

Page 333

The UCR Standard Library Chapter Seven

Most programming languages provide several “built-in” functions to reduce the effort
needed to write a program. Traditionally, assembly language programmers have not had
access to a standard set of commonly used subroutines for their programs; hence, assem-
bly language programmers’ productivity has been quite low because they are constantly
“reinventing the wheel” in every program they write. The UCR Standard Library for
80x86 programmers provides such a set of routines. This chapter discusses a small subset
of the routines available in the library. After reading this chapter, you should peruse the
documentation accompanying the standard library routines.

7.0 Chapter Overview

This chapter provides a basic introduction to the functions available in the UCR Stan-
dard Librfary for 80x86 assembly language programmers. This brief introduction covers
the following subjects:

• The UCR Standard Library for 80x86 Assembly Language Programmers.
• Memory management routines.
• Input routines.
• Output routines.
• Conversions.
• Predefined constants and macros.

7.1 An Introduction to the UCR Standard Library

The “UCR Standard Library for 80x86 Assembly Language Programmers” is a set of
assembly language subroutines patterned after the “C” standard library. Among other
things, the standard library includes procedures to handle input, output, conversions, var-
ious comparisons and checks, string handling, memory management, character set opera-
tors, floating point operations, list handling, serial port I/O, concurrency and coroutines,
and pattern matching.

This chapter will not attempt to describe every routine in the library. First of all, the
Library is constantly changing so such a description would quickly become outdated. Sec-
ond, some of the library routines are for advanced programmers only and are beyond the
scope of this text. Finally, there are hundreds of routines in the library. Attempting to
describe them all here would be a major distraction from the real job at hand– learning
assembly language.

Therefore, this chapter will cover the few necessary routines that will get you up and
running with the least amount of effort. Note that the full documentation for the library, as
well as the source code and several example files are on the companion diskette for this
text. A reference guide appears in the appendices of this text. You can also find the latest
version of the UCR Standard Library on many on-line services, BBSes, and from many
shareware software houses. It is also available via anonymous FTP on the internet.

When using the UCR Standard Library you should always use the SHELL.ASM file
provided as the “skeleton” of a new program. This file sets up the necessary segments,
provides the proper

include

directives, and initializes necessary Library routines for you.
You should not attempt to create a new program from scratch unless you are very familiar
with the internal operation of the Standard Library.

Note that most of the Standard Library routines use macros rather than the

call

instruction for invocation. You cannot, for example, directly

call

the

putc

routine. Instead,

Thi d t t d ith F M k 4 0 2

Chapter 07

Page 334

you invoke the

putc

macro that includes a call to the

sl_putc

procedure (“SL” stands for
“Standard Library”).

If you choose not to use the SHELL.ASM file, your program must include several
statements to activate the standard library and satisfy certain requirements for the stan-
dard library. Please see the documentation accompanying the standard library if you
choose to go this route. Until you gain some more experience with assembly language
programming, you should always use the SHELL.ASM file as the starting point for your
programs.

7.1.1 Memory Management Routines: MEMINIT, MALLOC, and FREE

The Standard Library provides several routines that manage free memory in the

heap

.
They give assembly language programmers the ability to dynamically allocate memory
during program execution and return this memory to the system when the program no
longer needs it. By dynamically allocating and freeing blocks of memory, you can make
efficient use of memory on a PC.

The

meminit

routine initializes the memory manager and you must call it before any
routine that uses the memory manager. Since many Standard Library routines use the
memory manager, you should call this procedure early in the program. The
“SHELL.ASM” file makes this call for you.

The

malloc

routine allocates storage on the heap and returns a pointer to the block it
allocates in the

es:di

registers. Before calling

malloc

you need to load the size of the block
(in bytes) into the

cx

register. On return,

malloc

sets the carry flag if an error occurs (insuffi-
cient memory). If the carry is clear,

es:di

points at a block of bytes the size you’ve specified:

mov cx, 1024 ;Grab 1024 bytes on the heap
malloc ;Call MALLOC
jc MallocError ;If memory error.
mov word ptr PNTR, DI ;Save away pointer to block.
mov word ptr PNTR+2, ES

When you call

malloc

, the memory manager promises that the block it gives you is free
and clear and it will not reallocate that block until you explicitly free it. To return a block
of memory back to the memory manager so you can (possibly) re-use that block of mem-
ory in the future, use the

free

Library routine.

free

expects you to pass the pointer returned
by

malloc

:

les di, PNTR ;Get pointer to free
free ;Free that block
jc BadFree

As usual for most Standard Library routines, if the

free

routine has some sort of diffi-
culty it will return the carry flag set to denote an error.

7.1.2 The Standard Input Routines: GETC, GETS, GETSM

While the Standard Library provides several input routines, there are three in particu-
lar you will use all the time:

getc

(get a character),

gets

(get a string), and

getsm

(get a mal-
loc’d string).

Getc

reads a single character from the keyboard and returns that character in the

al

register. It returns end of file (EOF) status in the

ah

register (zero means EOF did not
occur, one means EOF did occur). It does not modify any other registers. As usual, the
carry flag returns the error status. You do not need to pass

getc

any values in the registers.

Getc

does not

echo

 the input character to the display screen. You must explicitly print the
character if you want it to appear on the output monitor.

The following example program continually loops until the user presses the Enter
key:

The UCR Standard Library

Page 335

; Note: “CR” is a symbol that appears in the “consts.a”
; header file. It is the value 13 which is the ASCII code
; for the carriage return character

Wait4Enter: getc
cmp al, cr
jne Wait4Enter

The

gets

routine reads an entire line of text from the keyboard. It stores each succes-
sive character of the input line into a byte array whose base address you pass in the

es:di

register pair. This array must have room for at least 128 bytes. The

gets

routine will read
each character and place it in the array except for the carriage return character.

Gets

termi-
nates the input line with a zero byte (which is compatible with the Standard Library string
handling routines).

Gets

echoes each character you type to the display device, it also han-
dles simple line editing functions such as backspace. As usual,

gets

returns the carry set if
an error occurs. The following example reads a line of text from the standard input device
and then counts the number of characters typed. This code is tricky, note that it initializes
the count and pointer to -1 prior to entering the loop and then immediately increments
them by one. This sets the count to zero and adjusts the pointer so that it points at the first
character in the string. This simplification produces slightly more efficient code than the
straightforward solution would produce:

DSEG segment

MyArray byte 128 dup (?)

DSEG ends

CSEG segment

 .
 .
 .

; Note: LESI is a macro (found in consts.a) that loads
; ES:DI with the address of its operand. It expands to the
; code:
;
; mov di, seg operand
; mov es, di
; mov di, offset operand
;
; You will use the macro quite a bit before many Standard
; Library calls.

lesi MyArray ;Get address of inp buf.
gets ;Read a line of text.
mov ah, -1 ;Save count here.
lea bx, -1[di] ;Point just before string.

CountLoop: inc ah ;Bump count by one.
inc bx ;Point at next char in str.
cmp byte ptr es:[bx], 0
jne CoutLoop

; Now AH contains the number of chars in the string.

 .
 .
 .

The

getsm

routine also reads a string from the keyboard and returns a pointer to that
string in

es:di.

The difference between

gets

and

getsm

is that you do not have to pass the
address of an input buffer in

es:di

.

Getsm

automatically allocates storage on the heap with
a call to

malloc

and returns a pointer to the buffer in

es:di

. Don’t forget that you must call

meminit

at the beginning of your program if you use this routine. The SHELL.ASM skele-
ton file calls

meminit

for you. Also, don’t forget to call

free

to return the storage to the heap
when you’re done with the input line.

getsm ;Returns pointer in ES:DI

 .
 .
 .

free ;Return storage to heap.

Chapter 07

Page 336

7.1.3 The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT,
and PRINTF

The Standard Library provides a wide array of output routines, far more than you will
see here. The following routines are representative of the routines you’ll find in the
Library.

Putc

outputs a single character to the display device. It outputs the character appear-
ing in the

al

register. It does not affect any registers unless there is an error on output (the
carry flag denotes error/no error, as usual). See the Standard Library documentation for
more details.

Putcr

outputs a “newline” (carriage return/line feed combination) to the standard out-
put. It is completely equivalent to the code:

mov al, cr ;CR and LF are constants
putc ; appearing in the consts.a
mov al, lf ; header file.
putc

The

puts

(put a string) routine prints the zero terminated string at which

es:di

points

1

.
Note that

puts

does

not

 automatically output a newline after printing the string. You must
either put the carriage return/line feed characters at the end of the string or call

putcr

after
calling

puts

if you want to print a newline after the string.

Puts

does not affect any registers
(unless there is an error). In particular, it does not change the value of the

es:di

registers.
The following code sequence uses this fact:

getsm ;Read a string
puts ;Print it
putcr ;Print a new line
free ;Free the memory for string.

Since the routines above preserve

es:di

(except, of course,

getsm

), the call to

free

deallocates
the memory allocated by the call to

getsm

.

The

puth

routine prints the value in the

al

register as exactly two hexadecimal digits,
including a leading zero byte if the value is in the range 0..Fh. The following loop reads a
sequence of keys from the keyboard and prints their ASCII values until the user presses
the Enter key:

KeyLoop: getc
cmp al, cr
je Done
puth
putcr
jmp KeyLoop

Done:

The

puti

routine prints the value in

ax

as a signed 16 bit integer. The following code
fragment prints the sum of

 I

 and

 J

 to the display:

mov ax, I
add ax, J
puti
putcr

Putu

 is similar to

puti

 except it outputs

unsigned

 integer values rather than signed integers.

Routines like

puti

 and

putu

 always output numbers using the minimum number of
possible print positions. For example,

puti

 uses three print positions on the string to print
the value 123. Sometimes, you may want to force these output routines to print their val-
ues using a fixed number of print positions, padding any extra positions with spaces. The

putisize

 and

putusize

 routines provide this capability. These routines expect a numeric
value in

ax

 and a field width specification in

cx

. They will print the number in a field

1. A zero terminated string is a sequence of characters ending with a zero byte. This is the standard character
string format the Standard Library uses.

The UCR Standard Library

Page 337

width of

at least

cx

 positions. If the value in

cx

 is larger than the number of print position
the value requires, these routines will right justify the number in a field of

cx

 print posi-
tions. If the value in

cx

 is less than the number of print positions the value requires, these
routines ignore the value in

cx

 and use however many print positions the number
requires.

; The following loop prints out the values of a 3x3 matrix in matrix form:
; On entry, bx points at element [0,0] of a row column matrix.

mov dx, 3 ;Repeat for each row.
PrtMatrix: mov ax, [bx] ;Get first element in this
row.

mov cx, 7 ;Use seven print positions.
putisize ;Print this value.
mov ax, 2[bx] ;Get the second element.
putisize ;CX is still seven.
mov ax, 4[bx] ;Get the third element.
putisize
putcr ;Output a new line.
add bx, 6 ;Move on to next row.
dec dx ;Repeat for each row.
jne PrtMatrix

The

print

routine is one of the most-often called procedures in the library. It prints the
zero terminated string that immediately follows the call to print:

print
byte “Print this string to the display”,cr,lf,0

The example above prints the string “Print this string to the display” followed by a new line.
Note that print will print whatever characters immediately follow the call to print, up to the
first zero byte it encounters. In particular, you can print the newline sequence and any
other control characters as shown above. Also note that you are not limited to printing one
line of text with the print routine:

print
byte “This example of the PRINT routine”,cr,lf
byte “prints several lines of text.”,cr,lf
byte “Also note,”,cr,lf,”that the source lines ”
byte “do not have to correspond to the output.”
byte cr,lf
byte 0

The above displays:

This example of the PRINT routine
prints several lines of text.
Also note,
that the source lines do not have to correspond to the output.

It is very important that you not forget about that zero terminating byte. The print rou-
tine begins executing the first 80x86 machine language instruction following that zero ter-
minating byte. If you forget to put the zero terminating byte after your string, the print
routine will gladly eat up the instruction bytes following your string (printing them) until
it finds a zero byte (zero bytes are common in assembly language programs). This will
cause your program to misbehave and is a big source of errors beginning programmers
have when they use the print routine. Always keep this in mind.

Printf, like its “C” namesake, provides formatted output capabilities for the Standard
Library package. A typical call to printf always takes the following form:

printf
byte “format string”,0
dword operand1, operand2, ..., operandn

 The format string is comparable to the one provided in the “C” programming lan-
guage. For most characters, printf simply prints the characters in the format string up to the
terminating zero byte. The two exceptions are characters prefixed by a backslash (“\”)
and characters prefixed by a percent sign (“%”). Like C’s printf, the Standard Library’s printf

Chapter 07

Page 338

uses the backslash as an escape character and the percent sign as a lead-in to a format
string.

Printf uses the escape character (“\”) to print special characters in a fashion similar to,
but not identical to C’s printf. The Standard Library’s printf routine supports the following
special characters:

• \r Print a carriage return (but no line feed)
• \n Print a new line character (carriage return/line feed).
• \b Print a backspace character.
• \t Print a tab character.
• \l Print a line feed character (but no carriage return).
• \f Print a form feed character.
• \\ Print the backslash character.
• \% Print the percent sign character.
• \0xhh Print ASCII code hh, represented by two hex digits.

 C users should note a couple of differences between Standard Library’s escape
sequences and C’s. First, use “\%” to print a percent sign within a format string, not
“%%”. C doesn’t allow the use of “\%” because the C compiler processes “\%” at compile
time (leaving a single “%” in the object code) whereas printf processes the format string at
run-time. It would see a single “%” and treat it as a format lead-in character. The Standard
Library’s printf, on the other hand, processes both the “\” and “%” at run-time, therefore it
can distinguish “\%”.

Strings of the form “\0xhh” must contain exactly two hex digits. The current printf
routine isn’t robust enough to handle sequences of the form “\0xh” which contain only a
single hex digit. Keep this in mind if you find printf chopping off characters after you
print a value.

There is absolutely no reason to use any hexadecimal escape character sequence
except “\0x00”. Printf grabs all characters following the call to printf up to the terminating
zero byte (which is why you’d need to use “\0x00” if you want to print the null character,
printf will not print such values). The Standard Library’s printf routine doesn’t care
how those characters got there. In particular, you are not limited to using a single string
after the printf call. The following is perfectly legal:

printf
byte “This is a string”,13,10
byte “This is on a new line”,13,10
byte “Print a backspace at the end of this line:”
byte 8,13,10,0

 Your code will run a tiny amount faster if you avoid the use of the escape character
sequences. More importantly, the escape character sequences take at least two bytes. You
can encode most of them as a single byte by simply embedding the ASCII code for that
byte directly into the code stream. Don’t forget, you cannot embed a zero byte into the
code stream. A zero byte terminates the format string. Instead, use the “\0x00” escape
sequence.

Format sequences always begin with “%”. For each format sequence, you must pro-
vide a far pointer to the associated data immediately following the format string, e.g.,

printf
byte “%i %i”,0
dword i,j

 Format sequences take the general form “%s\cn^f” where:

The UCR Standard Library

Page 339

• “%” is always the “%” character. Use “\%” if you actually want to print a
percent sign.

• s is either nothing or a minus sign (“-”).
• “\c” is also optional, it may or may not appear in the format item. “c”

represents any printable character.
• “n” represents a string of 1 or more decimal digits.
• “^” is just the caret (up-arrow) character.
• “f” represents one of the format characters: i, d, x, h, u, c, s, ld, li, lx, or lu.

 The “s”, “\c”, “n”, and “^” items are optional, the “%” and “f” items must be present.
Furthermore, the order of these items in the format item is very important. The “\c” entry,
for example, cannot precede the “s” entry. Likewise, the “^” character, if present, must fol-
low everything except the “f” character(s).

The format characters i, d, x, h, u, c, s, ld, li, lx, and lu control the output format for the
data. The i and d format characters perform identical functions, they tell printf to print the
following value as a 16 bit signed decimal integer. The x and h format characters instruct
printf to print the specified value as a 16 bit or 8-bit hexadecimal value (respectively). If you
specify u, printf prints the value as a 16-bit unsigned decimal integer. Using c tells printf to
print the value as a single character. S tells printf that you’re supplying the address of a
zero-terminated character string, printf prints that string. The ld, li, lx, and lu entries are
long (32-bit) versions of d/i, x, and u. The corresponding address points at a 32-bit value
that printf will format and print to the standard output.

The following example demonstrates these format items:

 printf
byte “I= %i, U= %u, HexC= %h, HexI= %x, C= %c, “

 dbyte “S= %s”,13,10
 byte “L= %ld”,13,10,0
 dword i,u,c,i,c,s,l

 The number of far addresses (specified by operands to the “dd” pseudo-opcode)
must match the number of “%” format items in the format string. Printf counts the number
of “%” format items in the format string and skips over this many far addresses following
the format string. If the number of items do not match, the return address for printf will be
incorrect and the program will probably hang or otherwise malfunction. Likewise (as for
the print routine), the format string must end with a zero byte. The addresses of the items
following the format string must point directly at the memory locations where the speci-
fied data lies.

When used in the format above, printf always prints the values using the minimum
number of print positions for each operand. If you want to specify a minimum field
width, you can do so using the “n” format option. A format item of the format “%10d”
prints a decimal integer using at least ten print positions. Likewise, “%16s” prints a string
using at least 16 print positions. If the value to print requires more than the specified num-
ber of print positions, printf will use however many are necessary. If the value to print
requires fewer, printf will always print the specified number, padding the value with
blanks. Printf will print the value right justified in the print field (regardless of the data’s
type). If you want to print the value left justified in the output file, use the “-” format char-
acter as a prefix to the field width, e.g.,

 printf
 byte “%-17s”,0
 dword string

In this example, printf prints the string using a 17 character long field with the string left
justified in the output field.

 By default, printf blank fills the output field if the value to print requires fewer print
positions than specified by the format item. The “\c” format item allows you to change
the padding character. For example, to print a value, right justified, using “*” as the pad-
ding character you would use the format item “%*10d”. To print it left justified you
would use the format item “%-*10d”. Note that the “-” must precede the “*”. This is a
limitation of the current version of the software. The operands must appear in this order.

Chapter 07

Page 340

Normally, the address(es) following the printf format string must be far pointers to the
actual data to print.

 On occasion, especially when allocating storage on the heap (using malloc), you may
not know (at assembly time) the address of the object you want to print. You may have
only a pointer to the data you want to print. The “^” format option tells printf that the far
pointer following the format string is the address of a pointer to the data rather than the
address of the data itself. This option lets you access the data indirectly.

Note: unlike C, Standard Library’s printf routine does not support floating point out-
put. Putting floating point into printf would increase the size of this routine a tremendous
amount. Since most people don’t need the floating point output facilities, it doesn’t
appear here. There is a separate routine, printff, that includes floating point output.

The Standard Library printf routine is a complex beast. However, it is very flexible and
extremely useful. You should spend the time to master its major functions. You will be
using this routine quite a bit in your assembly language programs.

The standard output package provides many additional routines besides those men-
tioned here. There simply isn’t enough room to go into all of them in this chapter. For
more details, please consult the Standard Library documentation.

7.1.4 Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize

The puti, putu, and putl routines output the numeric strings using the minimum number
of print positions necessary. For example, puti uses three character positions to print the
value -12. On occasion, you may need to specify a different field width so you can line up
columns of numbers or achieve other formatting tasks. Although you can use printf to
accomplish this goal, printf has two major drawbacks – it only prints values in memory
(i.e., it cannot print values in registers) and the field width you specify for printf must be a
constant2. The putisize, putusize, and putlsize routines overcome these limitations.

Like their puti, putu, and putl counterparts, these routines print signed integer,
unsigned integer, and 32-bitsigned integer values. They expect the value to print in the ax
register (putisize and putusize) or the dx:ax register pair (putlsize). They also expect a mini-
mum field width in the cx register. As with printf, if the value in the cx register is smaller
than the number of print positions that the number actually needs to print, putisize, putu-
size, and putlsize will ignore the value in cx and print the value using the minimum neces-
sary number of print positions.

7.1.5 Output Field Size Routines: Isize, Usize, and Lsize

Once in a while you may want to know the number of print positions a value will
require before actually printing that value. For example, you might want to compute the
maximum print width of a set of numbers so you can print them in columnar format auto-
matically adjusting the field width for the largest number in the set. The isize, usize, and
lsize routines do this for you.

The isize routine expects a signed integer in the ax register. It returns the minimum
field width of that value (including a position for the minus sign, if necessary) in the ax
register. Usize computes the size of the unsigned integer in ax and returns the minimum
field width in the ax register. Lsize computes the minimum width of the signed integer in
dx:ax (including a position for the minus sign, if necessary) and returns this width in the ax
register.

2. Unless you are willing to resort to self-modifying code.

The UCR Standard Library

Page 341

7.1.6 Conversion Routines: ATOx, and xTOA

The Standard Library provides several routines to convert between string and
numeric values. These include atoi, atoh, atou, itoa, htoa, wtoa, and utoa (plus others). The
ATOx routines convert an ASCII string in the appropriate format to a numeric value and
leave that value in ax or al. The ITOx routines convert the value in al/ax to a string of digits
and store this string in the buffer whose address is in es:di3. There are several variations on
each routine that handle different cases. The following paragraphs describe each routine.

The atoi routine assumes that es:di points at a string containing integer digits (and,
perhaps, a leading minus sign). They convert this string to an integer value and return the
integer in ax. On return, es:di still points at the beginning of the string. If es:di does not
point at a string of digits upon entry or if an overflow occurs, atoi returns the carry flag set.
Atoi preserves the value of the es:di register pair. A variant of atoi, atoi2, also converts an
ASCII string to an integer except it does not preserve the value in the di register. The atoi2
routine is particularly useful if you need to convert a sequence of numbers appearing in
the same string. Each call to atoi2 leaves the di register pointing at the first character
beyond the string of digits. You can easily skip over any spaces, commas, or other delim-
iter characters until you reach the next number in the string; then you can call atoi2 to con-
vert that string to a number. You can repeat this process for each number on the line.

Atoh works like the atoi routine, except it expects the string to contain hexadecimal
digits (no leading minus sign). On return, ax contains the converted 16 bit value and the
carry flag denotes error/no error. Like atoi, the atoh routine preserves the values in the
es:di register pair. You can call atoh2 if you want the routine to leave the di register pointing
at the first character beyond the end of the string of hexadecimal digits.

Atou converts an ASCII string of decimal digits in the range 0..65535 to an integer
value and returns this value in ax. Except that the minus sign is not allowed, this routine
behaves just like atoi. There is also an atou2 routine that does not preserve the value of the
di register; it leaves di pointing at the first character beyond the string of decimal digits.

Since there is no geti, geth, or getu routines available in the Standard Library, you will
have to construct these yourself. The following code demonstrates how to read an integer
from the keyboard:

print
byte “Enter an integer value:”,0
getsm
atoi ;Convert string to an integer in AX
free ;Return storage allocated by getsm
print
byte “You entered “,0
puti ;Print value returned by ATOI.
putcr

The itoa, utoa, htoa, and wtoa routines are the logical inverse to the atox routines. They
convert numeric values to their integer, unsigned, and hexadecimal string representa-
tions. There are several variations of these routines depending upon whether you want
them to automatically allocate storage for the string or if you want them to preserve the di
register.

Itoa converts the 16 bit signed integer in ax to a string and stores the characters of this
string starting at location es:di. When you call itoa, you must ensure that es:di points at a
character array large enough to hold the resulting string. Itoa requires a maximum of
seven bytes for the conversion: five numeric digits, a sign, and a zero terminating byte.
Itoa preserves the values in the es:di register pair, so upon return es:di points at the begin-
ning of the string produced by itoa.

Occasionally, you may not want to preserve the value in the di register when calling
the itoa routine. For example, if you want to create a single string containing several con-

3. There are also a set of xTOAM routines that automatically allocate storage on the heap for you.

Chapter 07

Page 342

verted values, it would be nice if itoa would leave di pointing at the end of the string rather
than at the beginning of the string. The itoa2 routine does this for you; it will leave the di
register pointing at the zero terminating byte at the end of the string. Consider the follow-
ing code segment that will produce a string containing the ASCII representations for three
integer variables, Int1, Int2, and Int3:

; Assume es:di already points at the starting location to store the converted
; integer values

mov ax, Int1
itoa2 ;Convert Int1 to a string.

; Okay, output a space between the numbers and bump di so that it points
; at the next available position in the string.

mov byte ptr es:[di], ‘ ‘
inc di

; Convert the second value.

mov ax, Int2
itoa2
mov byte ptr es:[di], ‘ ‘
inc di

; Convert the third value.

mov ax, Int3
itoa2

; At this point, di points at the end of the string containing the
; converted values. Hopefully you still know where the start of the
; string is so you can manipulate it!

Another variant of the itoa routine, itoam, does not require you to initialize the es:di
register pair. This routine calls malloc to automatically allocate the storage for you. It
returns a pointer to the converted string on the heap in the es:di register pair. When you
are done with the string, you should call free to return its storage to the heap.

; The following code fragment converts the integer in AX to a string and prints
; this string. Of course, you could do this same operation with PUTI, but this
; code does demonstrate how to call itoam.

itoam ;Convert integer to string.
puts ;Print the string.
free ;Return storage to the heap.

The utoa, utoa2, and utoam routines work just like itoa, itoa2, and itoam, except they con-
vert the unsigned integer value in ax to a string. Note that utoa and utoa2 require, at most,
six bytes since they never output a sign character.

Wtoa, wtoa2, and wtoam convert the 16 bit value in ax to a string of exactly four hexa-
decimal characters plus a zero terminating byte. Otherwise, they behave exactly like itoa,
itoa2, and itoam. Note that these routines output leading zeros so the value is always four
digits long.

The htoa, htoa2, and htoam routines are similar to the wtoa, wtoa2, and wtoam routines.
However, the htox routines convert the eight bit value in al to a string of two hexadecimal
characters plus a zero terminating byte.

The Standard Library provides several other conversion routines as well as the ones
mentioned in this section. See the Standard Library documentation in the appendices for
more details.

7.1.7 Routines that Test Characters for Set Membership

The UCR Standard Library provides many routines that test the character in the al reg-
ister to see if it falls within a certain set of characters. These routines all return the status in
the zero flag. If the condition is true, they return the zero flag set (so you can test the con-

The UCR Standard Library

Page 343

dition with a je instruction). If the condition is false, they clear the zero flag (test this con-
dition with jne). These routines are

• IsAlNum- Checks to see if al contains an alphanumeric character.
• IsXDigit- Checks al to see if it contains a hexadecimal digit character.
• IsDigit- Checks al to see if it contains a decimal digit character.
• IsAlpha- Checks al to see if it contains an alphabetic character.
• IsLower- Checks al to see if it contains a lower case alpha character.
• IsUpper- Checks al to see if it contains an upper case alpha character.

7.1.8 Character Conversion Routines: ToUpper, ToLower

The ToUpper and ToLower routines check the character in the al register. They will
convert the character in al to the appropriate alphabetic case.

If al contains a lower case alphabetic character, ToUpper will convert it to the equiva-
lent upper case character. If al contains any other character, ToUpper will return it
unchanged.

If al contains an upper case alphabetic character, ToLower will convert it to the equiva-
lent lower case character. If the value is not an upper case alphabetic character ToLower
will return it unchanged.

7.1.9 Random Number Generation: Random, Randomize

The Standard Library Random routine generates a sequence of pseudo-random num-
bers. It returns a random value in the ax register on each call. You can treat this value as a
signed or unsigned value since Random manipulates all 16 bits of the ax register.

You can use the div and idiv instructions to force the output of random to a specific
range. Just divide the value random returns by some number n and the remainder of this
division will be a value in the range 0..n-1. For example, to compute a random number in
the range 1..10, you could use code like the following:

random ;Get a random number in range 0..65535.
sub dx, dx ;Zero extend to 16 bits.
mov bx, 10 ;Want value in the range 1..10.
div bx ;Remainder goes to dx!
inc dx ;Convert 0..9 to 1..10.

; At this point, a random number in the range 1..10 is in the dx register.

The random routine always returns the same sequence of values when a program
loads from disk and executes. Random uses an internal table of seed values that it stores as
part of its code. Since these values are fixed, and always load into memory with the pro-
gram, the algorithm that random uses will always produce the same sequence of values
when a program containing it loads from the disk and begins running. This might not
seem very “random” but, in fact, this is a nice feature since it is very difficult to test a pro-
gram that uses truly random values. If a random number generator always produces the
same sequence of numbers, any tests you run on that program will be repeatable.

Unfortunately, there are many examples of programs that you may want to write (e.g.,
games) where having repeatable results is not acceptable. For these applications you can
call the randomize routine. Randomize uses the current value of the time of day clock to gen-
erate a nearly random starting sequence. So if you need a (nearly) unique sequence of ran-
dom numbers each time your program begins execution, call the randomize routine once
before ever calling the random routine. Note that there is little benefit to calling the random-
ize routine more than once in your program. Once random establishes a random starting
point, further calls to randomize will not improve the quality (randomness) of the numbers
it generates.

Chapter 07

Page 344

7.1.10 Constants, Macros, and other Miscellany

When you include the “stdlib.a” header file, you are also defining certain macros (see
Chapter Eight for a discussion of macros) and commonly used constants. These include
the following:

NULL = 0 ;Some common ASCII codes
BELL = 07 ;Bell character
bs = 08 ;Backspace character
tab = 09 ;Tab character
lf = 0ah ;Line feed character
cr = 0dh ;Carriage return

In addition to the constants above, “stdlib.a” also defines some useful macros including
ExitPgm, lesi, and ldxi. These macros contain the following instructions:

; ExitPgm- Returns control to MS-DOS

ExitPgm macro
mov ah, 4ch ;DOS terminate program opcode
int 21h ;DOS call.
endm

; LESI ADRS-
; Loads ES:DI with the address of the specified operand.

lesi macro adrs
mov di, seg adrs
mov es, di
mov di, offset adrs
endm

; LDXI ADRS-
; Loads DX:SI with the address of the specified operand.

ldxi macro adrs
mov dx, seg adrs
mov si, offset adrs
endm

The lesi and ldxi macros are especially useful for load addresses into es:di or dx:si before
calling various standard library routines (see Chapter Seven for details about macros).

7.1.11 Plus more!

The Standard Library contains many, many, routines that this chapter doesn’t even
mention. As you get time, you should read through the documentation for the Standard
Library and find out what’s available. The routines mentioned in this chapter are the ones
you will use right away. This text will introduce new Standard Library routines as they are
needed.

7.2 Sample Programs

The following programs demonstrate some common operations that use the Standard
Library.

The UCR Standard Library

Page 345

7.2.1 Stripped SHELL.ASM File

; Sample Starting SHELL.ASM file
;
; Randall Hyde
; Version 1.0
; 2/6/96
;
; This file shows what the SHELL.ASM file looks like without
; the superfluous comments that explain where to place objects
; in the source file. Your programs should likewise begin
; with a stripped version of the SHELL.ASM file. After all,
; the comments in the original SHELL.ASM file are four *your*
; consumption, not to be read by someone who sees the program
; you wind up writing.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

7.2.2 Numeric I/O

; Pgm7_2.asm - Numeric I/O.
;
; Randall Hyde
; 2/6/96
;
; The standard library routines do not provide simple to use numeric input
; routines. This code demonstrates how to read decimal and hexadecimal values
; from the user using the Getsm, ATOI, ATOU, ATOH, IsDigit, and IsXDigit
routines.

Chapter 07

Page 346

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

inputLine byte 128 dup (0)

SignedInteger sword ?
UnsignedInt word ?
HexValue word ?

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Read a signed integer value from the user.

InputInteger: print
byte "Input a signed integer value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

mov bx, -1
SkipSpcs1: inc bx

cmp inputLine[bx], ' ' ;Skip over any spaces.
je SkipSpcs1

cmp inputLine[bx], '-' ;See if it's got a minus sign
jne NoSign
inc bx ;Skip if a negative number

NoSign: dec bx ;Back up one place.
TestDigs: inc bx ;Move on to next char

mov al, inputLine[bx]
IsDigit ;See if it's a decimal digit.
je TestDigs ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodDec ; reasonable character.
cmp inputLine[bx], ','
je GoodDec
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodDec
printf
byte "'%s' is an illegal signed integer. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputInteger

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodDec: ATOI ;Do the conversion
mov SignedInteger, ax ;Save the value away.

; Read an unsigned integer value from the user.

InputUnsigned: print
byte "Input an unsigned integer value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

; Note the sneakiness in the following code. It starts with an index of -2
; and then increments it by one. When accessing data in this loop it compares

The UCR Standard Library

Page 347

; against locatoin inputLine[bx+1] which effectively starts bx at zero. In the
; "TestUnsigned" loop below, this code increments bx again so that bx then
; contains the index into the string when the action is occuring.

mov bx, -2
SkipSpcs2: inc bx

cmp inputLine[bx+1], ' ' ;Skip over any spaces.
je SkipSpcs2

TestUnsigned: inc bx ;Move on to next char
mov al, inputLine[bx]
IsDigit ;See if it's a decimal digit.
je TestUnsigned ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodUnSigned ; reasonable character.
cmp inputLine[bx], ','
je GoodUnsigned
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodUnsigned
printf
byte "'%s' is an illegal unsigned integer. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputUnsigned

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodUnsigned: ATOU ;Do the conversion
mov UnsignedInt, ax ;Save the value away.

; Read a hexadecimal value from the user.

InputHex: print
byte "Input a hexadecimal value: ",0

lesi inputLine ;Point es:di at inputLine buffer
gets ;Read a line of text from the user.

; The following code uses the same sneaky trick as the code above.

mov bx, -2
SkipSpcs3: inc bx

cmp inputLine[bx+1], ' ' ;Skip over any spaces.
je SkipSpcs3

TestHex: inc bx ;Move on to next char
mov al, inputLine[bx]
IsXDigit ;See if it's a hex digit.
je TestHex ;Repeat process if it is.

cmp inputLine[bx], ' ' ;See if we end with a
je GoodHex ; reasonable character.
cmp inputLine[bx], ','
je GoodHex
cmp inputLine[bx], 0 ;Input line ends with a zero.
je GoodHex
printf
byte "'%s' is an illegal hexadecimal value. “
byte “Please reenter.",cr,lf,0
dword inputLine
jmp InputHex

; Okay, all the characters are cool, let's do the conversion here. Note that
; ES:DI is still pointing at inputLine.

GoodHex: ATOH ;Do the conversion
mov HexValue, ax ;Save the value away.

; Display the results:

printf

Chapter 07

Page 348

byte "Values input:",cr,lf
byte "Signed: %4d",cr,lf
byte "Unsigned: %4d",cr,lf
byte "Hex: %4x",cr,lf,0
dword SignedInteger, UnsignedInt, HexValue

Quit: ExitPgm
Main endp

cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

7.3 Laboratory Exercises

The UCR Standard Library for 80x86 Assembly Language Programmers is available,
nearly ready to use, on the companion CD-ROM. In this set of laboratory exercises you
will learn how to install the Standard Library on a local hard disk and access the library
within your programs.

7.3.1 Obtaining the UCR Standard Library

A recent version of the UCR Standard Library for 80x86 Assembly language program-
mers appears on the companion CD-ROM. There are, however, periodic updates to the
library, so it is quite possible that the version on the CD-ROM is out of date. For most of
the projects and examples in this textbook, the version appearing on the CD-ROM is prob-
ably sufficient4. However, if you want to use the Standard Library to develop your own
assembly language software you’ll probably want to have the latest version of the library.

The official repository for the UCR Standard library is the ftp.cs.ucr.edu ftp site at the
University of California, Riverside. If you have Internet/ftp access, you can download the
latest copy of the standard library directly from UCR using an anonymous ftp account. To
obtain the software over the internet, follow these steps:

• Running your ftp program, connect to ftp.cs.ucr.edu.
• When the system asks for your login name, use anonymous.
• When the system asks for your password, use your full login name (e.g.,

something that looks like name@machine.domain).
• At this point, you should be logged onto the system. Switch to the

\pub\pc\ibmpcdir using a “cd pub\pc\ibmpcdir” UNIX command.
• The Standard Library files are compressed binary files. Therefore, you

must switch ftp to its binary (vs. ASCII) mode before downloading the
files. On a standard ftp program you would enter a “binary” command to
accomplish this. Check the documentation for your ftp program to see
how to do this. The default for download is usually ASCII. If you
download the standard library files in ASCII mode, they will probably
fail to uncompress properly.

• In the \pub\pc\ibmpcdir subdirectory you should find several files (gen-
erally five but there may be more). Using the appropriate ftp commands
(e.g., get or mget), copy these files to your local system.

• Log off the UCR ftp computer and quit your ftp program.

4. Indeed, the only reason to get an update for this text would be to obtain bug fixes.

The UCR Standard Library

Page 349

• If you have been running ftp on a UNIX system, you will need to transfer
the files you’ve downloaded to a PC running DOS or Windows. Consult
your instructor or local UNIX system administrator for details.

• That’s it! You’ve now downloaded the latest version of the Standard
Library.

If you do not have Internet access, or there is some problem accessing the ftp site at
UCR, you can probably locate a copy of the Standard Library at other ftp sites, on other
BBSes, or from a shareware vendor. Keep in mind, however, that software you find at
other sites may be quite old (indeed, they may have older versions than that appearing on
the companion CD-ROM).

For your lab report: If you successfully downloaded the latest version of the library,
describe the process you went through. Also, describe the files that you downloaded from
the ftp site. If there were any “readme” files you downloaded, read them and describe
their content in your lab report.

7.3.2 Unpacking the Standard Library

To reduce disk storage requirements and download time, the UCR Standard Library is
compressed. Once you download the files from an ftp site or some other service, you will
have to uncompress the files in order to use them. Note: there is a compressed version of
the Standard Library on the companion CD-ROM in the event you do not have Internet
access and could not download the files in the previous exercises. See the Chapter Seven
subdirectory on the companion CD-ROM. Decompressing the Standard Library is nearly
an automatic process. Just follow these steps:

• Create a directory on your local hard disk (usually C:) named “STDLIB”.5

Switch to this subdirectory using the command “CD C:\STDLIB”.
• Copy the files you downloaded (or the files off the companion CD-ROM

in the STDLIB\DIST subdirectory) into the STDLIB subdirectory you’ve
just created.

• Execute the DOS command “PATH=C:\STDLIB”.
• Execute the “UNPACK.BAT” batch file by typing “UNPACK” at the DOS

command line prompt.
• Sit back and watch the show. Everything else is automatic.
• You should reboot after unpacking the standard library or reset the path

to its original value.

If you did not set the path to include the STDLIB directory, the UNPACK.BAT file will
report several errors and it will not properly unpack the files. It will delete the compressed
files from the disk. Therefore, make sure you save a copy of the files you downloaded on a
floppy disk or in a different directory when unpacking the Standard Library. Doing so will
save you from having to download the STDLIB files again if something goes wrong dur-
ing the decompression phase.

For your lab report: Describe the directory structure that unpacking the standard
library produces.

7.3.3 Using the Standard Library

When you unpack the Standard Library files, the UNPACK.BAT program leaves a
(full) copy of the SHELL.ASM file sitting in the STDLIB subdirectory. This should be a
familiar file since you’ve been using SHELL.ASM as a skeletal assembly language pro-
gram in past projects. This particular version of SHELL.ASM is a “full” version since it

5. If you are doing this on computer systems in your school’s laboratories, they may ask you to use a different sub-
directory since the Standard Library may already be installed on the machines.

Chapter 07

Page 350

contains several comments that explain where user-written code and variables should go
in the file. As a general rule, it is very bad programming style to leave these comments in
your SHELL.ASM file. Once you’ve read these comments and figured out the layout of the
SHELL.ASM file, you should delete those comments from any program you write based
on the SHELL.ASM file.

For your lab report: include a modified version of the SHELL.ASM file with the
superfluous comments removed.

At the beginning of the SHELL.ASM file, you will find the following two statements:

include stdlib.a
includelib stdlib.lib

The first statement tells MASM to read the definitions for the standard library routines
from the STDLIB.A include file (see Chapter Eight for a description of include files). The
second statement tells MASM to pass the name of the STDLIB.LIB object code file on to
the linker so it can link your program with the code in the Standard Library. The exact
nature of these two statements is unimportant at this time; however, to use the Standard
Library routines, MASM needs to be able to find these two files at assembly and link time.
By default, MASM assumes that these two files are in the current subdirectory whenever
you assemble a program based on SHELL.ASM. Since this is not the case, you will have to
execute two special DOS commands to tell MASM where it can find these files. The two
commands are

set include=c:\stdlib\include
set lib=c:\stdlib\lib

If you do not execute these commands at least once prior to using MASM with
SHELL.ASM for the first time, MASM will report an error (that it cannot find the
STDLIB.A file) and abort the assembly.

For your lab report: Execute the DOS commands “SET INCLUDE=C:\” and “SET
LIB=C:\”6 and then attempt to assemble SHELL.ASM using the DOS command:

ml shell.asm

Report the error in your lab report. Now execute

SET INCLUDE=C:\STDLIB\INCLUDE

Assemble SHELL.ASM again and report any errors. Finally, execute LIB set command and
assemble your program (hopefully) without error.

If you want to avoid having to execute the SET commands every time you sit down to
program in assembly language, you can always add these set commands to your
autoexec.bat file. If you do this, the system will automatically execute these commands
whenever you turn it on.

Other programs (like MASM and Microsoft C++) may also be using SET LIB and SET
INCLUDE commands. If there are already SET INCLUDE or SET LIB commands in your
autoexec.bat file, you should append the Standard Library entrys to the end of the existing
command like the following:

set include=c:\MASM611\include;c:\STDLIB\INCLUDE
set lib=c:\msvc\lib;C:\STDLIB\LIB

7.3.4 The Standard Library Documentation Files

There are several hundred routines in the UCR Standard Library; far more than this
chapter can reasonably document. The “official” source of documentation for the UCR
Standard Library is a set of text files appearing in the C:\STDLIB\DOC directory. These
files are text files (that you can read with any text editor) that describe the use of each of

6. These command deactivate any current LIB or INCLUDE strings in the environment variables.

The UCR Standard Library

Page 351

the Standard Library routines. If you have any questions about a subroutine or you want
to find out what routines are available, you should read the files in this subdirectory.

The documentation consists of several text files organized by routine classification.
For example, one file describes output routines, another describes input routines, and yet
another describes the string routines. The SHORTREF.TXT file provides a quick synopsis
of the entire library. This is a good starting point for information about the routines in the
library.

For your lab report: include the names of the text files appearing in the documenta-
tion directory. Provide the names of several routines that are docuemented within each
file.

7.4 Programming Projects

1) Write any program of your choice that uses at least fifteen different UCR Standard Library
routines. Consult the appendix in your textbook and the STDLIB\DOC directory for
details on the various StdLib routines. At least five of the routines you choose should not
appear in this chapter. Learn those routines yourself by studying the UCR StdLib docu-
mentation.

2) Write a program that demonstrates the use of each of the format options in the PRINTF
StdLib routine.

3) Write a program that reads 16 signed integers from a user and stores these values into a
4x4 matrix. The program should then print the 4x4 matrix in matrix form (i.e., four rows of
four numbers with each column nicely aligned).

4) Modify the program in problem (3) above so that figures out which number requires the
largest number of print positions and then it outputs the matrix using this value plus one
as the field width for all the numbers in the matrix. For example, if the largest number in
the matrix is 1234, then the program would print the numbers in the matrix using a mini-
mum field width of five.

7.5 Summary

This chapter introduced several assembler directives and pseudo-opcodes supported
by MASM. It also briefly discussed some routines in the UCR Standard Library for 80x86
Assembly Language Programmers. This chapter, by no means, is a complete description
of what MASM or the Standard Library has to offer. It does provide enough information
to get you going.

To help you write assembly language programs with a minimum of fuss, this text
makes extensive use of various routines from the UCR Standard Library for 80x86 Assem-
bly Language Programmers. Although this chapter could not possibly begin to cover all
the Standard Library routines, it does discuss many of the routines that you’ll use right
away. This text will discuss other routines as necessary.

• See “An Introduction to the UCR Standard Library” on page 333.
• See “Memory Management Routines: MEMINIT, MALLOC, and FREE”

on page 334.
• See “The Standard Input Routines: GETC, GETS, GETSM” on page 334.
• See “The Standard Output Routines: PUTC, PUTCR, PUTS, PUTH, PUTI,

PRINT, and PRINTF” on page 336.
• See “Conversion Routines: ATOx, and xTOA” on page 341.
• “Formatted Output Routines: Putisize, Putusize, Putlsize, and Putulsize”

on page 340
• “Output Field Size Routines: Isize, Usize, and Lsize” on page 340
• “Routines that Test Characters for Set Membership” on page 342

Chapter 07

Page 352

• “Character Conversion Routines: ToUpper, ToLower” on page 343
• “Random Number Generation: Random, Randomize” on page 343
• “Constants, Macros, and other Miscellany” on page 344
• See“Plus more!” on page 344.

The UCR Standard Library

Page 353

7.6 Questions

1. What file should you use to begin your programs when writing code that uses the UCR
Standard Library?

2. What routine allocates storage on the heap?

3. What routine would you use to print a single character?

4. What routines allow you to print a literal string of characters to the display?

5. The Standard Library does not provide a routine to read an integer from the user. Describe
how to use the GETS and ATOI routines to accomplish this task.

6. What is the difference between the GETS and GETSM routines?

7. What is the difference between the ATOI and ATOI2 routines?

8. What does the ITOA routine do? Describe input and output values.

Chapter 07

Page 354

