
 

Page 243

 

The 80x86 Instruction Set Chapter Six

 

Until now, there has been little discussion of the instructions available on the 80x86
microprocessor. This chapter rectifies this situation. Note that this chapter is mainly for

 

reference

 

. It explains what each instruction does, it does not explain how to combine these
instructions to form complete assembly language programs. The rest of this book will
explain how to do that. 

 

6.0 Chapter Overview

 

This chapter discusses the 80x86 real mode instruction set. Like any programming
language, there are going to be several instructions you use all the time, some you use
occasionally, and some you will rarely, if ever, use. This chapter organizes its presentation
by instruction class rather than importance. Since beginning assembly language program-
mers do not have to learn the entire instruction set in order to write meaningful assembly
language programs, you will probably not have to learn how every instruction operates.
The following list describes the instructions this chapter discusses. A “•” symbol marks
the important instructions in each group. If you learn only these instructions, you will
probably be able to write any assembly language program you want. There are many
additional instructions, especially on the 80386 and later processors. These additional
instructions make assembly language programming easier, but you do not need to know
them to begin writing programs.

80x86 instructions can be (roughly) divided into eight different classes:

 

1) Data movement instructions
•

 

 mov, lea, les , push, pop, pushf, popf

 

2) Conversions
• 

 

cbw, cwd, xlat

 

3) Arithmetic instructions
•

 

 add, inc sub, dec, cmp, neg, mul, imul, div, idiv

 

4) Logical, shift, rotate, and bit instructions
•

 

 and, or, xor, not, shl, shr, rcl, rcr

 

5) I/O instructions
• 

 

in, out

 

6) String instructions
•

 

 movs, stos, lods

 

7) Program flow control instructions
• 

 

jmp, call, ret,

 

 conditional jumps
8) Miscellaneous instructions.

• 

 

clc, stc, cmc

 

The following sections describe all the instructions in these groups and how they operate. 

At one time a text such as this one would recommend against using the extended
80386 instruction set. After all, programs that use such instructions will not run properly
on 80286 and earlier processors. Using these additional instructions could limit the num-
ber of machines your code would run on. However, the 80386 processor is on the verge of
disappearing as this text is being written. You can safely assume that most systems will
contain an 80386sx or later processor. This text often uses the 80386 instruction set in vari-
ous example programs. Keep in mind, though, that this is only for convenience. There is
no program that appears in this text that could not be recoded using only 8088 assembly
language instructions.

A word of advice, particularly to those who learn only the instructions noted above:
as you read about the 80x86 instruction set you will discover that the individual 80x86
instructions are not very complex and have simple semantics. However, as you approach

 

Thi d t t d ith F M k 4 0 2



 

Chapter 06

Page 244

 

the end of this chapter, you may discover that you haven’t got a clue how to put these sim-
ple instructions together to form a complex program. Fear not, this is a common problem.
Later chapters will describe how to form complex programs from these simple instruc-
tions.

One quick note: this chapter lists many instructions as “available only on the 80286
and later processors.” In fact, many of these instructions were available on the 80186
microprocessor as well. Since few PC systems employ the 80186 microprocessor, this text
ignores that CPU. However, to keep the record straight...

 

6.1 The Processor Status Register (Flags)

 

The flags register maintains the current operating mode of the CPU and some instruc-
tion state information. Figure 6.1 shows the layout of the flags register.

The carry, parity, zero, sign, and overflow flags are special because you can test their
status (zero or one) with the

 

 set

 

cc

 

  and conditional jump instructions (see “The “Set on
Condition” Instructions” on page 281 and “The Conditional Jump Instructions” on
page 296). The 80x86 uses these bits, the 

 

condition codes

 

, to make decisions during program
execution. 

Various arithmetic, logical, and miscellaneous instructions affect the 

 

overflow flag

 

.
After an arithmetic operation, this flag contains a one if the result does not fit in the signed
destination operand. For example, if you attempt to add the 16 bit signed numbers 7FFFh
and 0001h the result is too large so the CPU sets the overflow flag. If the result of the arith-
metic operation does not produce a signed overflow, then the CPU clears this flag. 

Since the logical operations generally apply to unsigned values, the 80x86 logical
instructions simply clear the overflow flag. Other 80x86 instructions leave the overflow
flag containing an arbitrary value. 

The 80x86 string instructions use the 

 

direction flag

 

. When the direction flag is clear, the
80x86 processes string elements from low addresses to high addresses; when set, the CPU
processes strings in the opposite direction. See “String Instructions” on page 284 for addi-
tional details. 

The 

 

interrupt enable/disable flag

 

 controls the 80x86’s ability to respond to external
events known as interrupt requests. Some programs contain certain instruction sequences
that the CPU must not interrupt. The interrupt enable/disable flag turns interrupts on or
off to guarantee that the CPU does not interrupt those critical sections of code.

Figure 6.1 80x86 Flags Register

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

= Unused



 

The 80x86 Instruction Set

Page 245

 

The 

 

trace flag

 

 enables or disables the 80x86 trace mode. Debuggers (such as CodeView)
use this bit to enable or disable the single step/trace operation. When set, the CPU inter-
rupts each instruction and passes control to the debugger software, allowing the debugger
to 

 

single step

 

  through the application. If the trace bit is clear, then the 80x86 executes
instructions without the interruption. The 80x86 CPUs do not provide any instructions
that directly manipulate this flag. To set or clear the trace flag, you must:

• Push the flags onto the 80x86 stack,
• Pop the value into another register, 
• Tweak the trace flag value, 
• Push the result onto the stack, and then 
• Pop the flags off the stack. 

If the result of some computation is negative, the 80x86 sets the 

 

sign flag

 

. You can test
this flag after an arithmetic operation to check for a negative result. Remember, a value is
negative if its H.O. bit is one. Therefore, operations on unsigned values will set the sign
flag if the result has a one in the H.O. position.

Various instructions set the 

 

zero flag

 

 when they generate a zero result. You’ll often use
this flag to see if two values are equal (e.g., after subtracting two numbers, they are equal
if the result is zero). This flag is also useful after various logical operations to see if a spe-
cific bit in a register or memory location contains zero or one. 

The 

 

auxiliary carry flag 

 

supports special binary coded decimal (BCD) operations. Since
most programs don’t deal with BCD numbers, you’ll rarely use this flag and even then
you’ll not access it directly. The 80x86 CPUs do not provide any instructions that let you
directly test, set, or clear this flag. Only the

 

 add, adc, sub, sbb, mul, imul, div, idiv, 

 

and BCD
instructions manipulate this flag.

The 

 

parity flag

 

 is set according to the parity of the L.O. eight bits of any data operation.
If an operation produces an even number of one bits, the CPU sets this flag. It clears this
flag if the operation yields an odd number of one bits. This flag is useful in certain data
communications programs, however, Intel provided it mainly to provide some compati-
bility with the older 8080 

 

µ

 

P. 

The 

 

carry flag

 

 has several purposes. First, it denotes an unsigned overflow (much like
the overflow flag detects a signed overflow). You will also use it during multiprecision
arithmetic and logical operations. Certain bit test, set, clear, and invert instructions on the
80386 directly affect this flag. Finally, since you can easily clear, set, invert, and test it, it is
useful for various boolean operations. The carry flag has many purposes and knowing
when to use it, and for what purpose, can confuse beginning assembly language program-
mers. Fortunately, for any given instruction, the meaning of the carry flag is clear. 

The use of these flags will become readily apparent in the coming sections and chap-
ters. This section is mainly a formal introduction to the individual flags in the register
rather than an attempt to explain the exact function of each flag. For more details on the
operation of each flag, keep reading...

 

6.2 Instruction Encodings

 

The 80x86 uses a binary encoding for each machine operation. While it is important to
have a general understanding of how the 80x86 encodes instructions, it is not important
that you memorize the encodings for all the instructions in the instruction set. If you were
to write an assembler or disassembler (debugger), you would definitely need to know the
exact encodings. For general assembly language programming, however, you won’t need
to know the exact encodings.

However, as you become more experienced with assembly language you will proba-
bly want to study the encodings of the 80x86 instruction set. Certainly you should be
aware of such terms as 

 

opcode, mod-reg-r/m byte, displacement value

 

, and so on. Although
you do not need to memorize the parameters for each instruction, it is always a good idea
to know the lengths and cycle times for instructions you use regularly since this will help



 

Chapter 06

Page 246

 

you write better programs. Chapter Three and Chapter Four provided a detailed look at
instruction encodings for various instructions (80x86 and x86); such a discussion was
important because you do need to understand how the CPU encodes and executes
instructions. This chapter does not deal with such details. This chapter presents a higher
level view of each instruction and assumes that you don’t care how the machine treats bits
in memory. For those few times that you will need to know the binary encoding for a par-
ticular instruction, a complete listing of the instruction encodings appears in Appendix D.

 

6.3 Data Movement Instructions

 

The data movement instructions copy values from one location to another. These
instructions include 

 

mov, xchg, lds, lea, les, lfs, lgs, lss, push, pusha, pushad, pushf, pushfd, pop,
popa, popad, popf, popfd, lahf, 

 

and

 

 sahf

 

.

 

6.3.1 The MOV Instruction

 

The 

 

mov

 

 instruction takes several different forms:

 

mov reg, reg

 

1

 

mov mem, reg
mov reg, mem
mov mem, immediate data
mov reg, immediate data
mov ax/al, mem 
mov mem, ax/al 
mov segreg, mem

 

16

 

mov segreg, reg

 

16

 

mov mem

 

16

 

, segreg
mov reg

 

16

 

, segreg

 

The last chapter discussed the 

 

mov

 

 instruction in detail, only a few minor comments
are worthwhile here. First, there are variations of the 

 

mov

 

 instruction that are faster and
shorter than other 

 

mov

 

 instructions that do the same job. For example, both the

 

mov ax, mem

 

   and 

 

 mov reg, mem

 

   instructions can load the 

 

ax

 

 register from a memory loca-
tion. On all processors the first version is shorter. On the earlier members of the 80x86
family, it is faster as well. 

There are two very important details to note about the 

 

mov

 

 instruction. First, there is
no memory to memory move operation. The mod-reg-r/m addressing mode byte (see
Chapter Four) allows two register operands or a single register and a single memory oper-
and. There is no form of the 

 

mov

 

 instruction that allows you to encode 

 

two

 

  memory
addresses into the same instruction. Second, you cannot move immediate data into a seg-
ment register. The only instructions that move data into or out of a segment register have
mod-reg-r/m bytes associated with them; there is no format that moves an immediate
value into a segment register. Two common errors beginning programmers make are
attempting a memory to memory move and trying to load a segment register with a con-
stant.

The operands to the 

 

mov

 

 instruction may be bytes, words, or double words

 

2

 

. Both
operands must be the same size or MASM will generate an error while assembling your
program. This applies to memory operands and register operands. If you declare a vari-
able,

 

 B

 

, using 

 

byte

 

 and attempt to load this variable into the 

 

ax

 

 register, MASM will com-
plain about a type conflict.

The CPU extends immediate data to the size of the destination operand (unless it is
too big to fit in the destination operand, which is an error). Note that you 

 

can

 

  move an

 

1. This chapter uses “reg”, by itself, to denote any eight bit, sixteen bit, or (on the 80386 and later) 32 bit general
purpose CPU register (AL/AX/EAX, BL/BX/EBX, SI/ESI, etc.)
2. Double word operands are valid only on 80386 and later processors.



 

The 80x86 Instruction Set

Page 247

 

immediate value into a memory location. The same rules concerning size apply. However,
MASM cannot determine the size of certain memory operands. For example, does the
instruction 

 

  mov [bx], 0   

 

store an eight bit, sixteen bit, or thirty-two bit value? MASM can-
not tell, so it reports an error. This problem does 

 

not

 

  exist when you move an immediate
value into a variable you’ve declared in your program. For example, if you’ve declared 

 

B

 

as a byte variable, MASM knows to store an eight bit zero into 

 

B

 

 for the instruction

 

mov B, 0

 

. Only those memory operands involving pointers with no variable operands suf-
fer from this problem. The solution is to explicitly tell MASM whether the operand is a
byte, word, or double word. You can accomplish this with the following instruction forms:

 

mov byte ptr [bx], 0
mov word ptr [bx], 0
mov dword ptr [bx], 0 (3)

(3) Available only on 80386 and later processors

 

For more details on the 

 

 type

 

 ptr

 

  operator, see Chapter Eight.

Moves to and from segment registers are always 16 bits; the mod-reg-r/m operand
must be 16 bits or MASM will generate an error. Since you cannot load a constant directly
into a segment register, a common solution is to load the constant into an 80x86 general
purpose register and then copy it to the segment register. For example, the following two
instruction sequence loads the 

 

es

 

 register with the value 40h:

 

mov ax, 40h
mov es, ax

 

Note that almost any general purpose register would suffice. Here, 

 

ax

 

 was chosen arbi-
trarily.

The 

 

mov

 

 instructions do not affect any flags. In particular, the 80x86 preserves the flag
values across the execution of a 

 

mov

 

 instruction.

 

6.3.2 The XCHG Instruction

 

The 

 

xchg

 

 (exchange) instruction swaps two values. The general form is

 

xchg operand

 

1

 

, operand

 

2

 

There are four specific forms of this instruction on the 80x86:

 

xchg reg, mem
xchg reg, reg
xchg ax, reg

 

16

 

xchg eax, reg

 

32

 

(3)

(3) Available only on 80386 and later processors

 

The first two general forms require two or more bytes for the opcode and
mod-reg-r/m bytes (a displacement, if necessary, requires additional bytes). The third and
fourth forms are special forms of the second that exchange data in the 

 

(e)ax

 

 register with
another 16 or 32 bit register. The 16 bit form uses a single byte opcode that is shorter than
the other two forms that use a one byte opcode and a mod-reg-r/m byte. 

Already you should note a pattern developing: the 80x86 family often provides
shorter and faster versions of instructions that use the ax register. Therefore, you should
try to arrange your computations so that they use the 

 

(e)ax

 

 register as much as possible.
The 

 

xchg

 

 instruction is a perfect example, the form that exchanges 16 bit registers is only
one byte long.

Note that the order of the 

 

xchg

 

’s operands does not matter. That is, you could enter

 

xchg mem, reg

 

   and get the same result as 

 

  xchg reg, mem

 

. Most modern assemblers will
automatically emit the opcode for the shorter 

 

 xchg ax, reg  

 

instruction if you specify

 

xchg reg, ax

 

.



 

Chapter 06

Page 248

 

Both operands must be the same size. On pre-80386 processors the operands may be
eight or sixteen bits. On 80386 and later processors the operands may be 32 bits long as
well. 

The 

 

xchg

 

 instruction does not modify any flags.

 

6.3.3 The LDS, LES, LFS, LGS, and LSS Instructions

 

The 

 

lds, les, lfs, lgs

 

, and 

 

lss

 

 instructions let you load a 16 bit general purpose register
and segment register pair with a single instruction. On the 80286 and earlier, the 

 

lds

 

 and

 

les

 

 instructions are the only instructions that directly process values larger than 32 bits.
The general form is

 

LxS dest, source

 

These instructions take the specific forms:

 

lds reg

 

16

 

, mem

 

32

 

les reg

 

16

 

, mem

 

32

 

lfs reg16, mem32 (3)
lgs reg16, mem32 (3)
lss reg16, mem32 (3)

(3) Available only on 80386 and later processors

Reg16 is any general purpose 16 bit register and mem32 is a double word memory location
(declared with the dword statement). 

These instructions will load the 32 bit double word at the address specified by mem32
into reg16 and the ds, es, fs, gs, or ss registers. They load the general purpose register from
the L.O. word of the memory operand and the segment register from the H.O. word. The
following algorithms describe the exact operation:

lds reg16, mem32:
reg16 := [mem32]
ds := [mem32 + 2]

les reg16, mem32:
reg16 := [mem32]
es := [mem32 + 2]

lfs reg16, mem32:
reg16 := [mem32]
fs := [mem32 + 2]

lgs reg16, mem32:
reg16 := [mem32]
gs := [mem32 + 2]

lss reg16, mem32:
reg16 := [mem32]
ss := [mem32 + 2]

Since the LxS instructions load the 80x86’s segment registers, you must not use these
instructions for arbitrary purposes. Use them to set up (far) pointers to certain data objects
as discussed in Chapter Four. Any other use may cause problems with your code if you
attempt to port it to Windows, OS/2 or UNIX.

Keep in mind that these instructions load the four bytes at a given memory location
into the register pair; they do not  load the address of a variable into the register pair (i.e.,
this instruction does not have an immediate mode). To learn how to load the address of a
variable into a register pair, see Chapter Eight.

The LxS instructions do not affect any of the 80x86’s flag bits.

6.3.4 The LEA Instruction

The lea (Load Effective Address) instruction is another instruction used to prepare
pointer values. The lea instruction takes the form: 



The 80x86 Instruction Set

Page 249

lea dest, source

The specific forms on the 80x86 are

lea reg16, mem
lea reg32, mem (3)

(3) Available only on 80386 and later processors.

It loads the specified 16 or 32 bit general purpose register with the effective address  of
the specified memory location. The effective address is the final memory address obtained
after all addressing mode computations. For example,   lea ax, ds:[1234h]   loads the ax reg-
ister with the address of memory location 1234h; here it just loads the ax register with the
value 1234h. If you think about it for a moment, this isn’t a very exciting operation. After
all, the   mov ax, immediate_data instruction can do this. So why bother with the lea instruc-
tion at all? Well, there are many other forms of a memory operand besides displace-
ment-only operands. Consider the following lea instructions:

lea ax, [bx]
 lea bx, 3[bx]
 lea ax, 3[bx]
 lea bx, 4[bp+si]
 lea ax, -123[di]

The   lea ax, [bx]   instruction copies the address of the expression [bx] into the ax regis-
ter. Since the effective address is the value in the bx register, this instruction copies bx’s
value into the ax register. Again, this instruction isn’t very interesting because mov can do
the same thing, even faster.

The   lea bx,3[bx]   instruction copies the effective address of 3[bx] into the bx register.
Since this effective address is equal to the current value of bx plus three, this lea instruction
effectively adds three to the bx register. There is an add instruction that will let you add
three to the bx register, so again, the lea instruction is superfluous for this purpose. 

The third lea instruction above shows where lea really begins to shine.   lea ax, 3[bx]
copies the address of the memory location 3[bx] into the ax register; i.e., it adds three with
the value in the bx register and moves the sum into ax. This is an excellent example of how
you can use the lea instruction to do a mov operation and an addition with a single instruc-
tion. 

The final two instructions above,  lea bx,4[bp+si]  and  lea ax,-123[di] provide additional
examples of lea instructions that are more efficient than their mov/add counterparts. 

On the 80386 and later processors, you can use the scaled indexed addressing modes
to multiply by two, four, or eight as well as add registers and displacements together. Intel
strongly  suggests the use of the lea instruction since it is much faster than a sequence of
instructions computing the same result.

The (real) purpose of lea is to load a register with a memory address. For example,
lea bx, 128[bp+di]   sets up bx with the address of the byte referenced by 128[BP+DI]. As it
turns out, an instruction of the form   mov al,[bx]   runs faster than an instruction of the
form mov al,128[bp+di].  If this instruction executes several times, it is probably more effi-
cient to load the effective address of 128[bp+di] into the bx register and use the [bx] address-
ing mode. This is a common optimization in high performance programs.

The lea instruction does not affect any of the 80x86’s flag bits.

6.3.5 The PUSH and POP Instructions

The 80x86 push and pop instructions manipulate data on the 80x86’s hardware stack.
There are 19 varieties of the push and pop instructions3, they are

3. Plus some synonyms on top of these 19.



Chapter 06

Page 250

push reg16
pop reg16
push reg32 (3)
pop reg32 (3)
push segreg
pop segreg (except CS)
push memory
pop memory
push immediate_data (2)
pusha (2)
popa (2)
pushad (3)
popad (3)
pushf
popf
pushfd (3)
popfd (3)
enter imm, imm (2)
leave (2)

(2)- Available only on 80286 and later processors.
(3)- Available only on 80386 and later processors.

The first two instructions push and pop a 16 bit general purpose register. This is a
compact (one byte) version designed specifically for registers. Note that there is a second
form that provides a mod-reg-r/m byte that could push registers as well; most assemblers
only use that form for pushing the value of a memory location.

The second pair of instructions push or pop an 80386 32 bit general purpose register.
This is really nothing more than the push register instruction described in the previous
paragraph with a size prefix byte.

The third pair of push/pop instructions let you push or pop an 80x86 segment register.
Note that the instructions that push fs and gs are longer than those that push cs, ds, es, and
ss, see Appendix D for the exact details. You can only push the cs register (popping the cs
register would create some interesting program flow control problems).

The fourth pair of push/pop instructions allow you to push or pop the contents of a
memory location. On the 80286 and earlier, this must be a 16 bit value. For memory opera-
tions without an explicit type (e.g., [bx]) you must either use the pushw mnemonic or
explicitly state the size using an instruction like push word ptr [bx]. On the 80386 and later
you can push and pop 16 or 32 bit values4. You can use dword memory operands, you can
use the pushd mnemonic, or you can use the dword ptr operator to force 32 bit operation.
Examples:

push DblWordVar
push dword ptr [bx]
pushd dword

The pusha and popa instructions (available on the 80286 and later) push and pop all the
80x86 16 bit general purpose registers. Pusha pushes the registers in the following order:
ax, cx, dx, bx, sp, bp, si, and then di. Popa pops these registers in the reverse order. Pushad
and Popad (available on the 80386 and later) do the same thing on the 80386’s 32 bit regis-
ter set. Note that these “push all” and “pop all” instructions do not  push or pop the flags
or segment registers.

The pushf and popf instructions allow you to push/pop the processor status register
(the flags). Note that these two instructions provide a mechanism to modify the 80x86’s
trace flag. See the description of this process earlier in this chapter. Of course, you can set
and clear the other flags in this fashion as well. However, most of the other flags you’ll
want to modify (specifically, the condition codes) provide specific instructions or other
simple sequences for this purpose. 

Enter and leave push/pop the bp register and allocate storage for local variables on the
stack. You will see more on these instructions in a later chapter. This chapter does not con-

4. You can use the PUSHW and PUSHD mnemonics to denote 16 or 32 bit constant sizes.



The 80x86 Instruction Set

Page 251

sider them since they are not particularly useful outside the context of procedure entry
and exit.

 “So what do these instructions do?” you’re probably asking by now. The push instruc-
tions move data onto the 80x86 hardware stack and the pop instructions move data from
the stack to memory or to a register. The following is an algorithmic description of each
instruction:

push instructions (16 bits): 

SP := SP - 2
[SS:SP] := 16 bit operand (store result at location SS:SP.)

pop instructions (16 bits): 
16-bit operand := [SS:SP]
SP := SP + 2

push instructions (32 bits): 
SP := SP - 4
[SS:SP] := 32 bit operand

pop instructions (32 bits): 
32 bit operand := [SS:SP]
SP := SP + 4

You can treat the pusha/pushad and popa/popad instructions as equivalent to the corre-
sponding sequence of 16 or 32 bit push/pop operations (e.g., push ax, push cx, push dx,
push bx, etc.).

 Notice three things about the 80x86 hardware stack. First, it is always in the stack seg-
ment (wherever ss points). Second, the stack grows down in memory. That is, as you push
values onto the stack the CPU stores them into successively lower memory locations.
Finally, the 80x86 hardware stack pointer (ss:sp) always contains the address of the value
on the top of the stack (the last value pushed on the stack). 

You can use the 80x86 hardware stack for temporarily saving registers and variables,
passing parameters to a procedure, allocating storage for local variables, and other uses.
The push and pop instructions are extremely valuable for manipulating these items on the
stack. You’ll get a chance to see how to use them later in this text.

Most of the push and pop instructions do not affect any of the flags in the 80x86 proces-
sor status register. The popf/popfd instructions, by their very nature, can modify all the flag
bits in the 80x86 processor status register (flags register). Pushf and pushfd push the flags
onto the stack, but they do not change any flags while doing so.

All pushes and pops are 16 or 32 bit operations. There is no (easy) way to push a sin-
gle eight bit value onto the stack. To push an eight bit value you would need to load it into
the H.O. byte of a 16 bit register, push that register, and then add one to the stack pointer.
On all processors except the 8088, this would slow future stack access since sp now con-
tains an odd address, misaligning any further pushes and pops. Therefore, most programs
push or pop 16 bits, even when dealing with eight bit values. 

Although it is relatively safe to push an eight bit memory variable, be careful when
popping the stack to an eight bit memory location. Pushing an eight bit variable with
push word ptr ByteVar   pushes two bytes, the byte in the variable ByteVar and the byte
immediately following it. Your code can simply ignore the extra byte this instruction
pushes onto the stack. Popping such values is not quite so straight forward. Generally, it
doesn’t hurt if you push these two bytes. However, it can be a disaster if you pop a value
and wipe out the following byte in memory. There are only two solutions to this problem.
First, you could pop the 16 bit value into a register like ax and then store the L.O. byte of
that register into the byte variable. The second solution is to reserve an extra byte of pad-
ding after the byte variable to hold the whole word you will pop. Most programs use the
former approach.



Chapter 06

Page 252

6.3.6 The LAHF and SAHF Instructions

The lahf (load ah from flags) and sahf (store ah into flags) instructions are archaic
instructions included in the 80x86’s instruction set to help improve compatibility with
Intel’s older 8080 µP chip. As such, these instructions have very little use in modern day
80x86 programs. The lahf  instruction does not affect any of the flag bits. The sahf instruc-
tion, by its very nature, modifies the S, Z, A, P, and C bits in the processor status register.
These instructions do not require any operands and you use them in the following man-
ner:

sahf
lahf

Sahf only affects the L.O. eight bits of the flags register. Likewise, lahf only loads the
L.O. eight bits of the flags register into the AH register. These instructions do not deal with
the overflow, direction, interrupt disable, or trace flags. The fact that these instructions do
not deal with the overflow flag is an important limitation.

Sahf has one major use. When using a floating point processor (8087, 80287, 80387,
80486, Pentium, etc.) you can use the sahf  instruction to copy the floating point status reg-
ister flags into the 80x86’s flag register. You’ll see this use in the chapter on floating point
arithmetic (see “Floating Point Arithmetic” on page 771).

6.4 Conversions

The 80x86 instruction set provides several conversion instructions. They include
movzx, movsx, cbw, cwd, cwde, cdq, bswap, and xlat. Most of these instructions sign or zero
extend values, the last two convert between storage formats and translate values via a
lookup table. These instructions take the general form:

movzx dest, src ;Dest must be twice the size of src.
movsx dest, src ;Dest must be twice the size of src.
cbw
cwd
cwde
cdq
bswap reg32
xlat ;Special form allows an operand.

6.4.1 The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions

These instructions zero and sign extend values. The cbw and cwd instructions are
available on all 80x86 processors. The movzx, movsx, cwde, and cdq instructions are avail-
able only on 80386 and later processors.

The cbw (convert byte to word) instruction sign extends the eight bit value in al to ax.
That is, it copies bit seven of AL throughout bits 8-15 of ax. This instruction is especially
important before executing an eight bit division (as you’ll see in the section “Arithmetic
Instructions” on page 255). This instruction requires no operands and you use it as fol-
lows:

cbw

The cwd (convert word to double word) instruction sign extends the 16 bit value in ax
to 32 bits and places the result in dx:ax. It copies bit 15 of ax throughout the bits in dx. It is
available on all 80x86 processors which explains why it doesn’t sign extend the value into
eax. Like the cbw instruction, this instruction is very important for division operations.
Cwd requires no operands and you use it as follows

cwd



The 80x86 Instruction Set

Page 253

The cwde instruction sign extends the 16 bit value in ax to 32 bits and places the result
in eax by copying bit 15 of ax throughout bits 16..31 of eax. This instruction is available
only on the 80386 and later processors. As with cbw and cwd the instruction has no oper-
ands and you use it as follows:

cwde

The cdq instruction sign extends the 32 bit value in eax to 64 bits and places the result
in edx:eax by copying bit 31 of eax throughout bits 0..31 of edx. This instruction is available
only on the 80386 and later. You would normally use this instruction before a long divi-
sion operation. As with cbw, cwd, and cwde the instruction has no operands and you use it
as follows:

cdq

If you want to sign extend an eight bit value to 32 or 64 bits using these instructions,
you could use sequences like the following:

; Sign extend al to dx:ax

cbw
cwd

; Sign extend al to eax

cbw
cwde

; Sign extend al to edx:eax

cbw
cwde
cdq

You can also use the movsx for sign extensions from eight to sixteen or thirty-two bits.

The movsx instruction is a generalized form of the cbw, cwd, and cwde instructions. It
will sign extend an eight bit value to a sixteen or thirty-two bits, or sign extend a sixteen
bit value to a thirty-two bits. This instruction uses a mod-reg-r/m byte to specify the two
operands. The allowable forms for this instruction are

movsx reg16, mem8
movsx reg16, reg8
movsx reg32, mem8
movsx reg32, reg8
movsx reg32, mem16
movsx reg32, reg16

Note that anything you can do with the cbw and cwde instructions, you can do with a
movsx instruction:

movsx ax, al ;CBW
movsx eax, ax ;CWDE
movsx eax, al ;CBW followed by CWDE

However, the cbw and cwde instructions are shorter and sometimes faster. This instruction
is available only on the 80386 and later processors. Note that there are not direct movsx
equivalents for the cwd and cdq instructions.

The movzx instruction works just like the movsx instruction, except it extends unsigned
values via zero extension rather than signed values through sign extension. The syntax is
the same as for the movsx instructions except, of course, you use the movzx mnemonic
rather than movsx. 

Note that if you want to zero extend an eight bit register to 16 bits (e.g., al to ax) a sim-
ple mov instruction is faster and shorter than movzx. For example, 

mov bh, 0

is faster and shorter than

movzx bx, bl

Of course, if you move the data to a different 16 bit register (e.g., movzx bx, al) the movzx
instruction is better.



Chapter 06

Page 254

Like the movsx instruction, the movzx instruction is available only on 80386 and later
processors. The sign and zero extension instructions do not affect any flags.

6.4.2 The BSWAP Instruction

The bswap instruction, available only on 80486 (yes, 486) and later processors, con-
verts between 32 bit little endian and big endian values. This instruction accepts only a sin-
gle 32 bit register operand. It swaps the first byte with the fourth and the second byte with
the third. The syntax for the instruction is

bswap reg32

where reg32 is an 80486 32 bit general purpose register.

The Intel processor families use a memory organization known as little endian byte
organization. In little endian byte organization, the L.O. byte of a multi-byte sequence
appears at the lowest address in memory. For example, bits zero through seven of a 32 bit
value appear at the lowest address; bits eight through fifteen appear at the second address
in memory; bits 16 through 23 appear in the third byte, and bits 24 through 31 appear in
the fourth byte.

Another popular memory organization is big endian. In the big endian scheme, bits
twenty-four through thirty-one appear in the first (lowest) address, bits sixteen through
twenty-three appear in the second byte, bits eight through fifteen appear in the third byte,
and bits zero through seven appear in the fourth byte. CPUs such as the Motorola 68000
family used by Apple in their Macintosh computer and many RISC chips employ the big
endian scheme.

Normally, you wouldn’t care about byte organization in memory since programs
written for an Intel processor in assembly language do not run on a 68000 processor. How-
ever, it is very common to exchange data between machines with different byte organiza-
tions. Unfortunately, 16 and 32 bit values on big endian machines do not produce correct
results when you use them on little endian machines. This is where the bswap instruction
comes in. It lets you easily convert 32 bit big endian values to 32 bit little endian values.

One interesting use of the bswap instruction is to provide access to a second set of 16
bit general purpose registers. If you are using only 16 bit registers in your code, you can
double the number of available registers by using the bswap instruction to exchange the
data in a 16 bit register with the H.O. word of a thirty-two bit register. For example, you
can keep two 16 bit values in eax and move the appropriate value into ax as follows:

< Some computations that leave a result in AX >

bswap eax

< Some additional computations involving AX >

bswap eax

< Some computations involving the original value in AX >

bswap eax

< Computations involving the 2nd copy of AX from above >

You can use this technique on the 80486 to obtain two copies of ax, bx, cx, dx, si, di, and
bp. You must exercise extreme caution if you use this technique with the sp register.

Note: to convert 16 bit big endian values to 16 bit little endian values just use the
80x86 xchg instruction. For example, if ax contains a 16 bit big endian value, you can con-
vert it to a 16 bit little endian value (or vice versa) using:

xchg al, ah

The bswap instruction does not affect any flags in the 80x86 flags register.



The 80x86 Instruction Set

Page 255

6.4.3 The XLAT Instruction

The xlat instruction translates the value in the al register based on a lookup table in
memory. It does the following:

temp := al+bx
al := ds:[temp]

that is, bx points at a table in the current data segment. Xlat replaces the value in al with the
byte at the offset originally in al. If al contains four, xlat replaces the value in al with the
fifth item (offset four) within the table pointed at by ds:bx. The xlat instruction takes the
form:

xlat

Typically it has no operand. You can specify one but the assembler virtually ignores it.
The only purpose for specifying an operand is so you can provide a segment override pre-
fix:

xlat es:Table

This tells the assembler to emit an es: segment prefix byte before the instruction. You must
still load bx with the address of Table; the form above does not provide the address of
Table to the instruction. Only the segment override prefix in the operand is significant.

The xlat instruction does not affect the 80x86’s flags register.

6.5 Arithmetic Instructions

The 80x86 provides many arithmetic operations: addition, subtraction, negation, mul-
tiplication, division/modulo (remainder), and comparing two values. The instructions
that handle these operations are add, adc, sub, sbb, mul, imul, div, idiv, cmp, neg, inc, dec, xadd,
cmpxchg, and some miscellaneous conversion instructions: aaa, aad, aam, aas, daa, and das.
The following sections describe these instructions in detail. 

The generic forms for these instructions are

add dest, src dest := dest + src
adc dest, src dest := dest + src + C
SUB dest, src dest := dest - src
sbb dest, src dest := dest - src - C
mul src acc := acc * src
imul src acc := acc * src
imul dest, src1, imm_src dest := src1 * imm_src
imul dest, imm_src dest := dest * imm_src
imul dest, src dest := dest * src
div src acc := xacc /-mod src
idiv src acc := xacc /-mod src
cmp dest, src dest - src (and set flags)
neg dest dest := - dest
inc dest dest := dest + 1
dec dest dest := dest - 1
xadd dest, src (see text)
cmpxchg operand1, operand2 (see text)
cmpxchg8ax, operand (see text)
aaa (see text)
aad (see text)
aam (see text)
aas (see text)
daa (see text)
das (see text)



Chapter 06

Page 256

6.5.1  The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA

These instructions take the forms:

add reg, reg
add reg, mem
add mem, reg
add reg, immediate data
add mem, immediate data
add eax/ax/al, immediate data

adc forms are identical to ADD.

inc reg
inc mem
inc reg16
xadd mem, reg
xadd reg, reg
aaa
daa

Note that the aaa and daa instructions use the implied addressing mode and allow no
operands.

6.5.1.1 The ADD and ADC Instructions

The syntax of add and adc (add with carry) is similar to mov. Like mov, there are special
forms for the ax/eax register that are more efficient. Unlike mov, you cannot add a value to
a segment register with these instructions.

The add instruction adds the contents of the source operand to the destination oper-
and. For example,   add ax, bx   adds bx to ax leaving the sum in the ax register. Add com-
putes dest :=dest+source   while adc computes   dest :=dest+source+C   where C represents
the value in the carry flag. Therefore, if the carry flag is clear before execution, adc behaves
exactly like the add instruction. 

Both instructions affect the flags identically. They set the flags as follows:

• The overflow flag denotes a signed arithmetic overflow.
• The carry flag denotes an unsigned arithmetic overflow.
• The sign flag denotes a negative result (i.e., the H.O. bit of the result is

one).
• The zero flag is set if the result of the addition is zero.
• The auxiliary carry flag contains one if a BCD overflow out of the L.O.

nibble occurs.
• The parity flag is set or cleared depending on the parity of the L.O. eight

bits of the result. If there are an even number of one bits in the result, the
ADD instructions will set the parity flag to one (to denote even parity). If
there are an odd number of one bits in the result, the ADD instructions
clear the parity flag (to denote odd parity).

The add and adc instructions do not affect any other flags.

The add and adc instructions allow eight, sixteen, and (on the 80386 and later)
thirty-two bit operands. Both source and destination operands must be the same size. See
Chapter Nine if you want to add operands whose size is different.

Since there are no memory to memory additions, you must load memory operands
into registers if you want to add two variables together. The following code examples
demonstrate possible forms for the add instruction:

; J:= K + M

mov ax, K
add ax, M
mov J, ax



The 80x86 Instruction Set

Page 257

If you want to add several values together, you can easily compute the sum in a single
register:

; J := K + M + N + P

mov ax, K
add ax, M
add ax, N
add ax, P
mov J, ax

If you want to reduce the number of hazards on an 80486 or Pentium processor, you can
use code like the following:

mov bx, K
mov ax, M
add bx, N
add ax, P
add ax, bx
mov J, ax

One thing that beginning assembly language programmers often forget is that you
can add a register to a memory location. Sometimes beginning programmers even believe
that both operands have to be in registers, completely forgetting the lessons from Chapter
Four. The 80x86 is a CISC processor that allows you to use memory addressing modes
with various instructions like add. It is often more efficient to take advantages of the
80x86’s memory addressing capabilities

; J := K + J

mov ax, K ;This works because addition is
add J, ax ; commutative!

; Often, beginners will code the above as one of the following two sequences.
; This is unnecessary!

mov ax, J ;Really BAD way to compute 
mov bx, K ; J := J + K.
add ax, bx
mov J, ax

mov ax, J ;Better, but still not a good way to
add ax, K ; compute J := J + K
mov J, ax

Of course, if you want to add a constant to a memory location, you only need a single
instruction. The 80x86 lets you directly add a constant to memory:

; J := J + 2

add J, 2

There are special forms of the add and adc instructions that add an immediate constant
to the al, ax, or eax register. These forms are shorter than the standard add reg, immediate
instruction. Other instructions also provide shorter forms when using these registers;
therefore, you should try to keep computations in the accumulator registers (al, ax, and
eax) as much as possible. 

add bl, 2 ;Three bytes long
add al, 2 ;Two bytes long
add bx, 2 ;Four bytes long
add ax, 2 ;Three bytes long
etc.

Another optimization concerns the use of small signed constants with the add and adc
instructions. If a value is in the range -128,,+127, the add and adc instructions will sign
extend an eight bit immediate constant to the necessary destination size (eight, sixteen, or
thirty-two bits). Therefore, you should try to use small constants, if possible, with the add
and adc instructions.



Chapter 06

Page 258

6.5.1.2 The INC Instruction

The inc (increment) instruction adds one to its operand. Except for the carry flag, inc
sets the flags the same way as   add operand, 1   would.

Note that there are two forms of inc for 16 or 32 bit registers. They are the   inc reg   and
  inc reg16   instructions. The   inc reg   and   inc mem   instructions are the same. This
instruction consists of an opcode byte followed by a mod-reg-r/m byte (see Appendix D
for details). The inc reg16   instruction has a single byte opcode. Therefore, it is shorter and
usually faster.

The inc operand may be an eight bit, sixteen bit, or (on the 80386 and later) thirty-two
bit register or memory location.

The inc instruction is more compact and often faster than the comparable add reg, 1 or
add mem, 1 instruction. Indeed, the inc reg16 instruction is one byte long, so it turns out that
two such instructions are shorter than the comparable add reg, 1 instruction; however, the
two increment instructions will run slower on most modern members of the 80x86 family. 

The inc instruction is very important because adding one to a register is a very com-
mon operation. Incrementing loop control variables or indices into an array is a very com-
mon operation, perfect for the inc instruction. The fact that inc does not affect the carry
flag is very important. This allows you to increment array indices without affecting the
result of a multiprecision arithmetic operation ( see “Arithmetic and Logical Operations”
on page 459 for more details about multiprecision arithmetic).

6.5.1.3 The XADD Instruction

Xadd (Exchange and Add) is another 80486 (and later) instruction. It does not appear
on the 80386 and earlier processors. This instruction adds the source operand to the desti-
nation operand and stores the sum in the destination operand. However, just before stor-
ing the sum, it copies the original value of the destination operand into the source
operand. The following algorithm describes this operation:

xadd dest, source

temp := dest
dest := dest + source
source := temp

The xadd sets the flags just as the add instruction would. The xadd instruction allows
eight, sixteen, and thirty-two bit operands. Both source and destination operands must be
the same size.

6.5.1.4 The AAA and DAA Instructions

The aaa (ASCII adjust after addition) and daa (decimal adjust for addition) instruc-
tions support BCD arithmetic. Beyond this chapter, this text will not cover BCD or ASCII
arithmetic since it is mainly for controller applications, not general purpose programming
applications. BCD values are decimal integer coded in binary form with one decimal digit
(0..9) per nibble. ASCII (numeric) values contain a single decimal digit per byte, the H.O.
nibble of the byte should contain zero. 

The aaa and daa instructions modify the result of a binary addition to correct it for
ASCII or decimal arithmetic. For example, to add two BCD values, you would add them
as though they were binary numbers and then execute the daa instruction afterwards to
correct the results. Likewise, you can use the aaa instruction to adjust the result of an
ASCII addition after executing an add instruction. Please note that these two instructions
assume that the add operands were proper decimal or ASCII values. If you add binary



The 80x86 Instruction Set

Page 259

(non-decimal or non-ASCII) values together and try to adjust them with these instruc-
tions, you will not produce correct results.

The choice of the name “ASCII arithmetic” is unfortunate, since these values are not
true ASCII characters. A name like “unpacked BCD” would be more appropriate. How-
ever, Intel uses the name ASCII, so this text will do so as well to avoid confusion. How-
ever, you will often hear the term “unpacked BCD” to describe this data type.

Aaa (which you generally execute after an add, adc, or xadd instruction) checks the
value in al for BCD overflow. It works according to the following basic algorithm:

if ( (al and 0Fh) > 9 or (AuxC5 =1) ) then

if (8088 or 8086)6 then 
al := al + 6

else 
ax := ax + 6

endif

ah := ah + 1
AuxC := 1 ;Set auxilliary carry
Carry := 1 ; and carry flags.

else

AuxC := 0 ;Clear auxilliary carry
Carry := 0 ; and carry flags.

endif
al := al and 0Fh

The aaa instruction is mainly useful for adding strings of digits where there is exactly
one decimal digit per byte in a string of numbers. This text will not deal with BCD or
ASCII numeric strings, so you can safely ignore this instruction for now. Of course, you
can use the aaa instruction any time you need to use the algorithm above, but that would
probably be a rare situation.

The daa instruction functions like aaa except it handles packed BCD (binary code dec-
imal) values rather than the one digit per byte unpacked values aaa handles. As for aaa,
daa’s main purpose is to add strings of BCD digits (with two digits per byte). The algo-
rithm for daa is

if ( (AL and 0Fh) > 9 or (AuxC = 1)) then

al := al + 6
AuxC := 1 ;Set Auxilliary carry.

endif
if ( (al > 9Fh) or (Carry = 1)) then

al := al + 60h
Carry := 1; ;Set carry flag.

endif

6.5.2 The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS

The sub (subtract), sbb (subtract with borrow), dec (decrement), aas (ASCII adjust for
subtraction), and das (decimal adjust for subtraction) instructions work as you expect.
Their syntax is very similar to that of the add instructions:

sub reg, reg
sub reg, mem
sub mem, reg
sub reg, immediate data
sub mem, immediate data
sub eax/ax/al, immediate data

5. AuxC denotes the auxiliary carry flag in the flags register.
6. The 8086/8088 work differently from the later processors, but for all valid operands all 80x86 processors pro-
duce correct results.



Chapter 06

Page 260

sbb forms are identical to sub.

dec reg
dec mem
dec reg16
aas
das

The sub instruction computes the value dest := dest - src. The sbb instruction computes
dest := dest - src - C.  Note that subtraction is not commutative. If you want to compute the
result for dest := src - dest you will need to use several instructions, assuming you need to
preserve the source operand).

One last subject worth discussing is how the sub instruction affects the 80x86 flags reg-
ister7. The sub, sbb, and dec instructions affect the flags as follows:

• They set the zero flag if the result is zero. This occurs only if the operands
are equal for sub and sbb. The dec instruction sets the zero flag only when
it decrements the value one.

• These instructions set the sign flag if the result is negative.
• These instructions set the overflow flag if signed overflow/underflow

occurs.
• They set the auxiliary carry flag as necessary for BCD/ASCII arithmetic.
• They set the parity flag according to the number of one bits appearing in

the result value.
• The sub and sbb instructions set the carry flag if an unsigned overflow

occurs. Note that the dec instruction does not affect the carry flag.

The aas instruction, like its aaa counterpart, lets you operate on strings of ASCII num-
bers with one decimal digit (in the range 0..9) per byte. You would use this instruction
after a sub or sbb instruction on the ASCII value. This instruction uses the following algo-
rithm:

if ( (al and 0Fh) > 9 or AuxC = 1) then
al := al - 6
ah := ah - 1
AuxC := 1 ;Set auxilliary carry
Carry := 1 ; and carry flags.

else
AuxC := 0 ;Clear Auxilliary carry
Carry := 0 ; and carry flags.

endif
al := al and 0Fh

The das instruction handles the same operation for BCD values, it uses the following
algorithm:

if ( (al and 0Fh) > 9 or (AuxC = 1)) then
al := al -6
AuxC = 1

endif
if (al > 9Fh or Carry = 1) then

al := al - 60h
Carry := 1 ;Set the Carry flag.

endif

Since subtraction is not commutative, you cannot use the sub instruction as freely as
the add instruction. The following examples demonstrate some of the problems you may
encounter.

; J := K - J

mov ax, K ;This is a nice try, but it computes
sub J, ax ; J := J - K, subtraction isn’t

; commutative!

7. The SBB instruction affects the flags in a similar fashion, just don’t forget that SBB computes dest-source-C.



The 80x86 Instruction Set

Page 261

mov ax, K ;Correct solution.
sub ax, J
mov J, ax

; J := J - (K + M) -- Don’t forget this is equivalent to J := J - K - M

mov ax, K ;Computes AX := K + M
add ax, M
sub J, ax ;Computes J := J - (K + M)

mov ax, J ;Another solution, though less
sub ax, K ;Efficient
sub ax, M
mov J, ax

Note that the sub and sbb instructions, like add and adc, provide short forms to sub-
tract a constant from an accumulator register (al, ax, or eax). For this reason, you should
try to keep arithmetic operations in the accumulator registers as much as possible. The sub
and sbb instructions also provide a shorter form when subtracting constants in the range
-128..+127 from a memory location or register. The instruction will automatically sign
extend an eight bit signed value to the necessary size before the subtraction occurs. See
Appendix D for the details.

In practice, there really isn’t a need for an instruction that subtracts a constant from a
register or memory location – adding a negative value achieves the same result. Neverthe-
less, Intel provides a subtract immediate instruction.

After the execution of a sub instruction, the condition code bits (carry, sign, overflow,
and zero) in the flags register contain values you can test to see if one of sub’s operands is
equal, not equal, less than, less than or equal, greater than, or greater than or equal to the
other operand. See the cmp instruction for more details.

6.5.3 The CMP Instruction

The cmp (compare) instruction is identical to the sub instruction with one crucial dif-
ference – it does not store the difference back into the destination operand. The syntax for
the cmp instruction is very similar to sub, the generic form is

cmp dest, src

The specific forms are

cmp reg, reg
cmp reg, mem
cmp mem, reg
cmp reg, immediate data
cmp mem, immediate data
cmp eax/ax/al, immediate data

The cmp instruction updates the 80x86’s flags according to the result of the subtraction
operation (dest - src). You can test the result of the comparison by checking the appropri-
ate flags in the flags register. For details on how this is done, see “The “Set on Condition”
Instructions” on page 281 and “The Conditional Jump Instructions” on page 296.

Usually you’ll want to execute a conditional jump instruction after a cmp instruction.
This two step process, comparing two values and setting the flag bits then testing the flag
bits with the conditional jump instructions, is a very efficient mechanism for making deci-
sions in a program. 

Probably the first place to start when exploring the cmp instruction is to take a look at
exactly how the cmp instruction affects the flags. Consider the following cmp instruction:

cmp ax, bx

This instruction performs the computation ax-bx and sets the flags depending upon
the result of the computation. The flags are set as follows:

Z: The zero flag is set if and only if ax = bx. This is the only time ax-bx produces a zero
result. Hence, you can use the zero flag to test for equality or inequality. 



Chapter 06

Page 262

S: The sign flag is set to one if the result is negative. At first glance, you might think
that this flag would be set if ax is less than bx but this isn’t always the case. If
ax=7FFFh and bx=-1 (0FFFFh) subtracting ax from bx produces 8000h, which is
negative (and so the sign flag will be set). So, for signed comparisons anyway, the
sign flag doesn’t contain the proper status. For unsigned operands, consider
ax=0FFFFh and bx=1. Ax is greater than bx but their difference is 0FFFEh which is
still negative. As it turns out, the sign flag and the overflow flag, taken together,
can be used for comparing two signed values. 

O: The overflow flag is set after a cmp operation if the difference of ax and bx pro-
duced an overflow or underflow. As mentioned above, the sign flag and the over-
flow flag are both used when performing signed comparisons. 

C: The carry flag is set after a cmp operation if subtracting bx from ax requires a bor-
row. This occurs only when ax is less than bx where ax and bx are both unsigned
values. 

The cmp instruction also affects the parity and auxiliary carry flags, but you’ll rarely
test these two flags after a compare operation. Given that the cmp instruction sets the flags
in this fashion, you can test the comparison of the two operands with the following flags: 

cmp Oprnd1, Oprnd2

For signed comparisons, the S (sign) and O (overflow) flags, taken together, have the following meaning:
If ((S=0) and (O=1)) or ((S=1) and (O=0)) then Oprnd1 < Oprnd2 when using a signed comparison.
If ((S=0) and (O=0)) or ((S=1) and (O=1)) then Oprnd1 >= Oprnd2 when using a signed comparison.

To understand why these flags are set in this manner, consider the following exam-
ples: 

Oprnd1 minus Oprnd2 S O
------ ------ - -

0FFFF (-1) - 0FFFE (-2) 0 0
08000 - 00001 0 1
0FFFE (-2) - 0FFFF (-1) 1 0
07FFF (32767) - 0FFFF (-1) 1 1

Remember, the cmp operation is really a subtraction, therefore, the first example above
computes (-1)-(-2) which is (+1). The result is positive and an overflow did not occur so
both the S and O flags are zero. Since (S xor O) is zero, Oprnd1 is greater than or equal to
Oprnd2. 

In the second example, the cmp instruction would compute (-32768)-(+1) which is
(-32769). Since a 16-bit signed integer cannot represent this value, the value wraps around
to 7FFFh (+32767) and sets the overflow flag. Since the result is positive (at least within the
confines of 16 bits) the sign flag is cleared. Since (S xor O) is one here, Oprnd1 is less than
Oprnd2. 

In the third example above, cmp computes (-2)-(-1) which produces (-1). No overflow
occurred so the O flag is zero, the result is negative so the sign flag is one. Since (S xor O)
is one, Oprnd1 is less than Oprnd2. 

Table 27: Condition Code Settings After CMP

Unsigned operands: Signed operands:

Z: equality/inequality Z: equality/inequality

C: Oprnd1 < Oprnd2 (C=1)
    Oprnd1 >= Oprnd2 (C=0)

C: no meaning 

S: no meaning S: see below

O: no meaning O: see below



The 80x86 Instruction Set

Page 263

In the fourth (and final) example, cmp computes (+32767)-(-1). This produces (+32768),
setting the overflow flag. Furthermore, the value wraps around to 8000h (-32768) so the
sign flag is set as well. Since (S xor O) is zero, Oprnd1 is greater than or equal to Oprnd2. 

6.5.4 The CMPXCHG, and CMPXCHG8B Instructions

The cmpxchg (compare and exchange) instruction is available only on the 80486 and
later processors. It supports the following syntax:

cmpxchg reg, reg
cmpxchg mem, reg

The operands must be the same size (eight, sixteen, or thirty-two bits). This instruction
also uses the accumulator register; it automatically chooses al, ax, or eax to match the size
of the operands.

This instruction compares al, ax, or eax with the first operand and sets the zero flag if
they are equal. If so, then cmpxchg copies the second operand into the first. If they are not
equal, cmpxchg copies the first operand into the accumulator. The following algorithm
describes this operation:

cmpxchg operand1, operand2

if ({al/ax/eax} = operand1) then
8

zero := 1 ;Set the zero flag
operand1 := operand2

else

zero := 0 ;Clear the zero flag
{al/ax/eax} := operand1

endif

Cmpxchg supports certain operating system data structures requiring atomic opera-
tions9 and semaphores. Of course, if you can fit the above algorithm into your code, you
can use the cmpxchg instruction as appropriate.

Note: unlike the cmp instruction, the cmpxchg instruction only affects the 80x86 zero
flag. You cannot test other flags after cmpxchg as you could with the cmp instruction.

The Pentium processor supports a 64 bit compare and exchange instruction –
cmpxchg8b. It uses the syntax:

cmpxchg8b ax, mem64

This instruction compares the 64 bit value in edx:eax with the memory value. If they are
equal, the Pentium stores ecx:ebx into the memory location, otherwise it loads edx:eax
with the memory location. This instruction sets the zero flag according to the result. It
does not affect any other flags.

6.5.5 The NEG Instruction 

The neg (negate) instruction takes the two’s complement of a byte or word. It takes a
single (destination) operation and negates it. The syntax for this instruction is

neg dest

It computes the following:

dest := 0 - dest

This effectively reverses the sign of the destination operand. 

8. The choice of al, ax, or eax is made by the size of the operands. Both operands to cmpxchg must be the same
size.
9. An atomic operation is one that the system cannot interrupt.



Chapter 06

Page 264

If the operand is zero, its sign does not change, although this clears the carry flag.
Negating any other value sets the carry flag. Negating a byte containing -128, a word con-
taining -32,768, or a double word containing -2,147,483,648 does not change the operand,
but will set the overflow flag. Neg always updates the A, S, P, and Z flags as though you
were using the sub instruction.

The allowable forms are:

neg reg
neg mem

The operands may be eight, sixteen, or (on the 80386 and later) thirty-two bit values.

Some examples:

; J := - J

neg J

; J := -K
mov ax, K
neg ax
mov J, ax

6.5.6 The Multiplication Instructions: MUL, IMUL, and AAM

The multiplication instructions provide you with your first taste of irregularity in the
8086’s instruction set. Instructions like add, adc, sub, sbb, and many others in the 8086
instruction set use a mod-reg-r/m byte to support two operands. Unfortunately, there
aren’t enough bits in the 8086’s opcode byte to support all instructions, so the 8086 uses
the reg bits in the mod-reg-r/m byte as an opcode extension. For example, inc, dec, and
neg do not require two operands, so the 80x86 CPUs use the reg bits as an extension to the
eight bit opcode. This works great for single operand instructions, allowing Intel’s design-
ers to encode several instructions (eight, in fact) with a single opcode. 

Unfortunately, the multiply instructions require special treatment and Intel’s design-
ers were still short on opcodes, so they designed the multiply instructions to use a single
operand. The reg field contains an opcode extension rather than a register value. Of
course, multiplication is  a two operand function. The 8086 always assumes the accumula-
tor (al, ax, or eax) is the destination operand. This irregularity makes using multiplication
on the 8086 a little more difficult than other instructions because one operand has to be in
the accumulator. Intel adopted this unorthogonal approach because they felt that pro-
grammers would use multiplication far less often than instructions like add and sub. 

One problem with providing only a mod-reg-r/m form of the instruction is that you
cannot multiply the accumulator by a constant; the mod-reg-r/m byte does not support
the immediate addressing mode. Intel quickly discovered the need to support multiplica-
tion by a constant and provide some support for this in the 80286 processor10. This was
especially important for multidimensional array access. By the time the 80386 rolled
around, Intel generalized one form of the multiplication operation allowing standard
mod-reg-r/m operands.

There are two forms of the multiply instruction: an unsigned multiplication (mul) and
a signed multiplication (imul). Unlike addition and subtraction, you need separate instruc-
tions for these two operations.

The multiply instructions take the following forms:

10. On the original 8086 chip multiplication by a constant was always faster using shifts, additions, and subtrac-
tions. Perhaps Intel’s designers didn’t bother with multiplication by a constant for this reason. However, the
80286 multiply instruction was faster than the 8086 multiply instruction, so it was no longer true that multiplica-
tion was slower and the corresponding shift, add, and subtract instructions.



The 80x86 Instruction Set

Page 265

Unsigned Multiplication:

mul reg
mul mem

Signed (Integer) Multiplication:

imul reg
imul mem
imul reg, reg, immediate (2)
imul reg, mem, immediate (2)
imul reg, immediate (2)
imul reg, reg (3)
imul reg, mem (3)

BCD Multiplication Operations:

aam

2- Available on the 80286 and later, only.
3- Available on the 80386 and later, only.

As you can see, the multiply instructions are a real mess. Worse yet, you have to use
an 80386 or later processor to get near full functionality. Finally, there are some restrictions
on these instructions not obvious above. Alas, the only way to deal with these instructions
is to memorize their operation.

Mul, available on all processors, multiplies unsigned eight, sixteen, or thirty-two bit
operands. Note that when multiplying two n-bit values, the result may require as many as
2*n bits. Therefore, if the operand is an eight bit quantity, the result will require sixteen
bits. Likewise, a 16 bit operand produces a 32 bit result and a 32 bit operand requires 64
bits for the result.

The mul instruction, with an eight bit operand, multiplies the al register by the oper-
and and stores the 16 bit result in ax. So 

mul operand8
or imul operand8

computes:

ax := al * operand8

“*” represents an unsigned multiplication for mul and a signed multiplication for imul.

 If you specify a 16 bit operand, then mul and imul compute:

dx:ax := ax * operand16

“*” has the same meanings as above and dx:ax means that dx contains the H.O. word of the
32 bit result and ax contains the L.O. word of the 32 bit result. 

 If you specify a 32 bit operand, then mul and imul compute the following:

edx:eax := eax * operand32

“*” has the same meanings as above and edx:eax means that edx contains the H.O. double
word of the 64 bit result and eax contains the L.O. double word of the 64 bit result. 

If an 8x8, 16x16, or 32x32 bit product requires more than eight, sixteen, or thirty-two
bits (respectively), the mul and imul instructions set the carry and overflow flags. 

Mul and imul scramble the A, P, S, and Z flags. Especially note that the sign and zero
flags do not contain meaningful values after the execution of these two instructions.

Imul (integer multiplication) operates on signed operands. There are many different
forms of this instruction as Intel attempted to generalize this instruction with successive
processors. The previous paragraphs describe the first form of the imul instruction, with a
single operand. The next three forms of the imul instruction are available only on the 80286
and later processors. They provide the ability to multiply a register by an immediate
value. The last two forms, available only on 80386 and later processors, provide the ability
to multiply an arbitrary register by another register or memory location. Expanded to
show allowable operand sizes, they are



Chapter 06

Page 266

imul operand1, operand2, immediate ;General form

imul reg16, reg16, immediate8
imul reg16, reg16, immediate16
imul reg16, mem16, immediate8
imul reg16, mem16, immediate16
imul reg16, immediate8 
imul reg16, immediate16
imul reg32, reg32, immediate8 (3)
imul reg32, reg32, immediate32 (3)
imul reg32, mem32, immediate8 (3)
imul reg32, mem32, immediate32 (3)
imul reg32, immediate8 (3)
imul reg32, immediate32 (3)

3- Available on the 80386 and later, only.

The  imul reg, immediate  instructions are a special syntax the assembler provides. The
encodings for these instructions are the same as   imul reg, reg, immediate. The assembler
simply supplies the same register value for both operands.

These instructions compute:

operand1 := operand2 * immediate
operand1 := operand1 * immediate

Besides the number of operands, there are several differences between these forms
and the single operand mul/imul instructions:

• There isn’t an 8x8 bit multiplication available (the immediate8 operands
simply provide a shorter form of the instruction. Internally, the CPU sign
extends the operand to 16 or 32 bits as necessary).

• These instructions do not produce a 2*n bit result. That is, a 16x16 multi-
ply produces a 16 bit result. Likewise, a 32x32 bit multiply produces a 32
bit result. These instructions set the carry and overflow flags if the result
does not fit into the destination register.

• The 80286 version of imul allows an immediate operand, the standard
mul/imul instructions do not.

The last two forms of the imul instruction are available only on 80386 and later proces-
sors. With the addition of these formats, the imul instruction is almost as general as the add
instruction11:

imul reg, reg
imul reg, mem

These instructions compute 

reg := reg * reg
and reg := reg * mem

Both operands must be the same size. Therefore, like the 80286 form of the imul
instruction, you must test the carry or overflow flag to detect overflow. If overflow does
occur, the CPU loses the H.O. bits of the result.

Important Note: Keep in mind that the zero flag contains an indeterminate result after
executing a multiply instruction. You cannot test the zero flag to see if the result is zero
after a multiplication. Likewise, these instructions scramble the sign flag. If you need to
check these flags, compare the result to zero after testing the carry or overflow flags.

The aam (ASCII Adjust after Multiplication) instruction, like aaa and aas, lets you
adjust an unpacked decimal value after multiplication. This instruction operates directly
on the ax register. It assumes that you’ve multiplied two eight bit values in the range 0..9
together and the result is sitting in ax (actually, the result will be sitting in al since 9*9 is 81,
the largest possible value; ah must contain zero). This instruction divides ax by 10 and
leaves the quotient in ah and the remainder in al:

11. There are still some restrictions on the size of the operands, e.g., no eight bit registers, you have to consider.



The 80x86 Instruction Set

Page 267

ah := ax div 10
al := ax mod 10

Unlike the other decimal/ASCII adjust instructions, assembly language programs regu-
larly use aam since conversion between number bases uses this algorithm.

Note: the aam instruction consists of a two byte opcode, the second byte of which is
the immediate constant 10. Assembly language programmers have discovered that if you
substitute another immediate value for this constant, you can change the divisor in the
above algorithm. This, however, is an undocumented feature. It works in all varieties of
the processor Intel has produced to date, but there is no guarantee that Intel will support
this in future processors. Of course, the 80286 and later processors let you multiply by a
constant, so this trick is hardly necessary on modern systems.

There is no dam (decimal adjust for multiplication) instruction on the 80x86 processor.

Perhaps the most common use of the imul instruction is to compute offsets into multi-
dimensional arrays. Indeed, this is probably the main reason Intel added the ability to
multiply a register by a constant on the 80286 processor. In Chapter Four, this text used
the standard 8086 mul instruction for array index computations. However, the extended
syntax of the imul instruction makes it a much better choice as the following examples
demonstrate:

MyArray word 8 dup ( 7 dup ( 6 dup (?))) ;8x7x6 array.
J word ?
K word ?
M word ?

 .
 .
 .

; MyArray [J, K, M] := J + K - M

mov ax, J
add ax, K
sub ax, M

mov bx, J ;Array index :=
imul bx, 7 ; ((J*7 + K) * 6 + M) * 2
add bx, K
imul bx, 6
add bx, M
add bx, bx ;BX := BX * 2

mov MyArray[bx], ax

Don’t forget that the multiplication instructions are very slow; often an order of mag-
nitude slower than an addition instruction. There are faster ways to multiply a value by a
constant. See “Multiplying Without MUL and IMUL” on page 487 for all the details.

6.5.7 The Division Instructions: DIV, IDIV, and AAD

The 80x86 divide instructions perform a 64/32 division (80386 and later only), a 32/16
division or a 16/8 division. These instructions take the form:

div reg For unsigned division
div mem

idiv reg For signed division
idiv mem

aad ASCII adjust for division

The div instruction computes an unsigned division. If the operand is an eight bit oper-
and, div divides the ax register by the operand leaving the quotient in al and the remainder
(modulo) in ah. If the operand is a 16 bit quantity, then the div instruction divides the 32 bit
quantity in dx:ax by the operand leaving the quotient in ax and the remainder in . With 32
bit operands (on the 80386 and later) div divides the 64 bit value in edx:eax by the operand
leaving the quotient in eax and the remainder in edx.



Chapter 06

Page 268

You cannot, on the 80x86, simply divide one eight bit value by another. If the denomi-
nator is an eight bit value, the numerator must be a sixteen bit value. If you need to divide
one unsigned eight bit value by another, you must zero extend the numerator to sixteen
bits. You can accomplish this by loading the numerator into the al register and then mov-
ing zero into the ah register. Then you can divide ax by the denominator operand to pro-
duce the correct result. Failing to zero extend al before executing div may cause the 80x86 to
produce incorrect results! 

When you need to divide two 16 bit unsigned values, you must zero extend the ax
register (which contains the numerator) into the dx register. Just load the immediate value
zero into the dx register12. If you need to divide one 32 bit value by another, you must zero
extend the eax register into edx (by loading a zero into edx) before the division.

When dealing with signed integer values, you will need to sign extend al to ax, ax to dx
or eax into edx before executing idiv. To do so, use the cbw, cwd, cdq, or movsx instructions. If
the H.O. byte or word does not already contain significant bits, then you must sign extend
the value in the accumulator (al/ax/eax) before doing the idiv operation. Failure to do so
may produce incorrect results. 

There is one other catch to the 80x86’s divide instructions: you can get a fatal error
when using this instruction. First, of course, you can attempt to divide a value by zero.
Furthermore, the quotient may be too large to fit into the eax, ax, or al register. For exam-
ple, the 16/8 division “8000h / 2” produces the quotient 4000h with a remainder of zero.
4000h will not fit into eight bits. If this happens, or you attempt to divide by zero, the
80x86 will generate an int 0 trap. This usually means BIOS will print “division by zero” or
“divide error” and abort your program. If this happens to you, chances are you didn’t sign
or zero extend your numerator before executing the division operation. Since this error
will cause your program to crash, you should be very careful about the values you select
when using division. 

The auxiliary carry, carry, overflow, parity, sign, and zero flags are undefined after a
division operation. If an overflow occurs (or you attempt a division by zero) then the
80x86 executes an INT 0 (interrupt zero).

Note that the 80286 and later processors do not provide special forms for idiv as they
do for imul. Most programs use division far less often than they use multiplication, so
Intel’s designers did not bother creating special instructions for the divide operation. Note
that there is no way to divide by an immediate value. You must load the immediate value
into a register or a memory location and do the division through that register or memory
location.

The aad (ASCII Adjust before Division) instruction is another unpacked decimal oper-
ation. It splits apart unpacked binary coded decimal values before an ASCII division oper-
ation. Although this text will not cover BCD arithmetic, the aad instruction is useful for
other operations. The algorithm that describes this instruction is

al := ah*10 + al
ah := 0

This instruction is quite useful for converting strings of digits into integer values (see the
questions at the end of this chapter).

The following examples show how to divide one sixteen bit value by another.

; J := K / M (unsigned)

mov ax, K ;Get dividend
mov dx, 0 ;Zero extend unsigned value in AX to DX.

< In practice, we should verify that M does not contain zero here >

div M
mov J, ax

; J := K / M (signed)

12. Or use the MOVZX instruction on the 80386 and later processors.



The 80x86 Instruction Set

Page 269

mov ax, K ;Get dividend
cwd ;Sign extend signed value in AX to DX.

< In practice, we should verify that M does not contain zero here >

idiv M
mov J, ax

; J := (K*M)/P

mov ax, K ;Note that the imul instruction produces
imul M ; a 32 bit result in DX:AX, so we don’t
idiv P ; need to sign extend AX here.
mov J, ax ;Hope and pray result fits in 16 bits!

6.6 Logical, Shift, Rotate and Bit Instructions

The 80x86 family provides five logical instructions, four rotate instructions, and three
shift instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror,
rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar. The 80386 and later processors
provide an even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shld, shrd, and the
conditional set instructions (setcc).

These instructions can manipulate bits, convert values, do logical operations, pack
and unpack data, and do arithmetic operations. The following sections describe each of
these instructions in detail.

6.6.1  The Logical Instructions: AND, OR, XOR, and NOT

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and
thirty-two bit versions of each instruction exist. The and, not, or, and xor instructions do the
following:

and dest, source ;dest := dest and source
or dest, source ;dest := dest or source
xor dest, source ;dest := dest xor source
not dest ;dest := not dest

The specific variations are

and reg, reg
and mem, reg
and reg, mem
and reg, immediate data
and mem, immediate data
and eax/ax/al, immediate data

or uses the same formats as AND
xor uses the same formats as AND

not register
not mem

Except not, these instructions affect the flags as follows:

• They clear the carry flag.
• They clear the overflow flag.
• They set the zero flag if the result is zero, they clear it otherwise.
• They copy the H.O. bit of the result into the sign flag.
• They set the parity flag according to the parity (number of one bits) in the

result.
• They scramble the auxiliary carry flag.

The not instruction does not affect any flags.

Testing the zero flag after these instructions is particularly useful. The and instruction
sets the zero flag if the two operands do not have any ones in corresponding bit positions
(since this would produce a zero result); for example, if the source operand contained a



Chapter 06

Page 270

single one bit, then the zero flag will be set if the corresponding destination bit is zero, it
will be one otherwise. The or instruction will only set the zero flag if both operands con-
tain zero. The xor instruction will set the zero flag only if both operands are equal. Notice
that the xor operation will produce a zero result if and only if the two operands are equal.
Many programmers commonly use this fact to clear a sixteen bit register to zero since an
instruction of the form

xor reg16, reg16

is shorter than the comparable mov reg,0 instruction.

Like the addition and subtraction instructions, the and, or, and xor instructions provide
special forms involving the accumulator register and immediate data. These forms are
shorter and sometimes faster than the general “register, immediate” forms. Although one
does not normally think of operating on signed data with these instructions, the 80x86
does provide a special form of the “reg/mem, immediate” instructions that sign extend a
value in the range -128..+127 to sixteen or thirty-two bits, as necessary.

The instruction’s operands must all be the same size. On pre-80386 processors they
can be eight or sixteen bits. On 80386 and later processors, they may be 32 bits long as
well. These instructions compute the obvious bitwise logical operation on their operands,
see Chapter One for details on these operations.

You can use the and instruction to set selected bits to zero in the destination operand.
This is known as masking out data; see for more details. Likewise, you can use the or
instruction to force certain bits to one in the destination operand; see “Masking Opera-
tions with the OR Instruction” on page 491 for the details. You can use these instructions,
along with the shift and rotate instructions described next, to pack and unpack data. See
“Packing and Unpacking Data Types” on page 491 for more details.

6.6.2 The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD

The 80x86 supports three different shift instructions (shl and sal are the same instruc-
tion): shl (shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic
right). The 80386 and later processors provide two additional shifts: shld and shrd. 

The shift instructions move bits around in a register or memory location. The general
format for a shift instruction is

shl dest, count
sal dest, count
shr dest, count
sar dest, count

Dest is the value to shift and count specifies the number of bit positions to shift. For exam-
ple, the shl instruction shifts the bits in the destination operand to the left the number of
bit positions specified by the count operand. The shld and shrd instructions use the format:

shld dest, source, count
shrd dest, source, count

The specific forms for these instructions are

shl reg, 1
shl mem, 1
shl reg, imm (2)
shl mem, imm (2)
shl reg, cl
shl mem, cl

sal is a synonym for shl and uses the same formats.
shr uses the same formats as shl.
sar uses the same formats as shl.



The 80x86 Instruction Set

Page 271

shld reg, reg, imm (3)
shld mem, reg, imm (3)
shld reg, reg, cl (3)
shld mem, reg, cl (3)

shrd uses the same formats as shld.

2- This form is available on 80286 and later processors only.
3- This form is available on 80386 and later processors only.

For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On
80286 and later processors you can use an eight bit immediate constant. Of course, the
value in cl or the immediate constant should be less than or equal to the number of bits in
the destination operand. It would be a waste of time to shift left al by nine bits (eight
would produce the same result, as you will soon see). Algorithmically, you can think of
the shift operations with a count other than one as follows:

for temp := 1 to count do
shift dest, 1

There are minor differences in the way the shift instructions treat the overflow flag when
the count is not one, but you can ignore this most of the time.

The shl, sal, shr, and sar instructions work on eight, sixteen, and thirty-two bit oper-
ands. The shld and shrd instructions work on 16 and 32 bit destination operands only.

6.6.2.1 SHL/SAL

The shl and sal mnemonics are synonyms. They represent the same instruction and
use identical binary encodings. These instructions move each bit in the destination oper-
and one bit position to the left the number of times specified by the count operand. Zeros
fill vacated positions at the L.O. bit; the H.O. bit shifts into the carry flag (see Figure 6.2). 

The shl/sal instruction sets the condition code bits as follows:

• If the shift count is zero, the shl instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the oper-

and.
• The overflow flag will contain one if the two H.O. bits were different

prior to a single bit shift. The overflow flag is undefined if the shift count
is not one.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose
you have two nibbles in al and ah that you want to combine. You could use the following
code to do this:

shl ah, 4 ;This form requires an 80286 or later
or al, ah ;Merge in H.O. four bits.

Of course, al must contain a value in the range 0..F for this code to work properly (the shift
left operation automatically clears the L.O. four bits of ah before the or instruction). If the

Figure 6.2 Shift Left Operation

H.O Bit          4    3    2    1    0
0...C



Chapter 06

Page 272

H.O. four bits of al are not zero before this operation, you can easily clear them with an and
instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.
and al, 0Fh ;Clear H.O. four bits.
or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that
value by two, you can also use the shift left instruction for multiplication by powers of
two:

shl ax, 1 ;Equivalent to AX*2
shl ax, 2 ;Equivalent to AX*4
shl ax, 3 ;Equivalent to AX*8
shl ax, 4 ;Equivalent to AX*16
shl ax, 5 ;Equivlaent to AX*32
shl ax, 6 ;Equivalent to AX*64
shl ax, 7 ;Equivalent to AX*128
shl ax, 8 ;Equivalent to AX*256
etc.

Note that shl ax, 8 is equivalent to the following two instructions:

mov ah, al
mov al, 0

The shl/sal instruction multiplies both signed and unsigned values by two for each
shift. This instruction sets the carry flag if the result does not fit in the destination operand
(i.e., unsigned overflow occurs). Likewise, this instruction sets the overflow flag if the
signed result does not fit in the destination operation. This occurs when you shift a zero
into the H.O. bit of a negative number or you shift a one into the H.O. bit of a non-nega-
tive number.

6.6.2.2 SAR

 The sar instruction shifts all the bits in the destination operand to the right one bit,
replicating the H.O. bit (see Figure 6.3). 

The sar instruction sets the flag bits as follows:

• If the shift count is zero, the sar instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the oper-

and.
• The overflow flag will contain zero if the shift count is one. Overflow can

never occur with this instruction. However, if the count is not one, the
value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The auxiliary carry flag is always undefined after the sar instruction.

The sar instruction’s main purpose is to perform a signed division by some power of
two. Each shift to the right divides the value by two. Multiple right shifts divide the previ-
ous shifted result by two, so multiple shifts produce the following results:

Figure 6.3 Arithmetic Shift Right Operation

...
H.O Bit              5    4    3    2    1    0

C



The 80x86 Instruction Set

Page 273

sar ax, 1 ;Signed division by 2
sar ax, 2 ;Signed division by 4
sar ax, 3 ;Signed division by 8
sar ax, 4 ;Signed division by 16
sar ax, 5 ;Signed division by 32
sar ax, 6 ;Signed division by 64
sar ax, 7 ;Signed division by 128
sar ax, 8 ;Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv
instruction always truncates towards zero while sar truncates results toward the smaller
result. For positive results, an arithmetic shift right by one position produces the same
result as an integer division by two. However, if the quotient is negative, idiv truncates
towards zero while sar truncates towards negative infinity. The following examples dem-
onstrate the difference:

mov ax, -15
cwd
mov bx, 2
idiv ;Produces -7

mov ax, -15
sar ax, 1 ;Produces -8

Keep this in mind if you use sar for integer division operations.

The sar ax, 8 instruction effectively copies ah into al and then sign extends al into ax.
This is because sar ax, 8 will shift ah down into al but leave a copy of ah’s H.O. bit in all the
bit positions of ah. Indeed, you can use the sar instruction on 80286 and later processors to
sign extend one register into another. The following code sequences provide examples of
this usage:

; Equivalent to CBW:

mov ah, al
sar ah, 7

; Equivalent to CWD:

mov dx, ax
sar dx, 15

; Equivalent to CDQ:

mov edx, eax
sar edx, 31

Of course it may seem silly to use two instructions where a single instruction might suf-
fice; however, the cbw, cwd, and cdq instructions only sign extend al into ax, ax into dx:ax,
and eax into edx:eax. Likewise, the movsx instruction copies its sign extended operand
into a destination operand twice the size of the source operand. The sar instruction lets
you sign extend one register into another register of the same size, with the second regis-
ter containing the sign extension bits:

; Sign extend bx into cx:bx

mov cx, bx
sar cx, 15

6.6.2.3 SHR

The shr instruction shifts all the bits in the destination operand to the right one bit
shifting a zero into the H.O. bit (see Figure 6.4). 

The shr instruction sets the flag bits as follows:

• If the shift count is zero, the shr instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the oper-

and.
• If the shift count is one, the overflow flag will contain the value of the

H.O. bit of the operand prior to the shift (i.e., this instruction sets the



Chapter 06

Page 274

overflow flag if the sign changes). However, if the count is not one, the
value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result, which is always zero.
• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.
• The auxiliary carry flag is always undefined after the shr instruction.

The shift right instruction is especially useful for unpacking data. For example, sup-
pose you want to extract the two nibbles in the al register, leaving the H.O. nibble in ah
and the L.O. nibble in al. You could use the following code to do this:

mov ah, al ;Get a copy of the H.O. nibble
shr ah, 4 ;Move H.O. to L.O. and clear H.O. nibble
and al, 0Fh ;Remove H.O. nibble from al

Since shifting an unsigned integer value to the right one position is equivalent to
dividing that value by two, you can also use the shift right instruction for division by
powers of two:

shr ax, 1 ;Equivalent to AX/2
shr ax, 2 ;Equivalent to AX/4
shr ax, 3 ;Equivalent to AX/8
shr ax, 4 ;Equivalent to AX/16
shr ax, 5 ;Equivlaent to AX/32
shr ax, 6 ;Equivalent to AX/64
shr ax, 7 ;Equivalent to AX/128
shr ax, 8 ;Equivalent to AX/256
etc.

Note that shr ax, 8 is equivalent to the following two instructions:

mov al, ah
mov ah, 0

Remember that division by two using shr only works for unsigned operands. If ax con-
tains -1 and you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as
you would expect. Use the sar instruction if you need to divide a signed integer by some
power of two.

6.6.2.4 The SHLD and SHRD Instructions

The shld and shrd instructions provide double precision shift left and right operations,
respectively. These instructions are available only on 80386 and later processors. Their
generic forms are

shld operand1, operand2, immediate
shld operand1, operand2, cl
shrd operand1, operand2, immediate
shrd operand1, operand2, cl

Operand2 must be a sixteen or thirty-two bit register. Operand1 can be a register or a mem-
ory location. Both operands must be the same size. The immediate operand can be a value
in the range zero through n-1, where n is the number of bits in the two operands; it speci-
fies the number of bits to shift.

The shld instruction shifts bits in operand1 to the left. The H.O. bit shifts into the carry
flag and the H.O. bit of operand2 shifts into the L.O. bit of operand1. Note that this instruc-

Figure 6.4 Shift Right Operation

...
H.O Bit                5    4    3    2    1    0

C0



The 80x86 Instruction Set

Page 275

tion does not modify the value of operand2, it uses a temporary copy of operand2 during
the shift. The immediate operand specifies the number of bits to shift. If the count is n,
then shld shifts bit n-1 into the carry flag. It also shifts the H.O. n  bits of operand2 into the
L.O. n  bits of operand1. Pictorially, the shld instruction appears in Figure 6.5. 

The shld instruction sets the flag bits as follows:

• If the shift count is zero, the shld instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the

operand1.
• If the shift count is one, the overflow flag will contain one if the sign bit of

operand1 changes during the shift. If the count is not one, the overflow
flag is undefined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

The shld instruction is useful for packing data from many different sources. For exam-
ple, suppose you want to create a word by merging the H.O. nibbles of four other words.
You could do this with the following code:

mov ax, Value4 ;Get H.O. nibble
shld bx, ax, 4 ;Copy H.O. bits of AX to BX.
mov ax, Value3 ;Get nibble #2.
shld bx, ax, 4 ;Merge into bx.
mov ax, Value2 ;Get nibble #1.
shld bx, ax, 4 ;Merge into bx.
mov ax, Value1 ;Get L.O. nibble
shld bx, ax, 4 ;BX now contains all four nibbles.

The shrd instruction is similar to shld except, of course, it shifts its bits right rather than
left. To get a clear picture of the shrd instruction, consider Figure 6.6. 

Figure 6.5 Double Precision Shift Left Operation

Operand1
H.O Bit              4    3    2    1    0

...C

Temporary copy of Operand2
H.O Bit              4    3    2    1    0

...

Figure 6.6 Double Precision Shift Right Operation

...

Operand1
H.O Bit                5    4    3    2    1    0

C

...

Temporary Copy of Operand2
H.O Bit                5    4    3    2    1    0



Chapter 06

Page 276

The shrd instruction sets the flag bits as follows:

• If the shift count is zero, the shrd instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the

operand1.
• If the shift count is one, the overflow flag will contain one if the H.O. bit

of operand1 changes. If the count is not one, the overflow flag is unde-
fined.

• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

Quite frankly, these two instructions would probably be slightly more useful if
Operand2 could be a memory location. Intel designed these instructions to allow fast mul-
tiprecision (64 bits, or more) shifts. For more information on such usage, see “Extended
Precision Shift Operations” on page 482.

The shrd instruction is marginally more useful than shld for packing data. For exam-
ple, suppose that ax contains a value in the range 0..99 representing a year (1900..1999), bx
contains a value in the range 1..31 representing a day, and cx contains a value in the range
1..12 representing a month (see “Bit Fields and Packed Data” on page 28). You can easily
use the shrd instruction to pack this data into dx as follows:

shrd dx, ax, 7
shrd dx, bx, 5
shrd dx, cx, 4

See Figure 6.7 for a blow-by-blow example.

6.6.3 The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the
bits shifted out of the operand by the rotate instructions recirculate through the operand.
They include rcl (rotate through carry left), rcr (rotate through carry right), rol (rotate left),
and ror (rotate right). These instructions all take the forms:

Figure 6.7 Packing Data with an SHRD Instruction

15 14 13 12 11 10 9    8 7 6 5 4 3 2 1    0

Y   Y   Y   Y    Y    Y   Y

After SHRD DX, AX, 7 Instruction

15 14 13 12 11 10 9    8 7 6 5 4 3 2 1    0

D    D   D   D    D Y   Y   Y   Y    Y    Y   Y

After SHRD DX, BX, 5 Instruction

15 14 13 12 11 10 9    8 7 6 5 4 3 2 1    0

M   M   M   M D    D   D   D    D Y   Y   Y   Y    Y    Y   Y

After SHRD DX, CX, 4 Instruction



The 80x86 Instruction Set

Page 277

rcl dest, count
rol dest, count
rcr dest, count
ror dest, count

The specific forms are

rcl reg, 1
rcl mem, 1
rcl reg, imm (2)
rcl mem, imm (2)
rcl reg, cl
rcl mem, cl

rol uses the same formats as rcl.
rcr uses the same formats as rcl.
ror uses the same formats as rcl.

2- This form is avialable on 80286 and later processors only.

6.6.3.1 RCL

The rcl (rotate through carry left), as its name implies, rotates bits to the left, through
the carry flag, and back into bit zero on the right (see Figure 6.8). 

Note that if you rotate through carry an object n+1  times, where n  is the number of
bits in the object, you wind up with your original value. Keep in mind, however, that
some flags may contain different values after n+1  rcl operations.

The rcl instruction sets the flag bits as follows:

• The carry flag contains the last bit shifted out of the H.O. bit of the oper-
and.

• If the shift count is one, rcl sets the overflow flag if the sign changes as a
result of the rotate. If the count is not one, the overflow flag is undefined.

• The rcl instruction does not modify the zero, sign, parity, or auxiliary
carry flags.

Important warning: unlike the shift instructions, the rotate instructions do not affect
the sign, zero, parity, or auxiliary carry flags. This lack of orthogonality can cause you lots
of grief if you forget it and attempt to test these flags after an rcl operation. If you need to
test one of these flags after an rcl operation, test the carry and overflow flags first (if neces-
sary) then compare the result to zero to set the other flags.

6.6.3.2 RCR

The rcr (rotate through carry right) instruction is the complement to the rcl instruction.
It shifts its bits right through the carry flag and back into the H.O. bit (see Figure 6.9). 

This instruction sets the flags in a manner analogous to rcl:

• The carry flag contains the last bit shifted out of the L.O. bit of the oper-
and.

Figure 6.8 Rotate Through Carry Left Operation

H.O Bit                   5    4    3    2    1    0

C

...



Chapter 06

Page 278

• If the shift count is one, then rcr sets the overflow flag if the sign changes
(meaning the values of the H.O. bit and carry flag were not the same
before the execution of the instruction). However, if the count is not one,
the value of the overflow flag is undefined.

• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry
flags.

Keep in mind the warning given for rcl above.

6.6.3.3 ROL

The rol instruction is similar to the rcl instruction in that it rotates its operand to the left
the specified number of bits. The major difference is that rol shifts its operand’s H.O. bit,
rather than the carry, into bit zero. Rol also copies the output of the H.O. bit into the carry
flag (see Figure 6.10). 

The rol instruction sets the flags identically to rcl. Other than the source of the value
shifted into bit zero, this instruction behaves exactly like the rcl instruction. Don’t forget
the warning about the flags!

Like shl, the rol instruction is often useful for packing and unpacking data. For exam-
ple, suppose you want to extract bits 10..14 in ax and leave these bits in bits 0..4. The fol-
lowing code sequences will both accomplish this:

shr ax, 10
and ax, 1Fh

rol ax, 6
and ax, 1Fh

6.6.3.4 ROR

The ror instruction relates to the rcr instruction in much the same way that the rol
instruction relates to rcl. That is, it is almost the same operation other than the source of
the input bit to the operand. Rather than shifting the previous carry flag into the H.O. bit
of the destination operation, ror shifts bit zero into the H.O. bit (see Figure 6.11). 

Figure 6.9 Rotate Through Carry Right Operation

H.O. Bit                5    4    3    2    1    0

C

...

Figure 6.10 Rotate Left Operation

H.O Bit                   5    4    3    2    1    0

C

...



The 80x86 Instruction Set

Page 279

The ror instruction sets the flags identically to rcr. Other than the source of the bit
shifted into the H.O. bit, this instruction behaves exactly like the rcr instruction. Don’t for-
get the warning about the flags!

6.6.4 The Bit Operations 

Bit twiddling  is one of those operations easier done in assembly language than other
languages. And no wonder. Most high-level languages shield you from the machine rep-
resentation of the underlying data types13. Instructions like and, or, xor, not, and the shifts
and rotates make it possible to test, set, clear, invert, and align bit fields within strings of
bits. Even the C++ programming language, famous for its bit manipulation operators,
doesn’t provide the bit manipulation capabilities of assembly language.

The 80x86 family, particularly the 80386 and later processors, go much farther, though.
Besides the standard logical, shift, and rotate instructions, there are instructions to test bits
within an operand, to test and set, clear, or invert specific bits in an operand, and to search
for set bits. These instructions are

test dest, source
bt source, index
btc source, index
btr source, index
bts source, index
bsf dest, source
bsr dest, source

The specific forms are

test reg, reg
test reg, mem
test mem, reg (*)
test reg, imm
test mem, imm
test eax/ax/al, imm

bt reg, reg (3)
bt mem, reg (3)
bt reg, imm (3)
bt mem, imm (3)

btc uses the same formats as bt. (3)
btr uses the same formats as bt. (3)
bts uses the same formats as bt. (3)

bsf reg, reg (3)
bsr reg, mem (3)

bsr uses the same formats as bsf. (3)

3- This instruction is only available on 80386 and later processors.
*- This is the same instruction as test reg,mem

Note that the bt, btc, btr, bts, bsf, and bsr require 16 or 32 bit operands.

13. Indeed, this is one of the purposes of high level languages, to hide such low-level details.

Figure 6.11 Rotate Right Operation

H.O. Bit                5    4    3    2    1    0

C

...



Chapter 06

Page 280

The bit operations are useful when implementing (monochrome) bit mapped graphic
primitive functions and when implementing a set data type using bit maps.

6.6.4.1 TEST

The test instruction logically ands its two operands and sets the flags but does not
save the result. Test and and share the same relationship as cmp and sub. Typically, you
would use this instruction to see if a bit contains one. Consider the following instruction:

test al, 1

This instruction logically ands al with the value one. If bit zero of al contains a one, the
result is non-zero and the 80x86 clears the zero flag. If bit zero of al contains zero, then the
result is zero and the test operation sets the zero flag. You can test the zero flag after this
instruction to decide whether al contained zero or one in bit zero.

The test instruction can also check to see if one or more bits in a register or memory
location are non-zero. Consider the following instruction:

test dx, 105h

This instruction logically ands dx with the value 105h. This will produce a non-zero result
(and, therefore, clear the zero flag) if at least one of bits zero, two, or eight contain a one.
They must all be zero to set the zero flag.

The test instruction sets the flags identically to the and instruction:

• It clears the carry flag.
• It clears the overflow flag.
• It sets the zero flag if the result is zero, they clear it otherwise.
• It copies the H.O. bit of the result into the sign flag.
• It sets the parity flag according to the parity (number of one bits) in the

L.O. byte of the result.
• It scrambles the auxiliary carry flag.

6.6.4.2 The Bit Test Instructions: BT, BTS, BTR, and BTC

On an 80386 or later processor, you can use the bt instruction (bit test) to test a single
bit. Its second operand specifies the bit index  into the first operand. Bt copies the
addressed bit into the carry flag. For example, the instruction

bt ax, 12

copies bit twelve of ax into the carry flag. 

The bt/bts/btr/btc instructions only deal with 16 or 32 bit operands. This is not a limita-
tion of the instruction. After all, if you want to test bit three of the al register, you can just
as easily test bit three of the ax register. On the other hand, if the index is larger than the
size of a register operand, the result is undefined.

If the first operand is a memory location, the bt instruction tests the bit at the given off-
set in memory, regardless the value of the index. For example, if bx contains 65 then

bt TestMe, bx

will copy bit one of location TestMe+8 into the carry flag. Once again, the size of the oper-
and does not matter. For all intents and purposes, the memory operand is a byte and you
can test any bit after that byte with an appropriate index. The actual bit bt tests is at bit
position index mod 8  and at memory offset effective address + index/8.

The bts, btr, and btc instructions also copy the addressed bit into the carry flag. How-
ever, these instructions also set, reset (clear), or complement (invert) the bit in the first
operand after copying it to the carry flag. This provides test and set, test and clear, and test
and invert operations necessary for some concurrent algorithms.



The 80x86 Instruction Set

Page 281

The bt, bts, btr, and btc instructions do not affect any flags other than the carry flag.

6.6.4.3 Bit Scanning: BSF and BSR

The bsf (Bit Scan Forward) and bsr (Bit Scan Reverse) instructions search for the first or
last set bit in a 16 or 32 bit quantity. The general form of these instructions is

bsf dest, source
bsr dest, source

Bsf locates the first set bit in the source operand, searching from bit zero though the
H.O. bit. Bsr locates the first set bit searching from the H.O. bit down to the L.O. bit. If
these instructions locate a one, they clear the zero flag and store the bit index (0..31) into
the destination operand. If the source operand is zero, these instructions set the zero flag
and store an indeterminate value into the destination operand14.

To scan for the first bit containing zero (rather than one), make a copy of the source
operand and invert it (using not), then execute bsf or bsr on the inverted value. The zero
flag would be set after this operation if there were no zero bits in the original source value,
otherwise the destination operation will contain the position of the first bit containing
zero.

6.6.5 The “Set on Condition” Instructions

The set on condition  (or setcc) instructions set a single byte operand (register or mem-
ory location) to zero or one depending on the values in the flags register. The general for-
mats for the setcc instructions are

setcc reg8
setcc mem8

Setcc represents a mnemonic appearing in the following tables. These instructions store a
zero into the corresponding operand if the condition is false, they store a one into the eight
bit operand if the condition is true.

14. On many of the processors, if the source operand is zero the CPU will leave the destination operand
unchanged. However, certain versions of the 80486 do scramble the destination operand, so you shouldn’t count
on it being unchanged if the source operand is zero.

Table 28: SETcc Instructions That Test Flags

Instruction Description Condition Comments

SETC Set if carry Carry = 1 Same as SETB, SETNAE

SETNC Set if no carry Carry = 0 Same as SETNB, SETAE

SETZ Set if zero Zero = 1 Same as SETE

SETNZ Set if not zero Zero = 0 Same as SETNE

SETS Set if sign Sign = 1

SETNS Set if no sign Sign = 0

SETO Set if overflow Ovrflw=1

SETNO Set if no overflow Ovrflw=0

SETP Set if parity Parity = 1 Same as SETPE

SETPE Set if parity even Parity = 1 Same as SETP

SETNP Set if no parity Parity = 0 Same as SETPO

SETPO Set if parity odd Parity = 0 Same as SETNP



Chapter 06

Page 282

The setcc instructions above simply test the flags without any other meaning attached
to the operation. You could, for example, use setc to check the carry flag after a shift,
rotate, bit test, or arithmetic operation. Likewise, you could use setnz instruction after a
test instruction to check the result.

The cmp instruction works synergistically with the setcc  instructions. Immediately
after a cmp operation the processor flags provide information concerning the relative val-
ues of those operands. They allow you to see if one operand is less than, equal to, greater
than, or any combination of these.

There are two groups of setcc instructions that are very useful after a cmp operation.
The first group deals with the result of an unsigned comparison, the second group deals
with the result of a signed comparison.

The corresponding table for signed comparisons is

The setcc instructions are particularly valuable because they can convert the result of a
comparison to a boolean value (true/false or 0/1). This is especially important when

Table 29: SETcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

SETA Set if above (>) Carry=0, Zero=0 Same as SETNBE

SETNBE Set if not below or equal 
(not <=)

Carry=0, Zero=0 Same as SETA

SETAE Set if above or equal (>=) Carry = 0 Same as SETNC, SETNB

SETNB Set if not below (not <) Carry = 0 Same as SETNC, SETAE

SETB Set if below (<) Carry = 1 Same as SETC, SETNAE

SETNAE Set if not above or equal 
(not >=)

Carry = 1 Same as SETC, SETB

SETBE Set if below or equal (<=) Carry = 1 or Zero = 1 Same as SETNA

SETNA Set if not above (not >) Carry = 1 or Zero = 1 Same as SETBE

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ

Table 30: SETcc Instructions for Signed Comparisons

Instruction Description Condition Comments

SETG Set if greater (>) Sign = Ovrflw or Zero=0 Same as SETNLE

SETNLE Set if not less than or 
equal (not <=)

Sign = Ovrflw or Zero=0 Same as SETG

SETGE Set if greater than or equal 
(>=)

Sign = Ovrflw Same as SETNL

SETNL Set if not less than (not <) Sign = Ovrflw Same as SETGE

SETL Set if less than (<) Sign ≠ Ovrflw Same as SETNGE

SETNGE Set if not greater or equal 
(not >=)

Sign ≠ Ovrflw Same as SETL

SETLE Set if less than or equal 
(<=)

Sign ≠ Ovrflw or 
Zero = 1

Same as SETNG

SETNG Set if not greater than (not 
>)

Sign ≠ Ovrflw or
Zero = 1

Same as SETLE

SETE Set if equal (=) Zero = 1 Same as SETZ

SETNE Set if not equal (≠) Zero = 0 Same as SETNZ



The 80x86 Instruction Set

Page 283

translating statements from a high level language like Pascal or C++ into assembly lan-
guage. The following example shows how to use these instructions in this manner:

; Bool := A <= B

mov ax, A ;Assume A and B are signed integers.
cmp ax, B
setle Bool ;Bool needs to be a byte variable.

Since the setcc instructions always produce zero or one, you can use the results with
the logical and and or instructions to compute complex boolean values:

; Bool := ((A <= B) and (D = E)) or (F <> G)

mov ax, A
cmp ax, B
setle bl
mov ax, D
cmp ax, E
sete bh
and bl, bh
mov ax, F
cmp ax, G
setne bh
or bl, bh
mov Bool, bh

For more examples, see “Logical (Boolean) Expressions” on page 467.

The setcc instructions always produce an eight bit result since a byte is the smallest
operand the 80x86 will operate on. However, you can easily use the shift and rotate
instructions to pack eight boolean values in a single byte. The following instructions com-
pare eight different values with zero and copy the “zero flag” from each comparison into
corresponding bits of al:

cmp Val7, 0
setne al ;Put first value in bit #0
cmp Val6, 0 ;Test the value for bit #6
setne ah ;Copy zero flag into ah register.
shr ah, 1 ;Copy zero flag into carry.
rcl al, 1 ;Shift carry into result byte.
cmp Val5, 0 ;Test the value for bit #5
setne ah
shr ah, 1
rcl al, 1
cmp Val4, 0 ;Test the value for bit #4
setne ah
shr ah, 1
rcl al, 1
cmp Val3, 0 ;Test the value for bit #3
setne ah
shr ah, 1
rcl al, 1
cmp Val2, 0 ;Test the value for bit #2
setne ah
shr ah, 1
rcl al, 1
cmp Val1, 0 ;Test the value for bit #1
setne ah
shr ah, 1
rcl al, 1
cmp Val0, 0 ;Test the value for bit #0
setne ah
shr ah, 1
rcl al, 1

; Now AL contains the zero flags from the eight comparisons.



Chapter 06

Page 284

6.7 I/O Instructions

The 80x86 supports two I/O instructions: in and out15. They take the forms:

in eax/ax/al, port
 in eax/ax/al, dx
 out port, eax/ax/al
 out dx, eax/ax/al

port is a value between 0 and 255. 

The 80x86 supports up to 65,536 different I/O ports (requiring a 16 bit I/O address).
The port value above, however, is a single byte value. Therefore, you can only directly
address the first 256 I/O ports in the 80x86’s I/O address space. To address all 65,536 dif-
ferent I/O ports, you must load the address of the desired port (assuming it’s above 255)
into the dx register and access the port indirectly. The in instruction reads the data at the
specified I/O port and copies it into the accumulator. The out instruction writes the value
in the accumulator to the specified I/O port. 

Please realize that there is nothing magical about the 80x86’s in and out instructions.
They’re simply another form of the mov instruction that accesses a different memory space
(the I/O address space) rather than the 80x86’s normal 1 Mbyte memory address space.

The in and out instructions do not affect any 80x86 flags.

Examples of the 80x86 I/O instructions:

in al, 60h ;Read keyboard port

mov dx, 378h ;Point at LPT1: data port
in al, dx ;Read data from printer port.
inc ax ;Bump the ASCII code by one.
out dx, al ;Write data in AL to printer port.

6.8 String Instructions         

The 80x86 supports twelve string instructions: 

• movs (move string)
• lods (load string element into the accumulator)
• stos (store accumulator into string element)
• scas (Scan string and check for match against the value in the accumula-

tor)
• cmps (compare two strings)
• ins (input a string from an I/O port)
• outs (output a string to an I/O port
• rep (repeat a string operation)
• repz (repeat while zero)
• repe (repeat while equal)
• repnz (repeat while not zero)
• repne (repeat while not equal)

You can use the movs, stos, scas, cmps, ins and outs instructions to manipulate a single ele-
ment (byte, word, or double word) in a string, or to process an entire string. Generally,
you would only use the lods instruction to manipulate a single item at a time.

These instructions can operate on strings of bytes, words, or double words. To specify
the object size, simply append a b, w, or d  to the end of the instruction’s mnemonic, i.e.,
lodsb, movsw, cmpsd, etc. Of course, the double word forms are only available on 80386 and
later processors.

15. Actually, the 80286 and later processors support four I/O instructions, you’ll get a chance to see the other two
in the next section.



The 80x86 Instruction Set

Page 285

The movs and cmps instructions assume that ds:si contains the segmented address of a
source string and that es:di contains the segmented address of a destination string. The
lods instruction assumes that ds:si points at a source string, the accumulator (al/ax/eax) is
the destination location. The scas and stos instructions assume that es:di points at a desti-
nation string and the accumulator contains the source value. 

The movs instruction moves one string element (byte, word, or dword) from memory
location ds:si to es:di. After moving the data, the instruction increments or decrements si
and di by one, two, or four if processing bytes, words, or dwords, respectively. The CPU
increments these registers if the direction flag is clear, the CPU decrements them if the
direction flag is set. 

The movs instruction can move blocks of data around in memory. You can use it to
move strings, arrays, and other multi-byte data structures. 

movs{b,w,d}: es:[di] := ds:[si]
if direction_flag = 0 then

si := si + size;
di := di + size;

else
si := si - size;
di := di - size;

endif;

Note: size is one for bytes, two for words, and four for dwords.

The cmps instruction compares the byte, word, or dword at location ds:si to es:di and
sets the processor flags accordingly. After the comparison, cmps increments or decrements
si and di by one, two, or four depending on the size of the instruction and the status of the
direction flag in the flags register. 

cmps{b,w,d}: cmp ds:[si], es:[di]
if direction_flag = 0 then

si := si + size;
di := di + size;

else
si := si - size;
di := di - size;

endif;

The lods instruction moves the byte, word, or dword at ds:si into the al, ax, or eax reg-
ister. It then increments or decrements the si register by one, two, or four depending on
the instruction size and the value of the direction flag. The lods instruction is useful for
fetching a sequence of bytes, words, or double words from an array, performing some
operation(s) on those values and then processing the next element from the string. 

lods{b,w,d}: eax/ax/al := ds:[si]
if direction_flag = 0 then

si := si + size;
else

si := si - size;
endif;

The stos instruction stores al, ax, or eax at the address specified by es:di. Again, di is
incremented or decremented according to the size of the instruction and the value of the
direction flag. The stos instruction has several uses. Paired with the lods instruction above,
you can load (via lods), manipulate, and store string elements. By itself, the stos instruction
can quickly store a single value throughout a multi-byte data structure. 

stos{b,w,d}: es:[di] := eax/ax/al
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The scas instruction compares al, ax or eax against the value at location es:di and then
adjusts di accordingly. This instruction sets the flags in the processor status register just



Chapter 06

Page 286

like the cmp and cmps instructions. The scas instruction is great for searching for a particu-
lar value throughout some multi-byte data structure. 

scas{b,w,d}: cmp eax/ax/al, es:[di]
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The ins instruction inputs a byte, word, or double word from the I/O port specified in
the dx register. It then stores the input value at memory location es:di and increments or
decrements di appropriately. This instruction is available only on 80286 and later proces-
sors.

ins{b,w,d}: es:[di] := port(dx)
if direction_flag = 0 then

di := di + size;
else

di := di - size;
endif;

The outs instruction fetches the byte, word, or double word at address ds:si, incre-
ments or decrements si accordingly, and then outputs the value to the port specified in the
dx register.

outs{b,w,d}: port(dx) := ds:[si]
if direction_flag = 0 then

si := si + size;
else

si := si - size;
endif;

As explained here, the string instructions are useful, but it gets even better! When
combined with the rep, repz, repe, repnz, and repne prefixes, a single string instruction can
process an entire string. For more information on these prefixes see the chapter on strings.

6.9 Program Flow Control Instructions

The instructions discussed thus far execute sequentially; that is, the CPU executes
each instruction in the sequence it appears in your program. To write real programs
requires several control structures, not just the sequence. Examples include the if state-
ment, loops, and subroutine invocation (a call). Since compilers reduce all other languages
to assembly language, it should come as no surprise that assembly language supports the
instructions necessary to implement these control structures. 80x86 program control
instructions belong to three groups: unconditional transfers, conditional transfers, and
subroutine call and return instructions. The following sections describe these instructions:

6.9.1  Unconditional Jumps

 The jmp (jump) instruction unconditionally transfers control to another point in the
program. There are six forms of this instruction: an intersegment/direct jump, two intra-
segment/direct jumps, an intersegment/indirect jump, and two intrasegment/indirect
jumps. Intrasegment jumps are always between statements in the same code segment.
Intersegment jumps can transfer control to a statement in a different code segment.

These instructions generally use the same syntax, it is

jmp target

The assembler differentiates them by their operands:

jmp disp8 ;direct intrasegment, 8 bit displacement.
jmp disp16 ;direct intrasegment, 16 bit displacement.
jmp adrs32 ;direct intersegment, 32 bit segmented address.



The 80x86 Instruction Set

Page 287

jmp mem16 ;indirect intrasegment, 16 bit memory operand.
jmp reg16 ;register indirect intrasegment.
jmp mem32 ;indirect intersegment, 32 bit memory operand.

Intersegment is a synonym for far, intrasegment is a synonym for near.

The two direct intrasegment jumps differ only in their length. The first form consists
of an opcode and a single byte displacement. The CPU sign extends this displacement to
16 bits and adds it to the ip register. This instruction can branch to a location -128..+127
from the beginning of the next instruction following it (i.e., -126..+129 bytes around the
current instruction). 

The second form of the intrasegment jump is three bytes long with a two byte dis-
placement. This instruction allows an effective range of -32,768..+32,767 bytes and can
transfer control to anywhere in the current code segment. The CPU simply adds the two
byte displacement to the ip register.

These first two jumps use a relative  addressing scheme. The offset encoded as part of
the opcode byte is not  the target address in the current code segment, but the distance to
the target address. Fortunately, MASM will compute the distance for you automatically, so
you do not have to compute this displacement value yourself. In many respects, these
instructions are really nothing more than add ip, disp   instructions.

The direct intersegment jump is five bytes long, the last four bytes containing a seg-
mented address (the offset in the second and third bytes, the segment in the fourth and
fifth bytes). This instruction copies the offset into the ip register and the segment into the
cs register. Execution of the next instruction continues at the new address in cs:ip. Unlike
the previous two jumps, the address following the opcode is the absolute memory address
of the target instruction; this version does not use relative addressing. This instruction
loads cs:ip with a 32 bit immediate value.

For the three direct jumps described above, you normally specify the target address
using a statement label. A statement label is usually an identifier followed by a colon, usu-
ally on the same line as an executable machine instruction. The assembler determines the
offset of the statement after the label and automatically computes the distance from the
jump instruction to the statement label. Therefore, you do not have to worry about com-
puting displacements manually. For example, the following short little loop continuously
reads the parallel printer data port and inverts the L.O. bit. This produces a square wave
electrical signal on one of the printer port output lines:

mov dx, 378h ;Parallel printer port address.
LoopForever: in al, dx ;Read character from input port.

xor al, 1 ;Invert the L.O. bit.
out dx, al ;Output data back to port.
jmp LoopForever ;Repeat forever.

The fourth form of the unconditional jump instruction is the indirect intrasegment
jump instruction. It requires a 16 bit memory operand. This form transfers control to the
address within the offset given by the two bytes of the memory operand. For example,

WordVar word TargetAddress
 .
 .
 .
jmp WordVar

transfers control to the address specified by the value in the 16 bit memory location Word-
Var. This does not  jump to the statement at address WordVar, it jumps to the statement at
the address held in the WordVar variable. Note that this form of the jmp instruction is
roughly equivalent to:

mov ip, WordVar

Although the example above uses a single word variable containing the indirect
address, you can use any valid memory address mode, not just the displacement only
addressing mode. You can use memory indirect addressing modes like the following:

jmp DispOnly ;Word variable



Chapter 06

Page 288

jmp Disp[bx] ;Disp is an array of words
jmp Disp[bx][si]
jmp [bx]16

etc.

Consider the indexed addressing mode above for a moment (disp[bx]). This addressing
mode fetches the word from location disp+bx and copies this value to the ip register; this
lets you create an array of pointers and jump to a specified pointer using an array index.
Consider the following example:

AdrsArray word stmt1, stmt2, stmt3, stmt4
 .
 .
 .
mov bx, I ;I is in the range 0..3
add bx, bx ;Index into an array of words.
jmp AdrsArray[bx];Jump to stmt1, stmt2, etc., depending

; on the value of I.

The important thing to remember is that the near indirect jump fetches a word from mem-
ory and copies it into the ip register; it does not jump to the memory location specified, it
jumps indirectly through the 16 bit pointer at the specified memory location.

The fifth jmp instruction transfers control to the offset given in a 16 bit general purpose
register. Note that you can use any  general purpose register, not just bx, si, di, or bp. An
instruction of the form

jmp ax

is roughly equivalent to

mov ip, ax

Note that the previous two forms (register or memory indirect) are really the same
instruction. The mod and r/m fields of a mod-reg-r/m byte specify a register or memory
indirect address. See Appendix D for the details.

The sixth form of the jmp instruction, the indirect intersegment jump, has a memory
operand that contains a double word pointer. The CPU copies the double word at that
address into the cs:ip register pair. For example, 

FarPointer dword TargetAddress
 .
 .
 .
jmp FarPointer

transfers control to the segmented address specified by the four bytes at address Far-
Pointer. This instruction is semantically identical to the (mythical) instruction

lcs ip, FarPointer ;load cs, ip from FarPointer

As for the near indirect jump described earlier, this far indirect jump lets you specify any
arbitrary (valid) memory addressing mode. You are not limited to the displacement only
addressing mode the example above uses.

MASM uses a near indirect or far indirect addressing mode depending upon the type
of the memory location you specify. If the variable you specify is a word variable, MASM
will automatically generate a near indirect jump; if the variable is a dword, MASM emits
the opcode for a far indirect jump. Some forms of memory addressing, unfortunately, do
not intrinsically specify a size. For example, [bx] is definitely a memory operand, but does
bx point at a word variable or a double word variable? It could point at either. Therefore,
MASM will reject a statement of the form:

jmp [bx]

MASM cannot tell whether this should be a near indirect or far indirect jump. To resolve
the ambiguity, you will need to use a type coercion operator. Chapter Eight will fully

16. Technically, this is syntactically incorrect because MASM cannot figure out the size of the memory operand.
Read on for the details.



The 80x86 Instruction Set

Page 289

describe type coercion operators, for now, just use one of the following two instructions
for a near or far jump, respectively:

jmp word ptr [bx]
jmp dword ptr [bx]

The register indirect addressing modes are not the only ones that could be type ambigu-
ous. You could also run into this problem with indexed and base plus index addressing
modes:

jmp word ptr 5[bx]
jmp dword ptr 9[bx][si]

For more information on the type coercion operators, see Chapter Eight.

In theory, you could use the indirect jump instructions and the setcc instructions to
conditionally transfer control to some given location. For example, the following code
transfers control to iftrue if word variable X is equal to word variable Y. It transfers control
to iffalse, otherwise.

JmpTbl word iffalse, iftrue
 .
 .
 .
mov ax, X
cmp ax, Y
sete bl
movzx ebx, bl
jmp JmpTbl[ebx*2]

As you will soon see, there is a much better way to do this using the conditional jump
instructions.

6.9.2 The CALL and RET Instructions

The call and ret instructions handle subroutine calls and returns. There are five differ-
ent call instructions and six different forms of the return instruction: 

call disp16 ;direct intrasegment, 16 bit relative.
call adrs32 ;direct intersegment, 32 bit segmented address.
call mem16 ;indirect intrasegment, 16 bit memory pointer.
call reg16 ;indirect intrasegment, 16 bit register pointer.
call mem32 ;indirect intersegment, 32 bit memory pointer.

ret ;near or far return
retn ;near return
retf ;far return
ret disp ;near or far return and pop
retn disp ;near return and pop
retf disp ;far return and pop

The call instructions take the same forms as the jmp instructions except there is no short
(two byte) intrasegment call.

The far call instruction does the following: 

• It pushes the cs register onto the stack.
• It pushes the 16 bit offset of the next instruction following the call onto

the stack. 
• It copies the 32 bit effective address into the cs:ip registers. Since the call

instruction allows the same addressing modes as jmp, call can obtain the
target address using a relative, memory, or register addressing mode.

• Execution continues at the first instruction of the subroutine. This first
instruction is the opcode at the target address computed in the previous
step.

The near call instruction does the following: 



Chapter 06

Page 290

• It pushes the 16 bit offset of the next instruction following the call onto
the stack. 

• It copies the 16 bit effective address into the ip register. Since the call
instruction allows the same addressing modes as jmp, call can obtain the
target address using a relative, memory, or register addressing mode.

• Execution continues at the first instruction of the subroutine. This first
instruction is the opcode at the target address computed in the previous
step.

The   call disp16    instruction uses relative addressing. You can compute the effective
address of the target by adding this 16 bit displacement with the return address (like the
relative jmp instructions, the displacement is the distance from the instruction following
the call to the target address).

The   call adrs32   instruction uses the direct addressing mode. A 32 bit segmented
address immediately follows the call opcode. This form of the call instruction copies that
value directly into the cs:ip register pair. In many respects, this is equivalent to the imme-
diate addressing mode since the value this instruction copies into the cs:ip register pair
immediately follows the instruction.

Call mem16 uses the memory indirect addressing mode. Like the jmp instruction, this
form of the call instruction fetches the word at the specified memory location and uses that
word’s value as the target address. Remember, you can use any memory addressing mode
with this instruction. The displacement-only addressing mode is the most common form,
but the others are just as valid:

call CallTbl[bx] ;Index into an array of pointers.
call word ptr [bx] ;BX points at word to use.
call WordTbl[bx][si] ; etc.

Note that the selection of addressing mode only affects the effective address computation
for the target subroutine. These call instructions still push the offset of the next instruction
following the call onto the stack. Since these are near calls (they obtain their target address
from a 16 bit memory location), they all push a 16 bit return address onto the stack.

Call reg16 works just like the memory indirect call above, except it uses the 16 bit value
in a register for the target address. This instruction is really the same instruction as the call
mem16 instruction. Both forms specify their effective address using a mod-reg-r/m byte.
For the call reg16 form, the mod bits contain 11b so the r/m field specifies a register rather
than a memory addressing mode. Of course, this instruction also pushes the 16 bit offset
of the next instruction onto the stack as the return address.

The call mem32 instruction is a far indirect call. The memory address specified by this
instruction must be a double word value. This form of the call instruction fetches the 32 bit
segmented address at the computed effective address and copies this double word value
into the cs:ip register pair. This instruction also copies the 32 bit segmented address of the
next instruction onto the stack (it pushes the segment value first and the offset portion sec-
ond). Like the call mem16 instruction, you can use any valid memory addressing mode
with this instruction:

call DWordVar
call DwordTbl[bx]
call dword ptr [bx]
etc.

It is relatively easy to synthesize the call instruction using two or three other 80x86
instructions. You could create the equivalent of a near call using a push and a jmp instruc-
tion:

push <offset of instruction after jmp>
jmp subroutine

A far call would be similar, you’d need to add a push cs instruction before the two instruc-
tions above to push a far return address on the stack.

The ret (return) instruction returns control to the caller of a subroutine. It does so by
popping the return address off the stack and transferring control to the instruction at this



The 80x86 Instruction Set

Page 291

return address. Intrasegment (near) returns pop a 16 bit return address off the stack into the
ip register. An intersegment (far) return pops a 16 bit offset into the ip register and then a
16 bit segment value into the cs register. These instructions are effectively equal to the fol-
lowing:

retn: pop ip
retf: popd cs:ip

Clearly, you must match a near subroutine call with a near return and a far subroutine
call with a corresponding far return. If you mix near calls with far returns or vice versa,
you will leave the stack in an inconsistent state and you probably will not  return to the
proper instruction after the call. Of course, another important issue when using the call
and ret instructions is that you must make sure your subroutine doesn’t push something
onto the stack and then fail to pop it off before trying to return to the caller. Stack prob-
lems are a major cause of errors in assembly language subroutines. Consider the following
code:

Subroutine: push ax
push bx
 .
 .
 .
pop bx
ret
 .
 .
 .
call Subroutine

The call instruction pushes the return address onto the stack and then transfers control to
the first instruction of subroutine. The first two push instructions push the ax and bx regis-
ters onto the stack, presumably in order to preserve their value because subroutine modi-
fies them. Unfortunately, a programming error exists in the code above, subroutine only
pops bx from the stack, it fails to pop ax as well. This means that when subroutine tries to
return to the caller, the value of ax rather than the return address is sitting on the top of the
stack. Therefore, this subroutine returns control to the address specified by the initial
value of the ax register rather than to the true return address. Since there are 65,536 differ-
ent values ax can have, there is a 1/65,536

th of a chance that your code will return to the real
return address. The odds are not in your favor! Most likely, code like this will hang up the
machine. Moral of the story – always make sure the return address is sitting on the stack
before executing the return instruction.

Like the call instruction, it is very easy to simulate the ret instruction using two 80x86
instructions. All you need to do is pop the return address off the stack and then copy it
into the ip register. For near returns, this is a very simple operation, just pop the near
return address off the stack and then jump indirectly through that register:

pop ax
jmp ax

Simulating a far return is a little more difficult because you must load cs:ip in a single
operation. The only instruction that does this (other than a far return) is the jmp mem32
instruction. See the exercises at the end of this chapter for more details.

There are two other forms of the ret instruction. They are identical to those above
except a 16 bit displacement follows their opcodes. The CPU adds this value to the stack
pointer immediately after popping the return address from the stack. This mechanism
removes parameters pushed onto the stack before returning to the caller. See “Passing
Parameters on the Stack” on page 581 for more details.

The assembler allows you to type ret without the “f” or “n” suffix. If you do so, the
assembler will figure out whether it should generate a near return or a far return. See the
chapter on procedures and functions for details on this.



Chapter 06

Page 292

6.9.3 The INT, INTO, BOUND, and IRET Instructions

The int (for software interrupt) instruction is a very special form of a call instruction.
Whereas the call instruction calls subroutines within your program, the int instruction calls
system routines and other special subroutines. The major difference between interrupt ser-
vice routines and standard procedures is that you can have any number of different proce-
dures in an assembly language program, while the system supports a maximum of 256
different interrupt service routines. A program calls a subroutine by specifying the address
of that subroutine; it calls an interrupt service routine by specifying the interrupt number
for that particular interrupt service routine. This chapter will only describe how to call an
interrupt service routine using the int, into, and bound instructions, and how to return from
an interrupt service routine using the iret instruction.

There are four different forms of the int instruction. The first form is

int nn 

(where “nn” is a value between 0 and 255). It allows you to call one of 256 different inter-
rupt routines. This form of the int instruction is two bytes long. The first byte is the int
opcode. The second byte is immediate data containing the interrupt number. 

Although you can use the int instruction to call procedures (interrupt service routines)
you’ve written, the primary purpose of this instruction is to make a system call. A system
call is a subroutine call to a procedure provided by the system, such as a DOS , PC-BIOS17,
mouse, or some other piece of software resident in the machine before your program
began execution. Since you always refer to a specific system call by its interrupt number,
rather than its address, your program does not need to know the actual address of the
subroutine in memory. The int instruction provides dynamic linking to your program. The
CPU determines the actual address of an interrupt service routine at run time by looking
up the address in an interrupt vector table. This allows the authors of such system routines
to change their code (including the entry point) without fear of breaking any older pro-
grams that call their interrupt service routines. As long as the system call uses the same
interrupt number, the CPU will automatically call the interrupt service routine at its new
address.

The only problem with the int instruction is that it supports only 256 different inter-
rupt service routines. MS-DOS alone supports well over 100 different calls. BIOS and
other system utilities provide thousands more. This is above and beyond all the interrupts
reserved by Intel for hardware interrupts and traps. The common solution most of the sys-
tem calls use is to employ a single interrupt number for a given class of calls and then pass
a function number in one of the 80x86 registers (typically the ah register). For example,
MS-DOS uses only a single interrupt number, 21h. To choose a particular DOS function,
you load a DOS function code into the ah register before executing the int 21h instruction.
For example, to terminate a program and return control to MS-DOS, you would normally
load ah with 4Ch and call DOS with the int 21h instruction:

mov ah, 4ch ;DOS terminate opcode.
int 21h ;DOS call

The BIOS keyboard interrupt is another good example. Interrupt 16h is responsible
for testing the keyboard and reading data from the keyboard. This BIOS routine provides
several calls to read a character and scan code from the keyboard, see if any keys are avail-
able in the system type ahead buffer, check the status of the keyboard modifier flags, and
so on. To choose a particular operation, you load the function number into the ah register
before executing int 16h. The following table lists the possible functions:

17. BIOS stands for Basic Input/Output System.



The 80x86 Instruction Set

Page 293

Table 31: BIOS Keyboard Support Functions

Function 
#

(AH)

Input
Parameters

Output
Parameters

Description

0 al- ASCII character
ah- scan code

Read character. Reads next available character from 
the system’s type ahead buffer. Wait for a keystroke if 
the buffer is empty.

1 ZF- Set if no key.
ZF- Clear if key 
available.
al- ASCII code
ah- scan code

Checks to see if a character is available in the type 
ahead buffer. Sets the zero flag if not key is available, 
clears the zero flag if a key is available. If there is an 
available key, this function returns the ASCII and scan 
code value in ax. The value in ax is undefined if no key 
is available.

2 al- shift flags Returns the current status of the shift flags in al. The 
shift flags are defined as follows:

bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Alt key is down
bit 2: Ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

3 al = 5
bh = 0, 1, 2, 3 for 
1/4, 1/2, 3/4, or 1 
second delay
bl= 0..1Fh for 
30/sec to 2/sec.

Set auto repeat rate. The bh register contains the 
amount of time to wait before starting the autorepeat 
operation, the bl register contains the autorepeat rate.

5 ch = scan code
cl = ASCII code

Store keycode in buffer. This function stores the value 
in the cx register at the end of the type ahead buffer. 
Note that the scan code in ch doesn’t have to corre-
spond to the ASCII code appearing in cl. This routine 
will simply insert the data you provide into the system 
type ahead buffer.

10h al- ASCII character
ah- scan code

Read extended character. Like ah=0 call, except this 
one passes all key codes, the ah=0 call throws away 
codes that are not PC/XT compatible.

11h ZF- Set if no key.
ZF- Clear if key 
available.
al- ASCII code
ah- scan code

Like the ah=01h call except this one does not throw 
away keycodes that are not PC/XT compatible (i.e., the 
extra keys found on the 101 key keyboard).



Chapter 06

Page 294

For example, to read a character from the system type ahead buffer, leaving the ASCII
code in al, you could use the following code:

mov ah, 0 ;Wait for key available, and then
int 16h ; read that key.
mov character, al ;Save character read.

Likewise, if you wanted to test the type ahead buffer to see if a key is available, without
reading that keystroke, you could use the following code:

mov ah, 1 ;Test to see if key is available.
int 16h ;Sets the zero flag if a key is not

; available.

For more information about the PC-BIOS and MS-DOS, see “MS-DOS, PC-BIOS, and File
I/O” on page 699.

The second form of the int instruction is a special case:

int  3

Int 3 is a special form of the interrupt instruction that is only one byte long. CodeView and
other debuggers use it as a software breakpoint instruction. Whenever you set a break-
point on an instruction in your program, the debugger will typically replace the first byte
of the instruction’s opcode with an int 3 instruction. When your program executes the int 3
instruction, this makes a “system call” to the debugger so the debugger can regain control
of the CPU. When this happens, the debugger will replace the int 3 instruction with the
original opcode.

While operating inside a debugger, you can explicitly use the int 3 instruction to stop
program executing and return control to the debugger. This is not, however, the normal way
to terminate a program. If you attempt to execute an int 3 instruction while running under
DOS, rather than under the control of a debugger program, you will likely crash the sys-
tem.

The third form of the int instruction is into. Into will cause a software breakpoint if the
80x86 overflow flag is set. You can use this instruction to quickly test for arithmetic over-
flow after executing an arithmetic instruction. Semantically, this instruction is equivalent
to

if overflow = 1 then int 4

12h al- shift flags
ah- extended shift 
flags

Returns the current status of the shift flags in ax. The 
shift flags are defined as follows:

bit 15: SysReq key pressed
bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down
bit 10:Right ctrl key is down
bit 9: Left alt key is down
bit 8: Left ctrl key is down
bit 7: Insert toggle
bit 6: Capslock toggle
bit 5: Numlock toggle
bit 4: Scroll lock toggle
bit 3: Either alt key is down (some machines, left only)
bit 2: Either ctrl key is down
bit 1: Left shift key is down
bit 0: Right shift key is down

Table 31: BIOS Keyboard Support Functions

Function 
#

(AH)

Input
Parameters

Output
Parameters

Description



The 80x86 Instruction Set

Page 295

You should not use this instruction unless you’ve supplied a corresponding trap handler
(interrupt service routine). Doing so would probably crash the system. .

The fourth software interrupt, provided by 80286 and later processors, is the bound
instruction. This instruction takes the form

bound reg, mem

and executes the following algorithm:

if (reg < [mem]) or (reg > [mem+sizeof(reg)]) then int 5

[mem] denotes the contents of the memory location mem and sizeof(reg) is two or four
depending on whether the register is 16 or 32 bits wide. The memory operand must be
twice the size of the register operand. The bound instruction compares the values using a
signed integer comparison.

Intel’s designers added the bound instruction to allow a quick check of the range of a
value in a register. This is useful in Pascal, for example, which checking array bounds
validity and when checking to see if a subrange integer is within an allowable range.
There are two problems with this instruction, however. On 80486 and Pentium/586 pro-
cessors, the bound instruction is generally slower than the sequence of instructions it
would replace18:

cmp reg, LowerBound
jl OutOfBounds
cmp reg, UpperBound
jg OutOfBounds

On the 80486 and Pentium/586 chips, the sequence above only requires four clock cycles
assuming you can use the immediate addressing mode and the branches are not taken19;
the bound instruction requires 7-8 clock cycles under similar circumstances and also
assuming the memory operands are in the cache.

A second problem with the bound instruction is that it executes an int 5 if the specified
register is out of range. IBM, in their infinite wisdom, decided to use the int 5 interrupt
handler routine to print the screen. Therefore, if you execute a bound instruction and the
value is out of range, the system will, by default, print a copy of the screen to the printer. If
you replace the default int 5 handler with one of your own, pressing the PrtSc key will
transfer control to your bound instruction handler. Although there are ways around this
problem, most people don’t bother since the bound instruction is so slow.

Whatever int instruction you execute, the following sequence of events follows: 

• The 80x86 pushes the flags register onto the stack; 
• The 80x86 pushes cs and then ip onto the stack; 
• The 80x86 uses the interrupt number (into is interrupt #4, bound is inter-

rupt #5) times four as an index  into the interrupt vector table and copies
the double word at that point in the table into cs:ip. 

The int instructions vary from a call in two major ways. First, call instructions vary in
length from two to six bytes long, whereas int instructions are generally two bytes long (int
3, into, and bound are the exceptions). Second, and most important, the int instruction
pushes the flags and the return address onto the stack while the call instruction pushes
only the return address. Note also that the int instructions always push a far return
address (i.e., a cs value and an offset within the code segment), only the far call pushes
this double word return address. 

Since int pushes the flags onto the stack you must use a special return instruction, iret
(interrupt return), to return from a routine called via the int instructions. If you return from
an interrupt procedure using the ret instruction, the flags will be left on the stack upon
returning to the caller. The iret instruction is equivalent to the two instruction sequence:
ret, popf (assuming, of course, that you execute popf before returning control to the
address pointed at by the double word on the top of the stack).

18. The next section describes the jg and jl instructions.
19. In general, one would hope that having a bounds violation is very rare.



Chapter 06

Page 296

The int instructions clear the trace (T) flag in the flags register. They do not affect any
other flags. The iret instruction, by its very nature, can affect all the flags since it pops the
flags from the stack.

6.9.4 The Conditional Jump Instructions

Although the jmp, call, and ret instructions provide transfer of control, they do not
allow you to make any serious decisions. The 80x86’s conditional jump instructions han-
dle this task. The conditional jump instructions are the basic tool for creating loops and
other conditionally executable statements like the if..then statement.

The conditional jumps test one or more flags in the flags register to see if they match
some particular pattern (just like the setcc instructions). If the pattern matches, control
transfers to the target location. If the match fails, the CPU ignores the conditional jump
and execution continues with the next instruction. Some instructions, for example, test the
conditions of the sign, carry, overflow, and zero flags. For example, after the execution of a
shift left instruction, you could test the carry flag to determine if it shifted a one out of the
H.O. bit of its operand. Likewise, you could test the condition of the zero flag after a test
instruction to see if any specified bits were one. Most of the time, however, you will prob-
ably execute a conditional jump after a cmp instruction. The cmp instruction sets the flags
so that you can test for less than, greater than, equality, etc.

Note: Intel’s documentation defines various synonyms or instruction aliases for many
conditional jump instructions. The following tables list all the aliases for a particular
instruction. These tables also list out the opposite branches. You’ll soon see the purpose of
the opposite branches.

Table 32: Jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

JC Jump if carry Carry = 1 JB, JNAE JNC

JNC Jump if no carry Carry = 0 JNB, JAE JC

JZ Jump if zero Zero = 1 JE JNZ

JNZ Jump if not zero Zero = 0 JNE JZ

JS Jump if sign Sign = 1 JNS

JNS Jump if no sign Sign = 0 JS

JO Jump if overflow Ovrflw=1 JNO

JNO Jump if no Ovrflw Ovrflw=0 JO

JP Jump if parity Parity = 1 JPE JNP

JPE Jump if parity even Parity = 1 JP JPO

JNP Jump if no parity Parity = 0 JPO JP

JPO Jump if parity odd Parity = 0 JNP JPE



The 80x86 Instruction Set

Page 297

On the 80286 and earlier, these instructions are all two bytes long. The first byte is a
one byte opcode followed by a one byte displacement. Although this leads to very com-
pact instructions, a single byte displacement only allows a range of ±128 bytes. There is a
simple trick you can use to overcome this limitation on these earlier processors:

• Whatever jump you’re using, switch to its opposite form. (given in the
tables above).

• Once you’ve selected the opposite branch, use it to jump over a jmp
instruction whose target address is the original target address. 

For example, to convert:

jc Target

to the long form, use the following sequence of instructions:

Table 33: Jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

JA Jump if above (>) Carry=0, 
Zero=0

JNBE JNA

JNBE Jump if not below or equal (not 
<=)

Carry=0, 
Zero=0

JA JBE

JAE Jump if above or equal (>=) Carry = 0 JNC, JNB JNAE

JNB Jump if not below (not <) Carry = 0 JNC, JAE JB

JB Jump if below (<) Carry = 1 JC, JNAE JNB

JNAE Jump if not above or equal (not 
>=)

Carry = 1 JC, JB JAE

JBE Jump if below or equal (<=) Carry = 1 or 
Zero = 1

JNA JNBE

JNA Jump if not above 
(not >)

Carry = 1 or
Zero = 1

JBE JA

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE

Table 34: Jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite

JG Jump if greater (>) Sign = Ovrflw or Zero=0 JNLE JNG

JNLE Jump if not less than or equal 
(not <=)

Sign = Ovrflw or Zero=0 JG JLE

JGE Jump if greater than or equal 
(>=)

Sign = Ovrflw JNL JGE

JNL Jump if not less than (not <) Sign = Ovrflw JGE JL

JL Jump if less than (<) Sign ≠ Ovrflw JNGE JNL

JNGE Jump if not greater or equal 
(not >=)

Sign ≠ Ovrflw JL JGE

JLE Jump if less than or equal (<=) Sign ≠ Ovrflw or 
Zero = 1

JNG JNLE

JNG Jump if not greater than (not >) Sign ≠ Ovrflw or
Zero = 1

JLE JG

JE Jump if equal (=) Zero = 1 JZ JNE

JNE Jump if not equal (≠) Zero = 0 JNZ JE



Chapter 06

Page 298

jnc SkipJmp
 jmp Target
SkipJmp:

 If the carry flag is clear (NC=no carry), then control transfers to label SkipJmp, at the
same point you’d be if you were using the jc instruction above. If the carry flag is set when
encountering this sequence, control will fall through the jnc instruction to the jmp instruc-
tion that will transfer control to Target. Since the jmp instruction allows 16 bit displacement
and far operands, you can jump anywhere in the memory using this trick. 

One brief comment about the “opposites” column is in order. As mentioned above,
when you need to manually extend a branch from ±128 you should choose the opposite
branch to branch around a jump to the target location. As you can see in the “aliases” col-
umn above, many conditional jump instructions have aliases. This means that there will
be aliases for the opposite jumps as well. Do not use any aliases when extending branches that
are out of range. With only two exceptions, a very simple rule completely describes how to
generate an opposite branch:

• If the second letter of the jcc instruction is not  an “n”, insert an “n” after
the “j”. E.g., je becomes jne and jl becomes jnl.

• If the second letter of the jcc instruction is  an “n”, then remove that “n”
from the instruction. E.g., jng becomes jg, jne becomes je.

The two exceptions to this rule are jpe (jump parity even) and jpo (jump parity odd). These
exceptions cause few problems because (a) you’ll hardly ever need to test the parity flag,
and (b) you can use the aliases jp and jnp synonyms for jpe and jpo. The “N/No N” rule
applies to jp and jnp.

Though you know that jge is the opposite of jl, get in the habit of using jnl rather than
jge. It’s too easy in an important situation to start thinking “greater is the opposite of less”
and substitute jg instead. You can avoid this confusion by always using the “N/No N”
rule.

MASM 6.x and many other modern 80x86 assemblers will automatically convert out
of range branches to this sequence for you. There is an option that will allow you to dis-
able this feature. For performance critical code that runs on 80286 and earlier processors,
you may want to disable this feature so you can fix the branches yourself. The reason is
quite simple, this simple fix always wipes out the pipeline no matter which condition is
true since the CPU jumps in either case. One thing nice about conditional jumps is that
you do not flush the pipeline or the prefetch queue if you do not take the branch. If one
condition is true far more often than the other, you might want to use the conditional
jump to transfer control to a jmp nearby, so you can continue to fall through as before. For
example, if you have a   je target   instruction and target is out of range, you could convert it
to the following code:

je GotoTarget
 .
 .
 .

GotoTarget: jmp Target

Although a branch to target now requires executing two  jumps, this is much more effi-
cient than the standard conversion if the zero flag is normally clear when executing the je
instruction.

The 80386 and later processor provide an extended form of the conditional jump that
is four bytes long, with the last two bytes containing a 16 bit displacement. These condi-
tional jumps can transfer control anywhere within the current code segment. Therefore,
there is no need to worry about manually extending the range of the jump. If you’ve told
MASM you’re using an 80386 or later processor, it will automatically choose the two byte
or four byte form, as necessary. See Chapter Eight to learn how to tell MASM you’re using
an 80386 or later processor.



The 80x86 Instruction Set

Page 299

The 80x86 conditional jump instruction give you the ability to split program flow into
one of two paths depending upon some logical condition. Suppose you want to increment
the ax register if bx is or equal to cx. You can accomplish this with the following code:

cmp bx, cx
jne SkipStmts
inc ax

SkipStmts:

The trick is to use the opposite branch to skip over the instructions you want to execute if
the condition is true. Always use the “opposite branch (N/no N)” rule given earlier to
select the opposite branch. You can make the same mistake choosing an opposite branch
here as you could when extending out of range jumps.

You can also use the conditional jump instructions to synthesize loops. For example,
the following code sequence reads a sequence of characters from the user and stores each
character in successive elements of an array until the user presses the Enter key (carriage
return):

mov di, 0
ReadLnLoop: mov ah, 0 ;INT 16h read key opcode.

int 16h
mov Input[di], al
inc di
cmp al, 0dh ;Carriage return ASCII code.
jne ReadLnLoop
mov Input[di-1],0;Replace carriage return with zero.

For more information concerning the use of the conditional jumps to synthesize IF state-
ments, loops, and other control structures, see “Control Structures” on page 521.

Like the setcc instructions, the conditional jump instructions come in two basic cate-
gories – those that test specific process flag values (e.g., jz, jc, jno) and those that test some
condition ( less than, greater than, etc.). When testing a condition, the conditional jump
instructions almost always follow a cmp instruction. The cmp instruction sets the flags so
you can use a ja, jae, jb, jbe, je, or jne instruction to test for unsigned less than, less than or
equal, equality, inequality, greater than, or greater than or equal. Simultaneously, the cmp
instruction sets the flags so you can also do a signed comparison using the jl, jle, je, jne, jg,
and jge instructions.

The conditional jump instructions only test flags, they do not affect any of the 80x86
flags.

6.9.5 The JCXZ/JECXZ Instructions

The jcxz (jump if cx is zero) instruction branches to the target address if cx contains
zero. Although you can use it anytime you need to see if cx contains zero, you would nor-
mally use it before a loop you’ve constructed with the loop instructions. The loop instruc-
tion can repeat a sequence of operations cx times. If cx equals zero, loop will repeat the
operation 65,536 times. You can use jcxz to skip over such a loop when cx is zero. 

The jecxz instruction, available only on 80386 and later processors, does essentially the
same job as jcxz except it tests the full ecx register. Note that the jcxz instruction only
checks cx, even on an 80386 in 32 bit mode.

There are no “opposite” jcxz or jecxz instructions. Therefore, you cannot use “N/No
N” rule to extend the jcxz and jecxz instructions. The easiest way to solve this problem is to
break the instruction up into two instructions that accomplish the same task:

jcxz Target
becomes

test cx, cx ;Sets the zero flag if cx=0
je Target



Chapter 06

Page 300

Now you can easily extend the je instruction using the techniques from the previous sec-
tion.

The test instruction above will set the zero flag if and only if cx contains zero. After all,
if there are any non-zero bits in cx, logically anding them with themselves will produce a
non-zero result. This is an efficient way to see if a 16 or 32 bit register contains zero. In fact,
this two instruction sequence is faster than the jcxz instruction on the 80486 and later pro-
cessors. Indeed, Intel recommends the use of this sequence rather than the jcxz instruction
if you are concerned with speed. Of course, the jcxz instruction is shorter than the two
instruction sequence, but it is not faster. This is a good example of an exception to the rule
“shorter is usually faster.”

The jcxz instruction does not affect any flags.

6.9.6 The LOOP Instruction

This instruction decrements the cx register and then branches to the target location if
the cx register does not contain zero. Since this instruction decrements cx then checks for
zero, if cx originally contained zero, any loop you create using the loop instruction will
repeat 65,536 times. If you do not want to execute the loop when cx contains zero, use jcxz
to skip over the loop. 

There is no “opposite” form of the loop instruction, and like the jcxz/jecxz instructions
the range is limited to ±128 bytes on all processors. If you want to extend the range of this
instruction, you will need to break it down into discrete components:

; “loop lbl” becomes:

dec cx
jne lbl

You can easily extend this jne to any distance.

There is no eloop instruction that decrements ecx and branches if not zero (there is a
loope instruction, but it does something else entirely). The reason is quite simple. As of the
80386, Intel’s designers stopped wholeheartedly supporting the loop instruction. Oh, it’s
there to ensure compatibility with older code, but it turns out that the dec/jne instructions
are actually faster on the 32 bit processors. Problems in the decoding of the instruction and
the operation of the pipeline are responsible for this strange turn of events.

Although the loop instruction’s name suggests that you would normally create loops
with it, keep in mind that all it is really doing is decrementing cx and branching to the tar-
get address if cx does not contain zero after the decrement. You can use this instruction
anywhere you want to decrement cx and then check for a zero result, not just when creat-
ing loops. Nonetheless, it is a very convenient instruction to use if you simply want to
repeat a sequence of instructions some number of times. For example, the following loop
initializes a 256 element array of bytes to the values 1, 2, 3, ...

mov ecx, 255
ArrayLp: mov Array[ecx], cl

loop ArrayLp
mov Array[0], 0

The last instruction is necessary because the loop does not repeat when cx is zero. There-
fore, the last element of the array that this loop processes is Array[1], hence the last instruc-
tion.

The loop instruction does not affect any flags.

6.9.7  The LOOPE/LOOPZ Instruction

Loope/loopz (loop while equal/zero, they are synonyms for one another) will branch to
the target address if cx is not zero and the zero flag is set. This instruction is quite useful



The 80x86 Instruction Set

Page 301

after cmp or cmps instruction, and is marginally faster than the comparable 80386/486
instructions if you use all the features of this instruction. However, this instruction plays
havoc with the pipeline and superscalar operation of the Pentium so you’re probably bet-
ter off sticking with discrete instructions rather than using this instruction. This instruc-
tion does the following:

cx := cx - 1
if ZeroFlag = 1 and cx ≠ 0, goto target

The loope instruction falls through on one of two conditions. Either the zero flag is
clear or the instruction decremented cx to zero. By testing the zero flag after the loop
instruction (with a je or jne instruction, for example), you can determine the cause of ter-
mination.

This instruction is useful if you need to repeat a loop while some value is equal to
another, but there is a maximum number of iterations you want to allow. For example, the
following loop scans through an array looking for the first non-zero byte, but it does not
scan beyond the end of the array:

mov cx, 16 ;Max 16 array elements.
mov bx, -1 ;Index into the array (note next inc).

SearchLp: inc bx ;Move on to next array element.
cmp Array[bx], 0 ;See if this element is zero.
loope SearchLp ;Repeat if it is.
je AllZero ;Jump if all elements were zero.

Note that this instruction is not the opposite of loopnz/loopne. If you need to extend
this jump beyond ±128 bytes, you will need to synthesize this instruction using discrete
instructions. For example, if loope target is out of range, you would need to use an instruc-
tion sequence like the following:

jne quit
dec cx
je Quit2
jmp Target

quit: dec cx ;loope decrements cx, even if ZF=0.
quit2:

The loope/loopz instruction does not affect any flags.

6.9.8  The LOOPNE/LOOPNZ Instruction

This instruction is just like the loope/loopz instruction in the previous section except
loopne/loopnz (loop while not equal/not zero) repeats while cx is not zero and the zero flag
is clear. The algorithm is

cx := cx - 1
if ZeroFlag = 0 and cx ≠ 0, goto target

You can determine if the loopne instruction terminated because cx was zero or if the
zero flag was set by testing the zero flag immediately after the loopne instruction. If the
zero flag is clear at that point, the loopne instruction fell through because it decremented cx
to zero. Otherwise it fell through because the zero flag was set.

This instruction is not the opposite of loope/loopz. If the target address is out of range,
you will need to use an instruction sequence like the following:

je quit
dec cx
je Quit2
jmp Target

quit: dec cx ;loopne decrements cx, even if ZF=1.
quit2:

You can use the loopne instruction to repeat some maximum number of times while
waiting for some other condition to be true. For example, you could scan through an array
until you exhaust the number of array elements or until you find a certain byte using a
loop like the following:



Chapter 06

Page 302

mov cx, 16 ;Maximum # of array elements.
mov bx, -1 ;Index into array.

LoopWhlNot0: inc bx ;Move on to next array element.
cmp Array[bx],0 ;Does this element contain zero?
loopne LoopWhlNot0 ;Quit if it does, or more than 16 bytes.

Although the loope/loopz and loopne/loopnz instructions are slower than the individual
instruction from which they could be synthesized, there is one main use for these instruc-
tion forms where speed is rarely important; indeed, being faster would make them less
useful – timeout loops during I/O operations. Suppose bit #7 of input port 379h contains
a one if the device is busy and contains a zero if the device is not busy. If you want to out-
put data to the port, you could use code like the following:

mov dx, 379h
WaitNotBusy: in al, dx ;Get port

test al, 80h ;See if bit #7 is one
jne WaitNotBusy ;Wait for “not busy”

The only problem with this loop is that it is conceivable that it would loop forever. In
a real system, a cable could come unplugged, someone could shut off the peripheral
device, and any number of other things could go wrong that would hang up the system.
Robust programs usually apply a timeout to a loop like this. If the device fails to become
busy within some specified amount of time, then the loop exits and raises an error condi-
tion. The following code will accomplish this:

mov dx, 379h ;Input port address
mov cx, 0 ;Loop 65,536 times and then quit.

WaitNotBusy: in al, dx ;Get data at port.
test al, 80h ;See if busy
loopne WaitNotBusy ;Repeat if busy and no time out.
jne TimedOut ;Branch if CX=0 because we timed out.

You could use the loope/loopz instruction if the bit were zero rather than one.

The loopne/loopnz instruction does not affect any flags.

6.10  Miscellaneous Instructions

There are various miscellaneous instructions on the 80x86 that don’t fall into any cate-
gory above. Generally these are instructions that manipulate individual flags, provide
special processor services, or handle privileged mode operations.

There are several instructions that directly manipulate flags in the 80x86 flags register.
They are

• clc Clears the carry flag
• stc Sets the carry flag
• cmc Complements the carry flag
• cld Clears the direction flag
• std Sets the direction flag
• cli Clears the interrupt enable/disable flag
• sti Sets the interrupt enable/disable flag

Note: you should be careful when using the cli instruction in your programs. Improper use
could lock up your machine until you cycle the power. 

The nop instruction doesn’t do anything except waste a few processor cycles and take
up a byte of memory. Programmers often use it as a place holder or a debugging aid. As it
turns out, this isn’t a unique instruction, it’s just a synonym for the   xchg ax, ax   instruc-
tion.

 The hlt instruction halts the processor until a reset, non-maskable interrupt, or other
interrupt (assuming interrupts are enabled) comes along. Generally, you shouldn’t use
this instruction on the IBM PC unless you really know what you are doing. This instruction
is not equivalent to the x86 halt instruction. Do not use it to stop your programs.



The 80x86 Instruction Set

Page 303

The 80x86 provides another prefix instruction, lock, that, like the rep instruction,
affects the following instruction. However, this instruction has little meaning on most PC
systems. Its purpose is to coordinate systems that have multiple CPUs. As systems
become available with multiple processors, this prefix may finally become valuable20. You
need not be too concerned about this here.

The Pentium provides two additional instructions of interest to real-mode DOS pro-
grammers. These instructions are cpuid and rdtsc. If you load eax with zero and execute the
cpuid instruction, the Pentium (and later processors) will return the maximum value cpuid
allows as a parameter in eax. For the Pentium, this value is one. If you load the eax register
with one and execute the cpuid instruction, the Pentium will return CPU identification
information in eax. Since this instruction is of little value until Intel produces several addi-
tional chips in the family, there is no need to consider it further, here.

The second Pentium instruction of interest is the rdtsc (read time stamp counter)
instruction. The Pentium maintains a 64 bit counter that counts clock cycles starting at
reset. The rdtsc instruction copies the current counter value into the edx:eax register pair.
You can use this instruction to accurately time sequences of code.

Besides the instructions presented thus far, the 80286 and later processors provide a
set of protected mode instructions. This text will not consider those protected most instruc-
tions that are useful only to those who are writing operating systems. You would not even
use these instructions in your applications when running under a protected mode operat-
ing system like Windows, UNIX, or OS/2. These instructions are reserved for the individ-
uals who write such operating systems and drivers for them.

6.11 Sample Programs

The following sample programs demonstrate the use of the various instructions
appearing in this chapter.

6.11.1 Simple Arithmetic I

; Simple Arithmetic
; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?
dseg ends

20. There are multiprocessor systems that have multiple Pentium chips installed. However, these systems gener-
ally use both CPUs only while running Windows NT, OS/2, or some other operating system that support sym-
metrical multiprocessing.



Chapter 06

Page 304

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Compute L := j+k and u3 := u1+u2

mov ax, J
add ax, K
mov L, ax

mov ax, u1 ;Note that we use the "ADD"
add ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := j-k and u3 := u1-u2

mov ax, J
sub ax, K
mov L, ax

mov ax, u1 ;Note that we use the "SUB"
sub ax, u2 ; instruction for both signed
mov u3, ax ; and unsigned arithmetic.

; Compute L := -L

neg L

; Compute L := -J

mov ax, J ;Of course, you would only use the
neg ax ; NEG instruction on signed values.
mov L, ax

; Compute K := K + 1 using the INC instruction.

inc K

; Compute u2 := u2 + 1 using the INC instruction.
; Note that you can use INC for signed and unsigned values.

inc u2

; Compute J := J - 1 using the DEC instruction.

dec J

; Compute u2 := u2 - 1 using the DEC instruction.
; Note that you can use DEC for signed and unsigned values.

dec u2

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends



The 80x86 Instruction Set

Page 305

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.2 Simple Arithmetic II

; Simple Arithmetic
; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
l integer ?

u1 uint ?
u2 uint ?
u3 uint ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize our variables:

mov j, 3
mov k, -2

mov u1, 254
mov u2, 22

; Extended multiplication using 8086 instructions.
;
; Note that there are separate multiply instructions for signed and
; unsigned operands.
;
; L := J * K (ignoring overflow)

mov ax, J
imul K ;Computes DX:AX := AX * K
mov L, ax ;Ignore overflow into DX.

; u3 := u1 * u2



Chapter 06

Page 306

mov ax, u1
mul u2 ;Computes DX:AX := AX * U2
mov u3, ax ;Ignore overflow in DX.

; Extended division using 8086 instructions.
;
; Like multiplication, there are separate instructions for signed
; and unsigned operands.
;
; It is absolutely imperative that these instruction sequences sign
; extend or zero extend their operands to 32 bits before dividing.
; Failure to do so will may produce a divide error and crash the
; program.
;
; L := J div K

mov ax, J
cwd ;*MUST* sign extend AX to DX:AX!
idiv K ;AX := DX:AX/K, DX := DX:AX mod K
mov L, ax

; u3 := u1/u2

mov ax, u1
mov dx, 0 ;Must zero extend AX to DX:AX!
div u2 ;AX := DX:AX/u2, DX := DX:AX mod u2
mov u3, ax

; Special forms of the IMUL instruction available on 80286, 80386, and
; later processors.  Technically, these instructions operate on signed
; operands only, however, they do work fine for unsigned operands as well.
; Note that these instructions produce a 16-bit result and set the overflow
; flag if overflow occurs.
;
; L := J * 10 (80286 and later only)

imul ax, J, 10;AX := J*10
mov L, ax

; L := J * K (80386 and later only)

mov ax, J
imul ax, K
mov L, ax

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.3 Logical Operations

; Logical Operations
; This program demonstrates the AND, OR, XOR, and NOT instructions



The 80x86 Instruction Set

Page 307

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some variables we can use:

j word 0FF00h
k word 0FFF0h
l word ?

c1 byte 'A'
c2 byte 'a'

LowerMask byte 20h

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Compute L := J and K (bitwise AND operation):

mov ax, J
and ax, K
mov L, ax

; Compute L := J or K (bitwise OR operation):

mov ax, J
or ax, K
mov L, ax

; Compute L := J xor K (bitwise XOR operation):

mov ax, J
xor ax, K
mov L, ax

; Compute L := not L (bitwise NOT operation):

not L

; Compute L := not J (bitwise NOT operation):

mov ax, J
not ax
mov L, ax

; Clear bits 0..3 in J:

and J, 0FFF0h

; Set bits 0..3 in K:

or K, 0Fh

; Invert bits 4..11 in L:

xor L, 0FF0h

; Convert the character in C1 to lower case:



Chapter 06

Page 308

mov al, c1
or al, LowerMask
mov c1, al

; Convert the character in C2 to upper case:

mov al, c2
and al, 5Fh ;Clears bit 5.
mov c2, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.4 Shift and Rotate Operations

; Shift and Rotate Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; The following structure holds the bit values for an 80x86 mod-reg-r/m byte.

mode struct
modbits byte ?
reg byte ?
rm byte ?
mode ends

Adrs1 mode {11b, 100b, 111b}
modregrm byte ?

var1 word 1
var2 word 8000h
var3 word 0FFFFh
var4 word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Shifts and rotates directly on memory locations:
;
; var1 := var1 shl 1

shl var1, 1



The 80x86 Instruction Set

Page 309

; var1 := var1 shr 1

shr var1, 1

; On 80286 and later processors, you can shift by more than one bit at
; at time:

shl var1, 4
shr var1, 4

; The arithmetic shift right instruction retains the H.O. bit after each
; shift.  The following SAR instruction sets var2 to 0FFFFh

sar var2, 15

; On all processors, you can specify a shift count in the CL register.
; The following instruction restores var2 to 8000h:

mov cl, 15
shl var2, cl

; You can use the shift and rotate instructions, along with the logical
; instructions, to pack and unpack data.  For example, the following
; instruction sequence extracts bits 10..13 of var3 and leaves
; this value in var4:

mov ax, var3
shr ax, 10 ;Move bits 10..13 to 0..3.
and ax, 0Fh ;Keep only bits 0..3.
mov var4, ax

; You can use the rotate instructions to compute this value somewhat faster
; on older processors like the 80286.

mov ax, var3
rol ax, 6 ;Six rotates rather than 10 shifts.
and ax, 0Fh
mov var4, ax

; You can use the shift and OR instructions to easily merge separate fields
; into a single value.  For example, the following code merges the mod, reg,
; and r/m fields (maintained in separate bytes) into a single mod-reg-r/m
; byte:

mov al, Adrs1.modbits
shl al, 3
or al, Adrs1.reg
shl al, 3
or al, Adrs1.rm
mov     modregrm, al

; If you've only got and 8086 or 8088 chip, you'd have to use code like the
; following:

mov al, Adrs1.modbits;Get mod field
shl al, 1
shl al, 1
or al, Adrs1.reg;Get reg field
mov cl, 3
shl al, cl ;Make room for r/m field.
or al, Adrs1.rm ;Merge in r/m field.
mov modregrm, al ;Save result away.

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends



Chapter 06

Page 310

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.5 Bit Operations and SETcc Instructions

; Bit Operations and SETcc Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?
k integer ?
u1 uint 2
u2 uint 2
Result byte ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Initialize some variables

mov j, -2
mov k, 2

; The SETcc instructions store a one or zero into their operand if the
; specified condition is true or false, respectively.  The TEST instruction
; logically ANDs its operands and sets the flags accordingly (in particular,
; TEST sets/clears the zero flag if there is/isn't a zero result).  We can
; use these two facts to copy a single bit (zero extended) to a byte operand.

test j, 11000b ;Test bits 4 and 5.
setne Result ;Result=1 if bits 4 or 5 of J are 1.

test k, 10b ;Test bit #1.
sete Result ;Result=1 if bit #1 = 0.

; The SETcc instructions are particularly useful after a CMP instruction.
; You can set a boolean value according to the result of the comparison.
;
; Result := j <= k

mov ax, j
cmp ax, k



The 80x86 Instruction Set

Page 311

setle Result ;Note that "le" is for signed values.

; Result := u1 <= u2

mov ax, u1
cmp ax, u2
setbe Result ;Note that "be" is for unsigned values.

; One thing nice about the boolean results that the SETcc instructions
; produce is that we can AND, OR, and XOR them and get the same results
; one would expect in a HLL like C, Pascal, or BASIC.
;
; Result := (j < k) and (u1 > u2)

mov ax, j
cmp ax, k
setl bl ;Use "l" for signed comparisons.

mov ax, u1
cmp ax, u2
seta al ;Use "a" for unsigned comparisons.

and al, bl ;Logically AND the two boolean results
mov Result, al ; and store the result away.

; Sometimes you can use the shift and rotate instructions to test to see
; if a specific bit is set.  For example, SHR copies bit #0 into the carry
; flag and SHL copies the H.O. bit into the carry flag.  We can easily test
; these bits as follows:
;
; Result := bit #15 of J.

mov ax, j
shl ax, 1
setc Result

; Result := bit #0 of u1:

mov ax, u1
shr ax, 1
setc Result

; If you don't have an 80386 or later processor and cannot use the SETcc
; instructions, you can often simulate them.  Consider the above two
; sequences rewritten for the 8086:

;
; Result := bit #15 of J.

mov ax, j
rol ax, 1 ;Copy bit #15 to bit #0.
and al, 1 ;Strip other bits.
mov Result, al

; Result := bit #0 of u1:

mov ax, u1
and al, 1 ;Strip unnecessary bits.
mov Result, al

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends



Chapter 06

Page 312

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.6 String Operations

; String Instructions

.386 ;So we can use extended registers
option segment:use16; and addressing modes.

dseg segment para public 'data'

String1 byte "String",0
String2 byte 7 dup (?)

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; The string instructions let you easily copy data from one array to
; another.  If the direction flag is clear, the movsb instruction
; does the equivalent of the following:
;
; mov es:[di], ds:[si]
; inc si
; inc di
;
; The following code copies the seven bytes from String1 to String2:

cld ;Required if you want to INC SI/DI

lea si, String1
lea di, String2

movsb ;String2[0] := String1[0]
movsb ;String2[1] := String1[1]
movsb ;String2[2] := String1[2]
movsb ;String2[3] := String1[3]
movsb ;String2[4] := String1[4]
movsb ;String2[5] := String1[5]
movsb ;String2[6] := String1[6]

; The following code sequence demonstrates how you can use the LODSW and
; STOWS instructions to manipulate array elements during the transfer.
; The following code computes
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.
;
; Of course, it would be far more efficient to put the following code
; into a loop, but that will come later.

lea si, Array1
lea di, Array2



The 80x86 Instruction Set

Page 313

lodsw
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

lodsw
imul ax, dx
mov dx, ax
stosw

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.7 Conditional Jumps

; Unconditional Jumps

.386
option segment:use16

dseg segment para public 'data'

; Pointers to statements in the code segment



Chapter 06

Page 314

IndPtr1 word IndTarget2
IndPtr2 dword IndTarget3

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; JMP instructions transfer control to the
; location specified in the operand field.
; This is typically a label that appears
; in the program.
;
; There are many variants of the JMP
; instruction.  The first is a two-byte
; opcode that transfers control to +/-128
; bytes around the current instruction:

jmp CloseLoc
nop

CloseLoc:

; The next form is a three-byte instruction
; that allows you to jump anywhere within
; the current code segment.  Normally, the
; assembler would pick the shortest version
; of a given JMP instruction, the "near ptr"
; operand on the following instruction
; forces a near (three byte) JMP:

jmp near ptr NearLoc
nop

NearLoc:

; The third form to consider is a five-byte
; instruction that provides a full segmented
; address operand.  This form of the JMP
; instruction lets you transfer control any-
; where in the program, even to another
; segment.  The "far ptr" operand forces
; this form of the JMP instruction:

jmp far ptr FarLoc
nop

FarLoc:

; You can also load the target address of a
; near JMP into a register and jump indirectly
; to the target location.  Note that you can
; use any 80x86 general purpose register to
; hold this address; you are not limited to
; the BX, SI, DI, or BP registers.

lea dx, IndTarget
jmp dx
nop

IndTarget:



The 80x86 Instruction Set

Page 315

; You can even jump indirect through a memory
; variable.  That is, you can jump though a
; pointer variable directly without having to
; first load the pointer variable into a reg-
; ister (Chapter Eight describes why the following
; labels need two colons).

jmp IndPtr1
nop

IndTarget2::

; You can even execute a far jump indirect
; through memory.  Just specify a dword
; variable in the operand field of a JMP
; instruction:

jmp IndPtr2
nop

IndTarget3::

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.8 CALL and INT Instructions

; CALL and INT Instructions

.386
option segment:use16

dseg segment para public 'data'

; Some pointers to our subroutines:

SPtr1 word Subroutine1
SPtr2 dword Subroutine2

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Subroutine1 proc near
ret

Subroutine1 endp

Subroutine2 proc far
ret

Subroutine2 endp



Chapter 06

Page 316

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; Near call:

call Subroutine1

; Far call:

call Subroutine2

; Near register-indirect call:

lea cx, Subroutine1
call cx

; Near memory-indirect call:

call SPtr1

; Far memory-indirect call:

call SPtr2

; INT transfers control to a routine whose
; address appears in the interrupt vector
; table (see the chapter on interrupts for 
; details on the interrupt vector table). 
; The following call tells the PC's BIOS 
; to print theASCII character in AL to the 
; display.

mov ah, 0eh
mov al, 'A'
int 10h

; INTO generates an INT 4 if the 80x86
; overflow flag is set.  It becomes a
; NOP if the overflow flag is clear.
; You can use this instruction after
; an arithmetic operation to quickly
; test for a fatal overflow.  Note:
; the following sequence does *not*
; generate an overflow.  Do not modify
; it so that it does unless you add an
; INT 4 interrupt service routine to
; the interrupt vector table

mov ax, 2
add ax, 4
into

Quit: mov ah, 4ch
int 21h

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends



The 80x86 Instruction Set

Page 317

end Main

6.11.9 Conditional Jumps I

; Conditional JMP Instructions, Part I

.386
option segment:use16

dseg segment para public 'data'
J sword ?
K sword ?
L sword ?
dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; 8086 conditional jumps are limited to
; +/- 128 bytes because they are only
; two bytes long (one byte opcode, one
; byte displacement).

.8086
ja lbl
nop

lbl:

; MASM 6.x will automatically extend out of
; range jumps.  The following are both
; equivalent:

ja lbl2
byte 150 dup (0)

lbl2:
jna Temp
jmp lbl3

Temp:
byte 150 dup (0)

lbl3:

; The 80386 and later processors support a
; special form of the conditional jump
; instructions that allow a two-byte displace-
; ment, so MASM 6.x will assemble the code
; to use this form if you've specified an
; 80386 processor.

.386
ja lbl4
byte 150 dup (0)

lbl4:

; The conditional jump instructions work
; well with the CMP instruction to let you
; execute certain instruction sequences
; only if a condition is true or false.
;
; if (J <= K) then
; L := L + 1
; else  L := L - 1

mov ax, J



Chapter 06

Page 318

cmp ax, K
jnle DoElse
inc L
jmp ifDone

DoElse: dec L
ifDone:

; You can also use a conditional jump to
; create a loop in an assembly language
; program:
;
; while (j >= k) do begin
;
; j := j - 1;
; k := k + 1;
; L := j * k;
; end;

WhlLoop: mov ax, j
cmp ax, k
jnge QuitLoop

dec j
inc k
mov ax, j
imul ax, k
mov L, ax
jmp WhlLoop

QuitLoop:

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.11.10 Conditional Jump Instructions II

; Conditional JMP Instructions, Part II

.386
option segment:use16

dseg segment para public 'data'

Array1 word 1, 2, 3, 4, 5, 6, 7, 8
Array2 word 8 dup (?)

String1 byte "This string contains lower case characters",0
String2 byte 128 dup (0)

j sword 5
k sword 6

Result byte ?

dseg ends



The 80x86 Instruction Set

Page 319

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; You can use the LOOP instruction to repeat a sequence of statements
; some specified number of times in an assembly language program.
; Consider the code taken from EX6_5.ASM that used the string
; instructions to produce a running product:
;
; The following code uses a loop instruction to compute:
;
; Array2[0] := Array1[0]
; Array2[1] := Array1[0] * Array1[1]
; Array2[2] := Array1[0] * Array1[1] * Array1[2]
; etc.

cld
lea si, Array1
lea di, Array2
mov dx, 1 ;Initialize for 1st time.
mov cx, 8 ;Eight elements in the arrays.

LoopHere:lodsw
imul ax, dx
mov dx, ax
stosw
loop LoopHere

; The LOOPNE instruction is quite useful for controlling loops that
; stop on some condition or when the loop exceeds some number of
; iterations.  For example, suppose string1 contains a sequence of
; characters that end with a byte containing zero.  If you wanted to
; convert those characters to upper case and copy them to string2,
; you could use the following code.  Note how this code ensures that
; it does not copy more than 127 characters from string1 to string2
; since string2 only has enough storage for 127 characters (plus a
; zero terminating byte).

lea si, String1
lea di, String2
mov cx, 127 ;Max 127 chars to string2.

CopyStrLoop: lodsb ;Get char from string1.
cmp al, 'a' ;See if lower case
jb NotLower ;Characters are unsigned.
cmp al, 'z'
ja NotLower
and al, 5Fh ;Convert lower->upper case.

NotLower:
stosb
cmp al, 0 ;See if zero terminator.
loopne CopyStrLoop ;Quit if al or cx = 0.

; If you do not have an 80386 (or later) CPU and you would like the
; functionality of the SETcc instructions, you can easily achieve
; the same results using code like the following:
;
; Result := J <= K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K



Chapter 06

Page 320

jnle Skip1
mov Result, 1 ;Set to 1 if J <= K.

Skip1:

; Result := J = K;

mov Result, 0 ;Assume false.
mov ax, J
cmp ax, K
jne Skip2
mov Result, 1

Skip2:

Quit: mov ah, 4ch ;DOS opcode to quit program.
int 21h ;Call DOS.

Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

6.12 Laboratory Exercises

In this set of laboratory exercises you will be writing programs in IBM/L – Instruction
BenchMarking Language. The IBM/L system lets you time certain instruction sequences to
see how long they take to execute.

6.12.1 The IBM/L System

IBM/L lets you time sequences of instructions to see how much time they really take
to execute. The cycle timings in most 80x86 assembly language books are horribly inaccu-
rate as they assume the absolute best case. IBM/L lets you try out some instruction
sequences and see how much time they actually take. This is an invaluable tool to use
when optimizing a program. You can try several different instruction sequences that pro-
duce the same result and see which sequence executes fastest.

IBM/L uses the system 1/18th second clock and measures most executions in terms
of clock ticks. Therefore, it would be totally useless for measuring the speed of a single
instruction (since all instructions execute in much less than 1/18th second). IBM/L works
by repeatedly executing a code sequence thousands (or millions) of times and measuring
that amount of time. IBM/L automatically subtracts away the loop overhead time.

IBM/L is a compiler which translates a source language into an assembly language
program. Assembling and running the resulting program benchmarks the instructions
specified in the IBM/L source code and produces relative timings for different instruction
sequences. An IBM/L source program consists of some short assembly language
sequences and some control statements which describe how to measure the performance
of the assembly sequences. An IBM/L program takes the following form:

#data



The 80x86 Instruction Set

Page 321

<variable declarations>
#enddata

#unravel <integer constant>
#repetitions <integer constant>
#code (“title”)
%init

<initial instructions whose time does not count>
%eachloop

<Instructions repeated once on each loop, ignoring time>
%discount

<instructions done for each sequence, ignoring time>
%do

<statements to time>
#endcode

<Additional #code..#endcode sections>

#end

Note: the %init, %eachloop, and %discount sections are optional.

IBM/L programs begin with an optional data section. The data section begins with a
line containing “#DATA” and ends with a line containing “#ENDDATA”. All lines
between these two lines are copied to an output assembly language program inside the
dseg data segment. Typically you would put global variables into the program at this
point. 

Example of a data section:
#DATA
I word ?
J word ? 
K dword ? 
ch byte ? 
ch2 byte ? 
#ENDDATA

These lines would be copied to a data segment the program IBM/L creates. These
names are available to all #code..#endcode sequences you place in the program.

 Following the data section are one or more code sections. A code section consists of
optional #repetition and #unravel statements followed by the actual #code..#endcode
sections.

The #repetition statement takes the following form:

#repetition integer_constant

(The “#” must be in column one). The integer constant is a 32-bit value, so you can specify
values in the range zero through two billion. Typical values are generally less than a few
hundred thousand, even less on slower machines. The larger this number is, the more
accurate the timing will be; however, larger repetition values also cause the program
IBM/L generates to run much slower.

This statement instructs IBM/L to generate a loop which repeats the following code
segment integer_constant times. If you do not specify any repetitions at all, the default is
327,680. Once you set a repetitions value, that value remains in effect for all following
code sequences until you explicitly change it again. The #repetition statement must
appear outside the #code..#endcode sequence and affects the #code section(s) following
the #repetition statement.

If you are interested in the straight-line execution times for some instruction(s), plac-
ing those instructions in a tight loop may dramatically affect IBM/L’s accuracy. Don’t for-
get, executing a control transfer instruction (necessary for a loop) flushes the pre-fetch
queue and has a big effect on execution times. The #unravel statement lets you copy a
block of code several times inside the timing loop, thereby reducing the overhead of the
conditional jump and other loop control instructions. The #unravel statement takes the
following form:

#unravel count



Chapter 06

Page 322

(The “#” must be in column one). Count is a 16-bit integer constant that specifies the num-
ber of times IBM/L copies the code inside the repetition loop.

Note that the specified code sequence in the #code section will actually execute (count
* integer_constant) times, since the #unravel statement repeats the code sequence count
times inside the loop.

In its most basic form, the #code section looks like the following:

#CODE (“Title”)
 %DO

<assembly statements>
#ENDCODE

The title can be any string you choose. IBM/L will display this title when printing the
timing results for this code section. IBM/L will take the specified assembly statements
and output them inside a loop (multiple times if the #unravel statement is present). At
run time the assembly language source file will time this code and print a time, in clock
ticks, for one execution of this sequence.

Example:

#unravel 16 16 copies of code inside the loop
#repetitions 960000 Do this 960,000 times
#code (“MOV AX, 0 Instruction”) 
%do
 mov ax, 0
#endcode

The above code would generate an assembly language program which executes the
mov ax,0 instruction 16 * 960000 times and report the amount of time that it would take.

Most IBM/L programs have multiple code sections. New code sections can immedi-
ately follow the previous ones, e.g.,

#unravel 16 16 copies of code inside loop
#repetitions 960000 Do the following code 960000 times
#code (“MOV AX, 0 Instruction”)
%do

mov ax, 0
#endcode

#code (“XOR AX, AX Instruction”)
%do

xor ax, ax
 #ENDCODE

The above sequence would execute the mov ax, 0 and xor ax, ax instructions 16*960000
times and report the amount of time necessary to execute these instructions. By compar-
ing the results you can determine which instruction sequence is fastest.

Any statement that begins with a semicolon in column one is a comment which
IBM/L ignores. It does not write this comment to the assembly language output file.

All IBM/L programs must end with a #end statement. Therefore, the correct form of
the program above is

#unravel 16
#repetitions 960000
#code (“MOV AX, 0 Instruction”) 
%do

mov ax, 0
#endcode
#code (“XOR AX, AX Instruction”) 
%do 

xor ax, ax
#ENDCODE
#END

An example of a complete IBM/L program using all of the techniques we’ve seen so
far is



The 80x86 Instruction Set

Page 323

#data
even 

i word ? 
byte ? 

j word ?
#enddata

#unravel 16
#repetitions 32, 30000
#code (“Aligned Word MOV”) 
%do 

mov ax, i 
#endcode

#code (“Unaligned word MOV”) 
%do 

mov ax, j 
#ENDCODE 
#END

 There are a couple of optional sections which may appear between the #code and the
%do statements. The first of these is %init which begins an initialization section. IBM/L
emits initialization sections before the loop, executes this code only once. It does not count
their execution time when timing the loop. This lets you set up important values prior to
running a test which do not count towards the timing. E.g.,

#data 
i dword ? 
#enddata
#repetitions 100000 
#unravel 1
#code
%init 

mov word ptr i, 0 
mov word ptr i+2, 0 

%do 
mov cx, 200 

lbl: inc word ptr i
 jnz NotZero
 inc word ptr i+2
NotZero: loop lbl 
#endcode 
#end

Sometimes you may want to use the #repetitions statement to repeat a section of
code several times. However, there may be some statements that you only want to execute
once on each loop (that is, without copying the code several times in the loop). The
%eachloop section allows this. Note that IBM/L does not count the time consumed by the
code executed in the %eachloop section in the final timing.

Example:

#data 
i word ? 
j word ? 
#enddata

#repetitions 40000 
#unravel 128 
#code 
%init -- The following is executed only once

mov i, 0 
mov j, 0

%eachloop -- The following is executed 40000 times, not 128*40000 times

 inc j

%do -- The following is executed 128 * 40000 times

inc i

#endcode 



Chapter 06

Page 324

#end

In the above code, IBM/L only counts the time required to increment i. It does not time
the instructions in the %init or %eachloop sections.

The code in the %eachloop section only executes once per loop iteration. Even if you
use the #unravel statement (the inc i instruction above, for example, executes 128 times
per loop iteration because of #unravel). Sometimes you may want some sequence of
instructions to execute like those in the %do section, but not count their time. The %dis-
count section allows for this. Here is the full form of an IBM/L source file:

#DATA 
<data declarations> 

#ENDDATA
#REPETITIONS value1, value2 
#UNRAVEL count 
#CODE 
%INIT 

<Initialization code, executed only once> 
%EACHLOOP

<Loop initialization code, executed once on each pass>
%DISCOUNT

<Untimed statements, executed once per repetition> 
%DO

<The statements you want to time> 
#ENDCODE
<additional code sections>
#END

To use this package you need several files. IBML.EXE is the executable program. You
run it as follows:

c:> IBML filename.IBM

This reads an IBML source file (filename.IBM, above) and writes an assembly lan-
guage program to the standard output. Normally you would use I/O redirection to cap-
ture this program as follows:

c:> IBML filename.IBM >filename.ASM

Once you create the assembly language source file, you can assemble and run it. The
resulting EXE file will display the timing results.

To properly run the IBML program, you must have the IBMLINC.A file in the current
working directory. This is a skeleton assembly language source file into which IBM/L
inserts your assembly source code. Feel free to modify this file as you see fit. Keep in
mind, however, that IBM/L expects certain markers in the file (currently “;##”) where it
will insert the code. Be careful how you deal with these existing markers if you modify the
IBMLINC.A file.

The output assembly language source file assumes the presence of the UCR Standard
Library for 80x86 Assembly Language Programmers. In particular, it needs the STDLIB
include files (stdlib.a) and the library file (stdlib.lib).

In Chapter One of this lab manual you should have learned how to set up the Stan-
dard Library files on your hard disk. These must be present in the current directory (or in
your INCLUDE/LIB environment paths) or MASM will not be able to properly assemble
the output assembly language file. For more information on the UCR Standard Library,
see Chapter Seven.

The following are some IBM/L source files to give you a flavor of the language.

; IBML Sample program: TESTMUL.IBM.
; This code compares the execution
; time of the MUL instruction vs.
; various shift and add equivalents.

#repetitions 480000
#unravel 1



The 80x86 Instruction Set

Page 325

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Multiply by 15 using IMUL”)
%do

.286
mov cx, 128
mov bx, 15

MulLoop1: mov ax, cx
imul bx
loop MulLoop1

#endcode

; Do the same test using the extended IMUL
; instruction on 80286 and later processors.

#code (“Multiplying by 15 using IMUL”)
%do

mov cx, 128
MulLoop2: mov ax, cx

imul ax, 15
loop MulLoop2

#endcode

; Now multiply by 15 using a shift by four
; bits and a subtract.

#code (“Multiplying by 15 using shifts and sub”)
%init
%do

mov cx, 128
MulLoop3: mov ax, cx

mov bx, ax
shl ax, 4
sub ax, bx
loop MulLoop3

#endcode
#end

Output from TESTMUL.IBM:

              IBM/L 2.0 

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to ±2.

CPU: 80486

Computing Overhead: Multiply by 15 using IMUL
Testing: Multiply by 15 using IMUL
Multiply by 15 using IMUL :370
Computing Overhead: Multiplying by 15 using IMUL
Testing: Multiplying by 15 using IMUL
Multiplying by 15 using IMUL :370
Computing Overhead: Multiplying by 15 using shifts and sub
Testing: Multiplying by 15 using shifts and sub
Multiplying by 15 using shifts and sub :201

; IBML Sample program MOVs.
; A comparison of register-register
; moves with register-memory moves

#data
i word ?
j word ?
k word ?
l word ?
#enddata



Chapter 06

Page 326

#repetitions 30720000
#unravel 1

; The following check checks to see how
; long it takes to multiply two values
; using the IMUL instruction.

#code (“Register-Register moves, no Hazards”)
%do

mov bx, ax
mov cx, ax
mov dx, ax
mov si, ax
mov di, ax
mov bp, ax

#endcode

#code (“Register-Register moves, with Hazards”)
%do

mov bx, ax
mov cx, bx
mov dx, cx
mov si, dx
mov di, si
mov bp, di

#endcode

#code (“Memory-Register moves, no Hazards”)
%do

mov ax, i
mov bx, j
mov cx, k
mov dx, l
mov ax, i
mov bx, j

#endcode

#code (“Register-Memory moves, no Hazards”)
%do

mov i, ax
mov j, bx
mov k, cx
mov l, dx
mov i, ax
mov j, bx

#endcode
#end

          IBM/L 2.0

Public Domain Instruction Benchmarking Language
 by Randall Hyde, inspired by Roedy Green
All times are measured in ticks, accurate only to Ò 2.

CPU: 80486

Computing Overhead: Register-Register moves, no Hazards
Testing: Register-Register moves, no Hazards
Register-Register moves, no Hazards :25
Computing Overhead: Register-Register moves, with Hazards
Testing: Register-Register moves, with Hazards
Register-Register moves, with Hazards :51
Computing Overhead: Memory-Register moves, no Hazards
Testing: Memory-Register moves, no Hazards
Memory-Register moves, no Hazards :67
Computing Overhead: Register-Memory moves, no Hazards
Testing: Register-Memory moves, no Hazards
Register-Memory moves, no Hazards :387



The 80x86 Instruction Set

Page 327

6.12.2 IBM/L Exercises

The Chapter Six directory contains several sample IBM/L programs (the *.ibm files)..
Ex6_1.ibm tests three sequences that compute the absolute value of an integer. Ex6_2.ibm
tests three different ways to do a shl left by eight bits. Ex6_3.ibm tests accessing word data
at even and odd addresses. Ex6_4.ibm compares the amount of time it takes to load es:bx
from a memory location with the time it takes to load es:bx with a constant. Ex6_5.ibm
compares the amount of time it takes to swap two registers with and without the XCHG
instruction. Ex6_6.ibm compares the multiply instruction against shift & add versions.
Ex6_7.ibm compares the speed of register-register move instruction against register-mem-
ory move instructions.

Compile each of these IBM/L programs with a DOS command that takes the form:

ibml ex6_1.ibm >ex6_1.asm

For your lab report: IBM/L writes its output to the standard output device. So use the
redirection operator to send this output to a file. Once you’ve created the file, assemble it
with MASM and execute the result. Include the IBM/L program listing and the results in
your lab report. For additional credit: write your own IBM/L programs to test certain
instruction sequences. Include the IBM/L source code in your lab report along with your
results.

Warning: to get the most accurate results, you should not run the assembly language
programs IBM/L creates under Windows or any other multitasking operating system. For
best results, run the output of IBM/L under DOS.

6.13 Programming Projects

1) Write a short “GetLine” routine which reads up to 80 characters from the user and places
these characters in successive locations in a buffer in your data segment. Use the INT 16h
and INT 10h system BIOS calls described in this chapter to input and output the charac-
ters typed by the user. Terminate input upon encountering a carriage return (ASCII code
0Dh) or after the user types the 80th character. Be sure to count the number of characters
actually typed by the user for later use. There is a “shell” program specifically designed
for this project on the companion CD-ROM (proj6_1.asm).

2) Modify the above routine so that it properly handles the backspace character (ASCII code
08h). Whenever the user presses a backspace key, you should remove the previous key-
stroke from the input buffer (unless there are no previous characters in the input buffer, in
which case you ignore the backspace).

3) You can use the XOR operation to encrypt and decrypt data. If you XOR all the characters in
a message with some value you will effectively scramble that message. You can retrieve the
original message by XOR’ing the characters in the message with the same value again.
Modify the code in Program #2 so that it encrypts each byte in the message with the value
0Fh and displays the encrypted message to the screen. After displaying the message,
decrypt it by XOR’ing with 0Fh again and display the decrypted message. Note that you
should use the count value computed by the “GetLine” code to determine how many
characters to process.

4) Write a “PutString” routine that prints the characters pointed at by the es:di register pair.
This routine should print all characters up to (but not including) a zero terminating byte.
This routine should preserve all registers it modifies. There is a “shell” program specifi-
cally designed for this project on the companion CD-ROM (proj6_4.asm).

5) To output a 16-bit integer value as the corresponding string of decimal digits, you can use
the following algorithm:



Chapter 06

Page 328

if value = 0 then write(‘0’)
else begin

DivVal := 10000;
while (Value mod DivVal) = 0 do begin

Value := Value mod DivVal;
DivVal := DivVal div 10;

end;

while (DivVal > 1) do begin

write ( chr( Value div DivVal + 48)); (* 48 = ‘0’ *)
Value := Value mod DivVal;
DivVal := DivVal div 10;

end;
end;

Provide a short routine that takes an arbitrary value in ax and outputs it as the corre-
sponding decimal string. Use the int 10h instruction to output the characters to the dis-
play. You can use the “shell” program provided on the companion CD-ROM to begin this
project (proj6_5.asm).

6) To input a 16-bit integer from the keyboard, you need to use code that uses the following
algorithm:

Value := 0
repeat

getchar(ch);
if (ch >= ‘0’) and (ch <= ‘9’) then begin

Value := Value * 10 + ord(ch) - ord(‘0’);
end;

until (ch < ‘0’) or (ch > ‘9’);

Use the INT 16h instruction (described in this chapter) to read characters from the key-
board. Use the output routine in program #4 to display the input result. You can use the
“shell” file proj6_6.asm to start this project.

6.14 Summary

The 80x86 processor family provides a rich CISC (complex instruction set computer)
instruction set. Members of the 80x86 processor family are generally upward compatible,
meaning successive processors execute all the instructions of the previous chips. Pro-
grams written for an 80x86 will generally run on all members of the family, programs
using new instructions on the 80286 will run on the 80286 and later processors, but not on
the 8086. Likewise, programs that take advantage of the new instructions on the 80386 will
run on the 80386 and later processors, but not on the earlier processors. And so on. 

The processors described in this chapter include the 8086/8088, the 80286, the 80386,
the 80486, and the Pentium (80586). Intel also produced an 80186, but this processor was
not used extensively in personal computers21.

The 80x86 instruction set is most easily broken down into eight categories, see

• “Data Movement Instructions” on page 246.
• “Conversions” on page 252.
• “Arithmetic Instructions” on page 255.
• “Logical, Shift, Rotate and Bit Instructions” on page 269.
• “I/O Instructions” on page 284.
• “String Instructions” on page 284.

21. A few PCs actually used this CPU. Control applications were the biggest user of this CPU, however. The 80186
includes most of the 80286 specific instructions described in this chapter. It does not include the protected mode
instructions of the 80286.



The 80x86 Instruction Set

Page 329

• “Program Flow Control Instructions” on page 286.
• “Miscellaneous Instructions” on page 302.

Many instructions affect various flag bits in the 80x86 flags register. Some instructions
can test these flags as though they were boolean values. The flags also denote relation-
ships after a comparison such as equality, less than, and greater than. To learn about these
flags and how to test them in your programs, consult

• “The Processor Status Register (Flags)” on page 244.
• “The “Set on Condition” Instructions” on page 281.
• “The Conditional Jump Instructions” on page 296.

There are several instructions on the 80x86 that transfer data between registers and
memory. These instructions are the ones assembly language programmers use most often.
The 80x86 provides many such instructions to help you write fast, efficient, programs. For
the details, read

• “Data Movement Instructions” on page 246.
• “The MOV Instruction” on page 246.
• “The XCHG Instruction” on page 247.
• “The LDS, LES, LFS, LGS, and LSS Instructions” on page 248.
• “The LEA Instruction” on page 248.
• “The PUSH and POP Instructions” on page 249.
• “The LAHF and SAHF Instructions” on page 252.

The 80x86 provides several instructions to convert data from one form to another.
There are special instructions for sign extension, zero extension, table translation, and
big/little endian conversion.

• See “The MOVZX, MOVSX, CBW, CWD, CWDE, and CDQ Instructions”
on page 252.

• See “The BSWAP Instruction” on page 254.
• See “The XLAT Instruction” on page 255.

The 80x86 arithmetic instructions provide all the common integer operations: addi-
tion, multiplication, subtraction, division, negation, comparisons, increment, decrement,
and various instructions to help with BCD arithmetic: AAA, AAD, AAM, AAS, DAA, and
DAS. For information on these instructions, see

• “Arithmetic Instructions” on page 255.
• “The Addition Instructions: ADD, ADC, INC, XADD, AAA, and DAA”

on page 256.
• “The ADD and ADC Instructions” on page 256.
• “The INC Instruction” on page 258.
• “The XADD Instruction” on page 258.
• “The Subtraction Instructions: SUB, SBB, DEC, AAS, and DAS” on

page 259.
• “The CMP Instruction” on page 261.
• “The CMPXCHG, and CMPXCHG8B Instructions” on page 263
• “The NEG Instruction” on page 263.
• “The Multiplication Instructions: MUL, IMUL, and AAM” on page 264.
• “The Division Instructions: DIV, IDIV, and AAD” on page 267.

The 80x86 also provides a rich set of logical, shift, rotate, and bit operations. These
instructions manipulate the bits in their operands allowing you to logically AND, OR,
XOR, and NOT values, rotate and shift bits within an operand, test and set/clear/invert
bits in an operand, and set an operand to zero or one depending on the state of the flags
register. For more information, see

• “Logical, Shift, Rotate and Bit Instructions” on page 269.
• “The Logical Instructions: AND, OR, XOR, and NOT” on page 269.
• “The Rotate Instructions: RCL, RCR, ROL, and ROR” on page 276.
• “The Bit Operations” on page 279.
• “The “Set on Condition” Instructions” on page 281.



Chapter 06

Page 330

There are a couple of I/O instruction in the 80x86 instruction set, IN and OUT. These
are really special forms of the MOV instruction that operate on the 80x86 I/O address
space rather than the memory address space. You typically use these instructions to access
hardware registers on peripheral devices. This chapter discusses these instruction at

• “I/O Instructions” on page 284.

The 80x86 family provides a large repertoire of instructions that manipulate strings of
data. These instructions include movs, lods, stos, scas, cmps, ins, outs, rep, repz, repe, repnz,
and repne. For more information, see

• “String Instructions” on page 284

The transfer of control instructions on the 80x86 let you create loops, subroutines, con-
ditional sequences and do many other tests. To learn about these instructions, read

• “Program Flow Control Instructions” on page 286.
• “Unconditional Jumps” on page 286.
• “The CALL and RET Instructions” on page 289.
• “The INT, INTO, BOUND, and IRET Instructions” on page 292.
• “The Conditional Jump Instructions” on page 296.
• “The JCXZ/JECXZ Instructions” on page 299.
• “The LOOP Instruction” on page 300.
• “The LOOPE/LOOPZ Instruction” on page 300.
• “The LOOPNE/LOOPNZ Instruction” on page 301

This chapter finally discusses various miscellaneous instructions. These instructions
directly manipulate flags in the flags register, provide certain processor services, or per-
form protected mode operations. This Chapter only mentioned the protected mode
instructions. Since you do not normally use them in application (non-O/S) programs, you
don’t really need to know much about them. See

• “Miscellaneous Instructions” on page 302



The 80x86 Instruction Set

Page 331

6.15 Questions

1) Provide an example that shows that it requires n+1 bits to hold the sum of two n-bit
binary values. 

2) ADC and SBB can be forced to behave exactly like ADD and SUB by inserting some other
instruction before ADC and SBB. What instruction must be inserted in front of ADC to
make it behave like ADD? In front of SBB to make it behave like SUB? 

3) Given that you can manipulate data items on the top of stack using PUSH and POP,
explain how you could modify a return address on the top of stack so that a RET instruc-
tion will cause the 80x86 to return two bytes beyond the original return address. 

4) Provide four different ways to add two to the value in the BX register. No way should
require more than two instructions (hint, there are at least six ways of doing this!) 

5) Assume that the target addresses for the following conditional jumps are beyond the
range of a short branch. Modify each of these instructions so that they perform the proper
operation (i.e., can jump the entire distance):

a) JS Label1 b) JE Label2 c) JZ Label3 

d) JC Label4 e) JBE There f) JG Label5 

6) Explain the difference between the carry flag and the overflow flag. 

7) When do you typically use the CBW and CWD instructions to sign extend a value? 

8) What is the difference between a “MOV reg, immediate” instruction and a “LEA reg,
address” instruction? 

9) What does the INT nn instruction push onto the stack that the CALL FAR instruction does
not? 

10) What is the JCXZ instruction typically used for? 

11) Explain the operation of the LOOP, LOOPE/LOOPZ, and LOOPNE/LOOPNZ instruc-
tions. 

12) Which registers (other than the flag register) are affected by the MUL, IMUL, DIV, and
IDIV instructions? 

13) List three differences between the “DEC AX” and the “SUB AX, 1” instructions. 

14) Which of the shift, rotate, and logical instructions do not affect the zero flag?

15) Why does the SAR instruction always clear the overflow flag?

16) On the 80386 the IMUL instruction is almost totally orthogonal (generalized). Almost.
Give some examples of forms allowed by the ADD instruction for which there are no com-
parable IMUL instructions.

17) Why didn’t Intel generalize the IDIV instruction as they did the IMUL instruction?

18) What instruction(s) would you need to use to read the eight bit value at I/O address 378h?
Please give the specific instructions to do this.

19) Which flag(s) does the 80x86 use to check for unsigned arithmetic overflow?

20) Which flag(s) let you check for signed overflow?.

21) Which flag(s) does the 80x86 use to test the following unsigned conditions? How must the
flags be set for the condition to be true?

a) equal b) not equal c) less than

d) less than or equal e) greater than f) greater than or equal

22) Repeat the above question for a signed comparison.

23) Explain the operation of the 80x86 CALL and RET instructions. Describe step-by-step
what each variant of these instructions.



Chapter 06

Page 332

24) The following sequence exchanges the values between the two memory variables I and J:

xchg ax, i
xchg ax, j
xchg ax, i

On the 80486, the “MOV reg, mem” and “MOV mem, reg” instructions take one cycle (under
the right conditions) whereas the “XCHG reg, mem” instruction takes three cycles. Provide
a faster sequence for the ‘486 than the above.

25) On the 80386 the “MOV reg, mem” instruction requires four cycles, the “MOV mem, reg”
requires two cycles, and the “XCHG reg, mem” instruction requires five cycles. Provide a
faster sequence of the memory exchange problem in question 24 for the 80386.

26) On the 80486, the “MOV acc, mem” and “MOV reg, mem” instructions all take only one cycle
to execute (under the right conditions). Assuming all other things equal, why would you
want to use the “MOV acc,mem” form rather than the “MOV reg,mem” form to load a value
into AL/AX/EAX?

27) Which instructions perform 32 bit loads on the pre-80386 processors?

28) How could you use the PUSH and POP instructions to preserve the AX register between
two points in your code?

29) If, immediately upon entering a subroutine, you execute a “pop ax” instruction, what
value will you have in the AX register?

30) What is one major use for the SAHF instruction?

31) What is the difference between CWD and CWDE?

32) The BSWAP instruction will convert 32 bit big endian values to 32 bit little endian values.
What instruction can you use to convert 16 bit big endian to 16 bit little endian values?

33) What instruction could you use to convert 32 bit little endian values to 32 bit big endian
values?

34) Explain how you could use the XLAT instruction to convert an alphabetic character in the
AL register from lower case to upper case (assuming it is lower case) and leave all other
values in AL unchanged.

35) What instruction is CMP most similar to?

36) What instruction is TEST most similar to?

37) What does the NEG instruction do?

38) Under what two circumstances will the DIV and IDIV instructions fail?

39) What is the difference between RCL and ROL?

40) Write a short code segment, using the LOOP instruction, that calls the “CallMe” subrou-
tine 25 times.

41) On the 80486 and Pentium CPUs the LOOP instruction is not as fast as the discrete
instructions that perform the same operation. Rewrite the code above to produce a faster
executing program on the 80486 and Pentium chips.

42) How do you determine the “opposite jump” for a conditional jump. Why is this algorithm
preferable?

43) Give an example of the BOUND instruction. Explain what your example will do.

44) What is the difference between the IRET and RET (far) instructions?

45) The BT (Bit Test) instruction copies a specific bit into the carry flag. If the specified bit is
one, it sets the carry flag, if the bit is zero, it clears the carry flag. Suppose you want to
clear the carry flag if the bit was zero and set it otherwise. What instruction could you exe-
cute after BT to accomplish this?

46) You can simulate a far return instruction using a double word variable and two 80x86
instructions. What is the two instruction sequence that will accomplish this?


