h, 3f00h, 5800h, 5800h ;F5

; norm shft ctrl alt num caps shcap shnum
word 4000h, 5900h, 6300h, 6d00h, 4000h, 4000h, 5900h, 5900h ;F6

The PC Keyboard

Page 1177

word 4100h, 5a00h, 6400h, 6e00h, 4100h, 4100h, 5a00h, 5a00h ;F7
word 4200h, 5b00h, 6500h, 6f00h, 4200h, 4200h, 5b00h, 5b00h ;F8
word 4300h, 5c00h, 6600h, 7000h, 4300h, 4300h, 5c00h, 5c00h ;F9
word 4400h, 5d00h, 6700h, 7100h, 4400h, 4400h, 5d00h, 5d00h ;F10
word 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h ;num
word 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h ;scrl
word 4700h, 4737h, 7700h, 0000h, 4737h, 4700h, 4737h, 4700h ;home

word 4800h, 4838h, 0000h, 0000h, 4838h, 4800h, 4838h, 4800h ;up
word 4900h, 4939h, 8400h, 0000h, 4939h, 4900h, 4939h, 4900h ;pgup
word 4a2dh, 4a2dh, 0000h, 0000h, 4a2dh, 4a2dh, 4a2dh, 4a2dh ;-
word 4b00h, 4b34h, 7300h, 0000h, 4b34h, 4b00h, 4b34h, 4b00h ;left
word 4c00h, 4c35h, 0000h, 0000h, 4c35h, 4c00h, 4c35h, 4c00h ;Center
word 4d00h, 4d36h, 7400h, 0000h, 4d36h, 4d00h, 4d36h, 4d00h ;right
word 4e2bh, 4e2bh, 0000h, 0000h, 4e2bh, 4e2bh, 4e2bh, 4e2bh ;+
word 4f00h, 4f31h, 7500h, 0000h, 4f31h, 4f00h, 4f31h, 4f00h ;end

; norm shft ctrl alt num caps shcap shnum
word 5000h, 5032h, 0000h, 0000h, 5032h, 5000h, 5032h, 5000h ;down
word 5100h, 5133h, 7600h, 0000h, 5133h, 5100h, 5133h, 5100h ;pgdn
word 5200h, 5230h, 0000h, 0000h, 5230h, 5200h, 5230h, 5200h ;ins
word 5300h, 532eh, 0000h, 0000h, 532eh, 5300h, 532eh, 5300h ;del
word 0,0,0,0,0,0,0,0 ; --
word 0,0,0,0,0,0,0,0 ; --
word 0,0,0,0,0,0,0,0 ; --
word 5700h, 0000h, 0000h, 0000h, 5700h, 5700h, 0000h, 0000h ;F11

word 5800h, 0000h, 0000h, 0000h, 5800h, 5800h, 0000h, 0000h ;F12

;**
;
; AL contains keyboard scan code.

PutInBuffer proc near
push ds
push bx

mov bx, 40h ;Point ES at the BIOS
mov ds, bx ; variables.

; If the current scan code is E0 or E1, we need to take note of this fact
; so that we can properly process cursor keys.

cmp al, 0e0h
jne TryE1
or KbdFlags3, 10b ;Set E0 flag
and KbdFlags3, 0FEh ;Clear E1 flag
jmp Done

TryE1: cmp al, 0e1h
jne DoScan
or KbdFlags3, 1 ;Set E1 flag
and KbdFlags3, 0FDh ;Clear E0 Flag
jmp Done

; Before doing anything else, see if this is Ctrl-Alt-Del:

DoScan: cmp al, DelScanCode
jnz TryIns
mov bl, KbdFlags
and bl, AltBit or CtrlBit ;Alt = bit 3, ctrl = bit 2
cmp bl, AltBit or CtrlBit
jne DoPIB
mov word ptr ds:[72h], 1234h ;Warm boot flag.
jmp dword ptr cs:RebootAdrs ;REBOOT Computer

RebootAdrs dword 0ffff0000h ;Reset address.

; Check for the INS key here. This one needs to toggle the ins bit
; in the keyboard flags variables.

Chapter 20

Page 1178

TryIns: cmp al, InsScanCode
jne TryInsUp
or KbdFlags2, InsBit ;Note INS is down.
jmp doPIB ;Pass on INS key.

TryInsUp: cmp al, InsScanCode+80h ;INS up scan code.
jne TryLShiftDn
and KbdFlags2, not InsBit ;Note INS is up.
xor KbdFlags, InsBit ;Toggle INS bit.
jmp QuitPIB

; Handle the left and right shift keys down here.

TryLShiftDn: cmp al, LShiftScan
jne TryLShiftUp
or KbdFlags, LShfBit ;Note that the left
jmp QuitPIB ; shift key is down.

TryLShiftUp: cmp al, LShiftScan+80h
jne TryRShiftDn
and KbdFlags, not LShfBit ;Note that the left
jmp QuitPIB ; shift key is up.

TryRShiftDn: cmp al, RShiftScan
jne TryRShiftUp
or KbdFlags, RShfBit ;Right shf is down.
jmp QuitPIB

TryRShiftUp: cmp al, RShiftScan+80h
jne TryAltDn
and KbdFlags, not RShfBit ;Right shf is up.
jmp QuitPIB

; Handle the ALT key down here.

TryAltDn: cmp al, AltScan
jne TryAltUp
or KbdFlags, AltBit ;Alt key is down.

GotoQPIB: jmp QuitPIB

TryAltUp: cmp al, AltScan+80h
jne TryCtrlDn
and KbdFlags, not AltBit ;Alt key is up.
jmp DoPIB

; Deal with the control key down here.

TryCtrlDn: cmp al, CtrlScan
jne TryCtrlUp
or KbdFlags, CtrlBit ;Ctrl key is down.
jmp QuitPIB

TryCtrlUp: cmp al, CtrlScan+80h
jne TryCapsDn
and KbdFlags, not CtrlBit ;Ctrl key is up.
jmp QuitPIB

; Deal with the CapsLock key down here.

TryCapsDn: cmp al, CapsLockScan
jne TryCapsUp
or KbdFlags2, CLBit ;Capslock is down.
xor KbdFlags, CLBit ;Toggle capslock.
jmp QuitPIB

TryCapsUp: cmp al, CapsLockScan+80h
jne TrySLDn
and KbdFlags2, not CLBit ;Capslock is up.
call SetLEDs
jmp QuitPIB

The PC Keyboard

Page 1179

; Deal with the Scroll Lock key down here.

TrySLDn: cmp al, ScrlLockScan
jne TrySLUp
or KbdFlags2, SLBit ;Scrl lock is down.
xor KbdFlags, SLBit ;Toggle scrl lock.
jmp QuitPIB

TrySLUp: cmp al, ScrlLockScan+80h
jne TryNLDn
and KbdFlags2, not SLBit ;Scrl lock is up.
call SetLEDs
jmp QuitPIB

; Handle the NumLock key down here.

TryNLDn: cmp al, NumLockScan
jne TryNLUp
or KbdFlags2, NLBit ;Numlock is down.
xor KbdFlags, NLBit ;Toggle numlock.
jmp QuitPIB

TryNLUp: cmp al, NumLockScan+80h
jne DoPIB
and KbdFlags2, not NLBit ;Numlock is up.
call SetLEDs
jmp QuitPIB

; Handle all the other keys here:

DoPIB: test al, 80h ;Ignore other up keys.
jnz QuitPIB

; If the H.O. bit is set at this point, we’d best only have a zero in AL.
; Otherwise, this is an up code which we can safely ignore.

call Convert
test ax, ax ;Chk for bad code.
je QuitPIB

PutCharInBuf: push cx
mov cx, ax
mov ah, 5 ;Store scan code into
int 16h ; type ahead buffer.
pop cx

QuitPIB: and KbdFlags3, 0FCh ;E0, E1 not last code.

Done: pop bx
pop ds
ret

PutInBuffer endp

;**
;
; Convert- AL contains a PC Scan code. Convert it to an ASCII char/Scan
; code pair and return the result in AX. This code assumes
; that DS points at the BIOS variable space (40h).

Convert proc near
push bx

test al, 80h ;See if up code
jz DownScanCode
mov ah, al
mov al, 0
jmp CSDone

Chapter 20

Page 1180

; Okay, we’ve got a down key. But before going on, let’s see if we’ve
; got an ALT-Keypad sequence.

DownScanCode: mov bh, 0
mov bl, al
shl bx, 1 ;Multiply by eight to compute
shl bx, 1 ; row index index the scan
shl bx, 1 ; code xlat table

; Compute modifier index as follows:
;
; if alt then modifier = 3

test KbdFlags, AltBit
je NotAlt
add bl, 3
jmp DoConvert

; if ctrl, then modifier = 2

NotAlt: test KbdFlags, CtrlBit
je NotCtrl
add bl, 2
jmp DoConvert

; Regardless of the shift setting, we’ve got to deal with numlock
; and capslock. Numlock is only a concern if the scan code is greater
; than or equal to 47h. Capslock is only a concern if the scan code
; is less than this.

NotCtrl: cmp al, 47h
jb DoCapsLk
test KbdFlags, NLBit ;Test Numlock bit
je NoNumLck
test KbdFlags, LShfBit or RShfBit ;Check l/r shift.
je NumOnly
add bl, 7 ;Numlock and shift.
jmp DoConvert

NumOnly: add bl, 4 ;Numlock only.
jmp DoConvert

; If numlock is not active, see if a shift key is:

NoNumLck: test KbdFlags, LShfBit or RShfBit ;Check l/r shift.
je DoConvert ;normal if no shift.
add bl, 1
jmp DoConvert

; If the scan code’s value is below 47h, we need to check for capslock.

DoCapsLk: test KbdFlags, CLBit ;Chk capslock bit
je DoShift
test KbdFlags, LShfBit or RShfBit ;Chk for l/r shift
je CapsOnly
add bl, 6 ;Shift and capslock.
jmp DoConvert

CapsOnly: add bl, 5 ;Capslock
jmp DoConvert

; Well, nothing else is active, check for just a shift key.

DoShift: test KbdFlags, LShfBit or RShfBit ;l/r shift.
je DoConvert
add bl, 1 ;Shift

DoConvert: shl bx, 1 ;Word array
mov ax, ScanXlat[bx]

CSDone: pop bx
ret

Convert endp

The PC Keyboard

Page 1181

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; SendCmd- The following routine sends a command or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
push ds
push bx
push cx
mov cx, 40h
mov ds, cx
mov bx, ax ;Save data byte

mov bh, 3 ;Retry cnt.
RetryLp: cli ;Disable ints while accessing HW.

; Clear the Error, Acknowledge received, and resend received flags
; in KbdFlags4

and byte ptr KbdFlags4, 4fh

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the data to port 60h

mov al, bl
out 60h, al
sti ;Allow interrupts now.

; Wait for the arrival of an acknowledgement from the keyboard ISR:

xor cx, cx ;Wait a long time, if need be.
Wait4Ack: test byp KbdFlags4,10h ;Acknowledge received bit.

jnz GotAck
loop Wait4Ack
dec bh ;Do a retry on this guy.
jne RetryLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFlags4,80h ;Set error bit.

Chapter 20

Page 1182

GotAck: pop cx
pop bx
pop ds
ret

SendCmd endp

; SetLEDs- Updates the KbdFlags4 LED bits from the KbdFlags
; variable and then transmits new flag settings to
; the keyboard.

SetLEDs proc near
push ax
push cx
mov al, KbdFlags
mov cl, 4
shr al, cl
and al, 111b
and KbdFlags4, 0F8h ;Clear LED bits.
or KbdFlags4, al ;Mask in new bits.
mov ah, al ;Save LED bits.

mov al, 0ADh ;Disable kbd for now.
call SetCmd

mov al, 0EDh ;8042 set LEDs cmd.
call SendCmd ;Send the command to 8042.
mov al, ah ;Get parameter byte
call SendCmd ;Send parameter to the 8042.

mov al, 0AEh ;Reenable keyboard.
call SetCmd
mov al, 0F4h ;Restart kbd scanning.
call SendCmd
pop cx
pop ax
ret

SetLEDs endp

; MyInt9- Interrupt service routine for the keyboard hardware
; interrupt.

MyInt9 proc far
push ds
push ax
push cx

mov ax, 40h
mov ds, ax

mov al, 0ADh ;Disable keyboard
call SetCmd
cli ;Disable interrupts.
xor cx, cx

Wait4Data: in al, 64h ;Read kbd status port.
test al, 10b ;Data in buffer?
loopz Wait4Data ;Wait until data available.
in al, 60h ;Get keyboard data.
cmp al, 0EEh ;Echo response?
je QuitInt9
cmp al, 0FAh ;Acknowledge?
jne NotAck
or KbdFlags4, 10h ;Set ack bit.
jmp QuitInt9

NotAck: cmp al, 0FEh ;Resend command?
jne NotResend
or KbdFlags4, 20h ;Set resend bit.
jmp QuitInt9

; Note: other keyboard controller commands all have their H.O. bit set

The PC Keyboard

Page 1183

; and the PutInBuffer routine will ignore them.

NotResend: call PutInBuffer ;Put in type ahead buffer.

QuitInt9: mov al, 0AEh ;Reenable the keyboard
call SetCmd

mov al, 20h ;Send EOI (end of interrupt)
out 20h, al ; to the 8259A PIC.
pop cx
pop ax
pop ds
iret

MyInt9 endp

Main proc
assume ds:cseg

mov ax, cseg
mov ds, ax

print
byte “INT 9 Replacement”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Chapter 20

Page 1184

20.6 Patching into the INT 9 Interrupt Service Routine

For many programs, such as pop-up programs or keyboard enhancers, you may need to intercept
certain “hot keys” and pass all remaining scan codes through to the default keyboard interrupt service rou-
tine. You can insert an int 9 interrupt service routine into an interrupt nine chain just like any other inter-
rupt. When the keyboard interrupts the system to send a scan code, your interrupt service routine can read
the scan code from port 60h and decide whether to process the scan code itself or pass control on to some
other int 9 handler. The following program demonstrates this principle; it deactivates the ctrl-alt-del reset
function on the keyboard by intercepting and throwing away delete scan codes when the ctrl and alt bits
are set in the keyboard flags byte.

; NORESET.ASM
;
; A short TSR that patches the int 9 interrupt and intercepts the
; ctrl-alt-del keystroke sequence.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except by rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resident programs. Such
; code was omitted from this program because of length constraints.
;
;
; cseg and EndResident must occur before the standard library segments!

cseg segment para public ‘code’
OldInt9 dword ?
cseg ends

; Marker segment, to find the end of the resident section.

EndResident segment para public ‘Resident’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

DelScanCode equ 53h

; Bits for the various modifier keys

CtrlBit equ 4
AltBit equ 8

KbdFlags equ <byte ptr ds:[17h]>

cseg segment para public ‘code’
assume ds:nothing

; SetCmd- Sends the command byte in the AL register to the 8042
; keyboard microcontroller chip (command register at
; port 64h).

SetCmd proc near
push cx
push ax ;Save command value.
cli ;Critical region, no ints now.

; Wait until the 8042 is done processing the current command.

xor cx, cx ;Allow 65,536 times thru loop.
Wait4Empty: in al, 64h ;Read keyboard status register.

The PC Keyboard

Page 1185

test al, 10b ;Input buffer full?
loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

pop ax ;Retrieve command.
out 64h, al
sti ;Okay, ints can happen again.
pop cx
ret

SetCmd endp

; MyInt9- Interrupt service routine for the keyboard hardware
; interrupt. Tests to see if the user has pressed a
; DEL key. If not, it passes control on to the original
; int 9 handler. If so, it first checks to see if the
; alt and ctrl keys are currently down; if not, it passes
; control to the original handler. Otherwise it eats the
; scan code and doesn’t pass the DEL through.

MyInt9 proc far
push ds
push ax
push cx

mov ax, 40h
mov ds, ax

mov al, 0ADh ;Disable keyboard
call SetCmd
cli ;Disable interrupts.
xor cx, cx

Wait4Data: in al, 64h ;Read kbd status port.
test al, 10b ;Data in buffer?
loopz Wait4Data ;Wait until data available.

in al, 60h ;Get keyboard data.
cmp al, DelScanCode ;Is it the delete key?
jne OrigInt9
mov al, KbdFlags ;Okay, we’ve got DEL, is
and al, AltBit or CtrlBit ; ctrl+alt down too?
cmp al, AltBit or CtrlBit
jne OrigInt9

; If ctrl+alt+DEL is down, just eat the DEL code and don’t pass it through.

mov al, 0AEh ;Reenable the keyboard
call SetCmd

mov al, 20h ;Send EOI (end of interrupt)
out 20h, al ; to the 8259A PIC.
pop cx
pop ax
pop ds
iret

; If ctrl and alt aren’t both down, pass DEL on to the original INT 9
; handler routine.

OrigInt9: mov al, 0AEh ;Reenable the keyboard
call SetCmd

pop cx
pop ax
pop ds
jmp cs:OldInt9

MyInt9 endp

Main proc
assume ds:cseg

Chapter 20

Page 1186

mov ax, cseg
mov ds, ax

print
byte “Ctrl-Alt-Del Filter”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], cs
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.7 Simulating Keystrokes

At one point or another you may want to write a program that passes keystrokes on to another appli-
cation. For example, you might want to write a keyboard macro TSR that lets you capture certain keys on
the keyboard and send a sequence of keys through to some underlying application. Perhaps you’ll want to
program an entire string of characters on a normally unused keyboard sequence (e.g., ctrl-up or ctrl--
down). In any case, your program will use some technique to pass characters to a foreground application.
There are three well-known techniques for doing this: store the scan/ASCII code directly in the keyboard
buffer, use the 80x86 trace flag to simulate in al, 60h instructions, or program the on-board 8042 micro-
controller to transmit the scan code for you. The next three sections describe these techniques in detail.

20.7.1 Stuffing Characters in the Type Ahead Buffer

Perhaps the easiest way to insert keystrokes into an application is to insert them directly into the sys-
tem’s type ahead buffer. Most modern BIOSes provide an int 16h function to do this (see “The Keyboard

The PC Keyboard

Page 1187

BIOS Interface” on page 1168). Even if your system does not provide this function, it is easy to write your
own code to insert data in the system type ahead buffer; or you can copy the code from the int 16h han-
dler provided earlier in this chapter.

The nice thing about this approach is that you can deal directly with ASCII characters (at least, for
those key sequences that are ASCII). You do not have to worry about sending shift up and down codes
around the scan code for tn “A” so you can get an upper case “A”, you need only insert 1E41h into the
buffer. In fact, most programs ignore the scan code, so you can simply insert 0041h into the buffer and
almost any application will accept the funny scan code of zero.

The major drawback to the buffer insertion technique is that many (popular) applications bypass
DOS and BIOS when reading the keyboard. Such programs go directly to the keyboard’s port (60h) to read
their data. As such, shoving scan/ASCII codes into the type ahead buffer will have no effect. Ideally, you
would like to stuff a scan code directly into the keyboard controller chip and have it return that scan code
as though someone actually pressed that key. Unfortunately, there is no universally compatible way to do
this. However, there are some close approximations, keep reading...

20.7.2 Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions

One way to deal with applications that access the keyboard hardware directly is to simulate the
80x86 instruction set. For example, suppose we were able to take control of the int 9 interrupt service rou-
tine and execute each instruction under our control. We could choose to let all instructions except the in
instruction execute normally. Upon encountering an in instruction (that the keyboard ISR uses to read the
keyboard data), we check to see if it is accessing port 60h. If so, we simply load the al register with the
desired scan code rather than actually execute the in instruction. It is also important to check for the out
instruction, since the keyboard ISR will want to send and EOI signal to the 8259A PIC after reading the
keyboard data, we can simply ignore out instructions that write to port 20h.

The only difficult part is telling the 80x86 to pass control to our routine when encountering certain
instructions (like in and out) and to execute other instructions normally. While this is not directly possi-
ble in real mode7, there is a close approximation we can make. The 80x86 CPUs provide a trace flag that
generates an exception after the execution of each instruction. Normally, debuggers use the trace flag to
single step through a program. However, by writing our own exception handler for the trace exception,
we can gain control of the machine between the execution of every instruction. Then, we can look at the
opcode of the next instruction to execute. If it is not an in or out instruction, we can simply return and
execute the instruction normally. If it is an in or out instruction, we can determine the I/O address and
decide whether to simulate or execute the instruction.

In addition to the in and out instructions, we will need to simulate any int instructions we find as
well. The reason is because the int instruction pushes the flags on the stack and then clears the trace bit in
the flags register. This means that the interrupt service routine associated with that int instruction would
execute normally and we would miss any in or out instructions appearing therein. However, it is easy to
simulate the int instruction, leaving the trace flag enabled, so we will add int to our list of instructions to
interpret.

The only problem with this approach is that it is slow. Although the trace trap routine will only exe-
cute a few instructions on each call, it does so for every instruction in the int 9 interrupt service routine. As
a result, during simulation, the interrupt service routine will run 10 to 20 times slower than the real code
would. This generally isn’t a problem because most keyboard interrupt service routines are very short.
However, you might encounter an application that has a large internal int 9 ISR and this method would
noticeably slow the program. However, for most applications this technique works just fine and no one
will notice any performance loss while they are typing away (slowly) at the keyboard.

7. It is possible to trap I/O instructions when running in protected mode.

Chapter 20

Page 1188

The following assembly code provides a short example of a trace exception handler that simulates
keystrokes in this fashion:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume ds:nothing

; ScanCode must be in the Code segment.

ScanCode byte 0

;**
;
; KbdSim- Passes the scan code in AL through the keyboard controller
; using the trace flag. The way this works is to turn on the
; trace bit in the flags register. Each instruction then causes a trace
; trap. The (installed) trace handler then looks at each instruction to
; handle IN, OUT, INT, and other special instructions. Upon encountering
; an IN AL, 60 (or equivalent) this code simulates the instruction and
; returns the specified scan code rather than actually executing the IN
; instruction. Other instructions need special treatment as well. See
; the code for details. This code is pretty good at simulating the hardware,
; but it runs fairly slow and has a few compatibility problems.

KbdSim proc near

pushf
push es
push ax
push bx

xor bx, bx ;Point es at int vector tbl
mov es, bx ; (to simulate INT 9).
cli ;No interrupts for now.
mov cs:ScanCode, al ;Save output scan code.

push es:[1*4] ;Save current INT 1 vector
push es:2[1*4] ; so we can restore it later.

; Point the INT 1 vector at our INT 1 handler:

mov word ptr es:[1*4], offset MyInt1
mov word ptr es:[1*4 + 2], cs

; Turn on the trace trap (bit 8 of flags register):

pushf
pop ax
or ah, 1
push ax
popf

; Simulate an INT 9 instruction. Note: cannot actually execute INT 9 here
; since INT instructions turn off the trace operation.

pushf
call dword ptr es:[9*4]

The PC Keyboard

Page 1189

; Turn off the trace operation:

pushf
pop ax
and ah, 0feh ;Clear trace bit.
push ax
popf

; Disable trace operation.

pop es:[1*4 + 2] ;Restore previous INT 1
pop es:[1*4] ; handler.

; Okay, we’re done. Restore registers and return.

VMDone: pop bx
pop ax
pop es
popf
ret

KbdSim endp

;--
;
; MyInt1- Handles the trace trap (INT 1). This code looks at the next
; opcode to determine if it is one of the special opcodes we have to
; handle ourselves.

MyInt1 proc far
push bp
mov bp, sp ;Gain access to return adrs via BP.
push bx
push ds

; If we get down here, it’s because this trace trap is directly due to
; our having punched the trace bit. Let’s process the trace trap to
; simulate the 80x86 instruction set.
;
; Get the return address into DS:BX

NextInstr: lds bx, 2[bp]

; The following is a special case to quickly eliminate most opcodes and
; speed up this code by a tiny amount.

cmp byte ptr [bx], 0cdh ;Most opcodes are less than
jnb NotSimple ; 0cdh, hence we quickly
pop ds ; return back to the real
pop bx ; program.
pop bp
iret

NotSimple: je IsIntInstr ;If it’s an INT instruction.

mov bx, [bx] ;Get current instruction’s opcode.
cmp bl, 0e8h ;CALL opcode
je ExecInstr
jb TryInOut0

cmp bl, 0ech ;IN al, dx instr.
je MayBeIn60
cmp bl, 0eeh ;OUT dx, al instr.
je MayBeOut20
pop ds ;A normal instruction if we get
pop bx ; down here.
pop bp
iret

Chapter 20

Page 1190

TryInOut0: cmp bx, 60e4h ;IN al, 60h instr.
je IsINAL60
cmp bx, 20e6h ;out 20, al instr.
je IsOut20

; If it wasn’t one of our magic instructions, execute it and continue.

ExecInstr: pop ds
pop bx
pop bp
iret

; If this instruction is IN AL, DX we have to look at the value in DX to
; determine if it’s really an IN AL, 60h instruction.

MayBeIn60: cmp dx, 60h
jne ExecInstr
inc word ptr 2[bp] ;Skip over this 1 byte instr.
mov al, cs:ScanCode
jmp NextInstr

; If this is an IN AL, 60h instruction, simulate it by loading the current
; scan code into AL.

IsInAL60: mov al, cs:ScanCode
add word ptr 2[bp], 2 ;Skip over this 2-byte instr.
jmp NextInstr

; If this instruction is OUT DX, AL we have to look at DX to see if we’re
; outputting to location 20h (8259).

MayBeOut20: cmp dx, 20h
jne ExecInstr
inc word ptr 2[bp] ;Skip this 1 byte instruction.
jmp NextInstr

; If this is an OUT 20h, al instruction, simply skip over it.

IsOut20: add word ptr 2[bp], 2 ;Skip instruction.
jmp NextInstr

; IsIntInstr- Execute this code if it’s an INT instruction.
;
; The problem with the INT instructions is that they reset the trace bit
; upon execution. For certain guys (see above) we can’t have that.
;
; Note: at this point the stack looks like the following:
;
; flags
;
; rtn cs -+
; |
; rtn ip +-- Points at next instr the CPU will execute.
; bp
; bx
; ds
;
; We need to simulate the appropriate INT instruction by:
;
; (1) adding two to the return address on the stack (so it returns
; beyond the INT instruction.
; (2) pushing the flags onto the stack.
; (3) pushing a phony return address onto the stack which simulates
; the INT 1 interrupt return address but which “returns” us to
; the specified interrupt vector handler.
;
; All this results in a stack which looks like the following:
;
; flags
;
; rtn cs -+

The PC Keyboard

Page 1191

; |
; rtn ip +-- Points at next instr beyond the INT instruction.
;
; flags --- Bogus flags to simulate those pushed by INT instr.
;
; rtn cs -+
; |
; rtn ip +-- “Return address” which points at the ISR for this INT.
; bp
; bx
; ds

IsINTInstr: add word ptr 2[bp], 2 ;Bump rtn adrs beyond INT instr.
mov bl, 1[bx]
mov bh, 0
shl bx, 1 ;Multiply by 4 to get vector
shl bx, 1 ; address.

push [bp-0] ;Get and save BP
push [bp-2] ;Get and save BX.
push [bp-4] ;Get and save DS.

push cx
xor cx, cx ;Point DS at interrupt
mov ds, cx ; vector table.

mov cx, [bp+6] ;Get original flags.
mov [bp-0], cx ;Save as pushed flags.

mov cx, ds:2[bx] ;Get vector and use it as
mov [bp-2], cx ; the return address.
mov cx, ds:[bx]
mov [bp-4], cx

pop cx
pop ds
pop bx
pop bp
iret

;
MyInt1 endp

; Main program - Simulates some keystrokes to demo the above code.

Main proc

mov ax, cseg
mov ds, ax

print
byte “Simulating keystrokes via Trace Flag”,cr,lf
byte “This program places ‘DIR’ in the keyboard buffer”
byte cr,lf,0

mov al, 20h ;”D” down scan code
call KbdSim
mov al, 0a0h ;”D” up scan code
call KbdSim

mov al, 17h ;”I” down scan code
call KbdSim
mov al, 97h ;”I” up scan code
call KbdSim

mov al, 13h ;”R” down scan code
call KbdSim
mov al, 93h ;”R” up scan code
call KbdSim

mov al, 1Ch ;Enter down scan code

Chapter 20

Page 1192

call KbdSim
mov al, 9Ch ;Enter up scan code
call KbdSim

ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.7.3 Using the 8042 Microcontroller to Simulate Keystrokes

Although the trace flag based “keyboard stuffer” routine works with most software that talks to the
hardware directly, it still has a few problems. Specifically, it doesn’t work at all with programs that operate
in protected mode via a “DOS Extender” library (programming libraries that let programmers access more
than one megabyte of memory while running under DOS). The last technique we will look at is to pro-
gram the on-board 8042 keyboard microcontroller to transmit a keystroke for us. There are two ways to do
this: the PS/2 way and the hard way.

The PS/2’s microcontroller includes a command specifically designed to return user programmable
scan codes to the system. By writing a 0D2h byte to the controller command port (64h) and a scan code
byte to port 60h, you can force the controller to return that scan code as though the user pressed a key on
the keyboard. See “The Keyboard Hardware Interface” on page 1159 for more details.

Using this technique provides the most compatible (with existing software) way to return scan codes
to an application. Unfortunately, this trick only works on machines that have keyboard controllers that are
compatible with the PS/2’s; this is not the majority of machines out there. However, if you are writing code
for PS/2s or compatibles, this is the best way to go.

The keyboard controller on the PC/AT and most other PC compatible machines does not support the
0D2h command. Nevertheless, there is a sneaky way to force the keyboard controller to transmit a scan
code, if you’re willing to break a few rules. This trick may not work on all machines (indeed, there are
many machines on which this trick is known to fail), but it does provide a workaround on a large number
of PC compatible machines.

The trick is simple. Although the PC’s keyboard controller doesn’t have a command to return a byte
you send it, it does provide a command to return the keyboard controller command byte (KCCB). It also
provides another command to write a value to the KCCB. So by writing a value to the KCCB and then issu-
ing the read KCCB command, we can trick the system into returning a user programmable code. Unfortu-
nately, the KCCB contains some undefined reserved bits that have different meanings on different brands
of keyboard microcontroller chips. That is the main reason this technique doesn’t work with all machines.
The following assembly code demonstrates how to use the PS/2 and PC keyboard controller stuffing meth-
ods:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’

The PC Keyboard

Page 1193

assume ds:nothing

;**
;
; PutInATBuffer-
;
; The following code sticks the scan code into the AT-class keyboard
; microcontroller chip and asks it to send the scan code back to us
; (through the hardware port).
;
; The AT keyboard controller:
;
; Data port is at I/O address 60h
; Status port is at I/O address 64h (read only)
; Command port is at I/O address 64h (write only)
;
; The controller responds to the following values sent to the command port:
;
; 20h - Read Keyboard Controller’s Command Byte (KCCB) and send the data to
; the data port (I/O address 60h).
;
; 60h - Write KCCB. The next byte written to I/O address 60h is placed in
; the KCCB. The bits of the KCCB are defined as follows:
;
; bit 7- Reserved, should be a zero
; bit 6- IBM industrial computer mode.
; bit 5- IBM industrial computer mode.
; bit 4- Disable keyboard.
; bit 3- Inhibit override.
; bit 2- System flag
; bit 1- Reserved, should be a zero.
; bit 0- Enable output buffer full interrupt.
;
; AAh - Self test
; ABh - Interface test
; ACh - Diagnostic dump
; ADh - Disable keyboard
; AEh - Enable keyboard
; C0h - Read Keyboard Controller input port (equip installed)
; D0h - Read Keyboard Controller output port
; D1h - Write Keyboard Controller output port
; E0h - Read test inputs
; F0h - FFh - Pulse Output port.
;
; The keyboard controller output port is defined as follows:
;
; bit 7 - Keyboard data (output)
; bit 6 - Keyboard clock (output)
; bit 5 - Input buffer empty
; bit 4 - Output buffer full
; bit 3 - undefined
; bit 2 - undefined
; bit 1 - Gate A20
; bit 0 - System reset (0=reset)
;
; The keyboard controller input port is defined as follows:
;
; bit 7 - Keyboard inhibit switch (0=inhibited)
; bit 6 - Display switch (0=color, 1= mono)
; bit 5 - Manufacturing jumper
; bit 4 - System board RAM (0=disable 2nd 256K RAM on system board).
; bits 0-3 - undefined.
;
; The keyboard controller status port (64h) is defined as follows:
;
; bit 1 - Set if input data (60h) not available.
; bit 0 - Set if output port (60h) cannot accept data.

PutInATBuffer proc near
assume ds:nothing
pushf
push ax

Chapter 20

Page 1194

push bx
push cx
push dx

mov dl, al ;Save char to output.

; Wait until the keyboard controller does not contain data before
; proceeding with shoving stuff down its throat.

xor cx, cx
WaitWhlFull: in al, 64h

test al, 1
loopnz WaitWhlFull

; First things first, let’s mask the interrupt controller chip (8259) to
; tell it to ignore interrupts coming from the keyboard. However, turn the
; interrupts on so we properly process interrupts from other sources (this
; is especially important because we’re going to wind up sending a false
; EOI to the interrupt controller inside the INT 9 BIOS routine).

cli
in al, 21h ;Get current mask
push ax ;Save intr mask
or al, 2 ;Mask keyboard interrupt
out 21h, al

; Transmit the desired scan code to the keyboard controller. Call this
; byte the new keyboard controller command (we’ve turned off the keyboard,
; so this won’t affect anything).
;
; The following code tells the keyboard controller to take the next byte
; sent to it and use this byte as the KCCB:

call WaitToXmit
mov al, 60h ;Write new KCCB command.
out 64h, al

; Send the scan code as the new KCCB:

call WaitToXmit
mov al, dl
out 60h, al

; The following code instructs the system to transmit the KCCB (i.e., the
; scan code) to the system:

call WaitToXmit
mov al, 20h ;”Send KCCB” command.
out 64h, al

xor cx, cx
Wait4OutFull: in al, 64h

test al, 1
loopz Wait4OutFull

; Okay, Send a 45h back as the new KCCB to allow the normal keyboard to work
; properly.

call WaitToXmit
mov al, 60h
out 64h, al

call WaitToXmit
mov al, 45h
out 60h, al

; Okay, execute an INT 9 routine so the BIOS (or whoever) can read the key
; we just stuffed into the keyboard controller. Since we’ve masked INT 9
; at the interrupt controller, there will be no interrupt coming along from
; the key we shoved in the buffer.

The PC Keyboard

Page 1195

DoInt9: in al, 60h ;Prevents ints from some codes.
int 9 ;Simulate hardware kbd int.

; Just to be safe, reenable the keyboard:

call WaitToXmit
mov al, 0aeh
out 64h, al

; Okay, restore the interrupt mask for the keyboard in the 8259a.

pop ax
out 21h, al

pop dx
pop cx
pop bx
pop ax
popf
ret

PutInATBuffer endp

; WaitToXmit- Wait until it’s okay to send a command byte to the keyboard
; controller port.

WaitToXmit proc near
push cx
push ax
xor cx, cx

TstCmdPortLp: in al, 64h
test al, 2 ;Check cntrlr input buffer full flag.
loopnz TstCmdPortLp
pop ax
pop cx
ret

WaitToXmit endp

;**
;
; PutInPS2Buffer- Like PutInATBuffer, it uses the keyboard controller chip
; to return the keycode. However, PS/2 compatible controllers
; have an actual command to return keycodes.

PutInPS2Buffer proc near
pushf
push ax
push bx
push cx
push dx

mov dl, al ;Save char to output.

; Wait until the keyboard controller does not contain data before
; proceeding with shoving stuff down its throat.

xor cx, cx
WaitWhlFull: in al, 64h

test al, 1
loopnz WaitWhlFull

; The following code tells the keyboard controller to take the next byte
; sent to it and return it as a scan code.

call WaitToXmit
mov al, 0d2h ;Return scan code command.
out 64h, al

Chapter 20

Page 1196

; Send the scan code:

call WaitToXmit
mov al, dl
out 60h, al

pop dx
pop cx
pop bx
pop ax
popf
ret

PutInPS2Buffer endp

; Main program - Simulates some keystrokes to demo the above code.

Main proc

mov ax, cseg
mov ds, ax

print
byte “Simulating keystrokes via Trace Flag”,cr,lf
byte “This program places ‘DIR’ in the keyboard buffer”
byte cr,lf,0

mov al, 20h ;”D” down scan code
call PutInATBuffer
mov al, 0a0h ;”D” up scan code
call PutInATBuffer

mov al, 17h ;”I” down scan code
call PutInATBuffer
mov al, 97h ;”I” up scan code
call PutInATBuffer

mov al, 13h ;”R” down scan code
call PutInATBuffer
mov al, 93h ;”R” up scan code
call PutInATBuffer

mov al, 1Ch ;Enter down scan code
call PutInATBuffer
mov al, 9Ch ;Enter up scan code
call PutInATBuffer

ExitPgm
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

20.8 Summary

This chapter might seem excessively long for such a mundane topic as keyboard I/O. After all, the
Standard Library provides only one primitive routine for keyboard input, getc. However, the keyboard on
the PC is a complex beast, having no less than two specialized microprocessors controlling it. These
microprocessors accept commands from the PC and send commands and data to the PC. If you want to

The PC Keyboard

Page 1197

write some tricky keyboard handling code, you need to have a firm understanding of the keyboard’s
underlying hardware.

This chapter began by describing the actions the system takes when a user presses a key. As it turns
out, the system transmits two scan codes every time you press a key – one scan code when you press the
key and one scan code when you release the key. These are called down codes and up codes, accord-
ingly. The scan codes the keyboard transmits to the system have little relationship to the standard ASCII
character set. Instead, the keyboard uses its own character set and relies upon the keyboard interrupt ser-
vice routine to translate these scan codes to their appropriate ASCII codes. Some keys do not have ASCII
codes, for these keys the system passes along an extended key code to the application requesting key-
board input. While translating scan codes to ASCII codes, the keyboard interrupt service routine makes
use of certain BIOS flags that track the position of the modifier keys. These keys include the shift, ctrl, alt,
capslock, and numlock keys. These keys are known as modifiers because the modify the normal code
produced by keys on the keyboard. The keyboard interrupt service routine stuffs incoming characters in
the system type ahead buffer and updates other BIOS variables in segment 40h. An application program
or other system service can access this data prepared by the keyboard interrupt service routine. For more
information, see

• “Keyboard Basics” on page 1153

The PC interfaces to the keyboard using two separate microcontroller chips. These chips provide user
programming registers and a very flexible command set. If you want to program the keyboard beyond
simply reading the keystrokes produced by the keyboard (i.e., manipulate the LEDs on the keyboard), you
will need to become familiar with the registers and command sets of these microcontrollers. The discus-
sion of these topics appears in

• “The Keyboard Hardware Interface” on page 1159

Both DOS and BIOS provide facilities to read a key from the system’s type ahead buffer. As usual,
BIOS’ functions provide the most flexibility in terms of getting at the hardware. Furthermore, the BIOS
int 16h routine lets you check shift key status, stuff scan/ASCII codes into the type ahead buffer, adjust the
autorepeat rate, and more. Given this flexibility, it is difficult to understand why someone would want to
talk directly to the keyboard hardware, especially considering the compatibility problems that seem to
plague such projects. To learn the proper way to read characters from the keyboard, and more, see

• “The Keyboard DOS Interface” on page 1167
• “The Keyboard BIOS Interface” on page 1168

Although accessing the keyboard hardware directly is a bad idea for most applications, there is a
small class of programs, like keyboard enhancers and pop-up programs, that really do need to access the
keyboard hardware directly. These programs must supply an interrupt service routine for the int 9 (key-
board) interrupt. For all the details, see:

• “The Keyboard Interrupt Service Routine” on page 1174
• “Patching into the INT 9 Interrupt Service Routine” on page 1184

A keyboard macro program (keyboard enhancer) is a perfect example of a program that might need
to talk directly to the keyboard hardware. One problem with such programs is that they need to pass char-
acters along to some underlying application. Given the nature of applications present in the world, this
can be a difficult task if you want to be compatible with a large number of PC applications. The problems,
and some solutions, appear in

• “Simulating Keystrokes” on page 1186
• “Stuffing Characters in the Type Ahead Buffer” on page 1186
• “Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions” on page 1187
• “Using the 8042 Microcontroller to Simulate Keystrokes” on page 1192

Chapter 20

Page 1198

