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 Arithmetic and Logical Operations Chapter Nine

 

There is a lot more to assembly language than knowing the operations of a handful of
machine instructions. You’ve got to know how to use them and what they can do. Many
instructions are useful for operations that have little to do with their mathematical or
obvious functions. This chapter discusses how to convert expressions from a high level
language into assembly language. It also discusses advanced arithmetic and logical opera-
tions including multiprecision operations and tricks you can play with various instruc-
tions.

 

9.0 Chapter Overview

 

This chapter discusses six main subjects: converting HLL arithmetic expressions into
assembly language, logical expressions, extended precision arithmetic and logical opera-
tions, operating on different sized operands, machine and arithmetic idioms, and masking
operations. Like the preceding chapters, this chapter contains considerable material that
you may need to learn immediately if you’re a beginning assembly language programmer.
The sections below that have a “•” prefix are essential. Those sections with a “

 

❏

 

” discuss
advanced topics that you may want to put off for a while.

• Arithmetic expressions
• Simple assignments
• Simple expressions
• Complex expressions
• Commutative operators
• Logical expressions
• Multiprecision operations
• Multiprecision addition operations
• Multiprecision subtraction operations
• Extended precision comparisons

 

 ❏

 

Extended precision multiplication

 

 ❏

 

Extended precision division

 

 ❏

 

Extended precision negation
• Extended precision AND, OR, XOR, and NOT

 

 ❏

 

Extended precision shift and rotate operations

 

 ❏

 

Operating on different sized operands
• Multiplying without MUL and IMUL

 

 ❏

 

Division without DIV and IDIV

 

 ❏

 

Using AND to compute remainders

 

 ❏

 

Modulo-n Counters with AND

 

 ❏

 

Testing for 0FFFFF...FFFh
• Test operations

 

 ❏

 

Testing signs with the XOR instructions

 

 ❏

 

Masking operations

 

 ❏

 

Masking with the AND instructions

 

 ❏

 

Masking with the OR instruction

 

 ❏

 

Packing and unpacking data types

 

 ❏

 

Table lookups 

None of this material is particularly difficult to understand. However, there are a lot
of new topics here and taking them a few at a time will certain help you absorb the mate-
rial better. Those topics with the “•” prefix are ones you will frequently use; hence it is a
good idea to study these first.
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9.1 Arithmetic Expressions

 

Probably the biggest shock to beginners facing assembly language for the very first
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most high
level languages, look similar to their algebraic equivalents:

 

X:=Y*Z;

 

In assembly language, you’ll need several statements to accomplish this same task, e.g.,

 

mov ax, y
imul z
mov x, ax

 

Obviously the HLL version is much easier to type, read, and understand. This point, more
than any other, is responsible for scaring people away from assembly language. 

Although there is a lot of typing involved, converting an arithmetic expression into
assembly language isn’t difficult at all. By attacking the problem in steps, the same way
you would solve the problem by hand, you can easily break down any arithmetic expres-
sion into an equivalent sequence of assembly language statements. By learning how to
convert such expressions to assembly language in three steps, you’ll discover there is little
difficulty to this task.

 

9.1.1 Simple Assignments

 

The easiest expressions to convert to assembly language are the simple assignments.
Simple assignments copy a single value into a variable and take one of two forms:

 

variable := constant 

 

or

 

variable := variable

 

If variable appears in the current data segment (e.g., 

 

DSEG

 

), converting the first form
to assembly language is easy, just use the assembly language statement:

 

mov variable, constant

 

This move immediate instruction copies the constant into the variable.

The second assignment above is somewhat complicated since the 80x86 doesn’t pro-
vide a memory–to-memory 

 

mov 

 

instruction. Therefore, to copy one memory variable into
another, you must move the data through a register. If you’ll look at the encoding for the

 

mov 

 

instruction in the appendix, you’ll notice that the 

 

mov ax, memory

 

 and 

 

mov memory, ax

 

instructions are shorter than moves involving other registers. Therefore, if the 

 

ax

 

 register
is available, you should use it for this operation. For example,

 

var1 := var2; 

 

becomes

 

mov ax, var2
mov var1, ax

 

Of course, if you’re using the 

 

ax 

 

register for something else, one of the other registers will
suffice. Regardless, you must use a register to transfer one memory location to another.

This discussion, of course, assumes that both variables are in memory. If possible, you
should try to use a register to hold the value of a variable. 

 

9.1.2 Simple Expressions

 

The next level of complexity up from a simple assignment is a simple expression. A
simple expression takes the form:
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var := term

 

1

 

 op term

 

2

 

;

 

Var

 

 is a variable, 

 

term

 

1

 

 

 

and

 

 term

 

2

 

 are variables or constants, and 

 

op 

 

is some arithmetic oper-
ator (addition, subtraction, multiplication, etc.). 

As simple as this expression appears, most expressions take this form. It should come
as no surprise then, that the 80x86 architecture was optimized for just this type of expres-
sion.

 A typical conversion for this type of expression takes the following form:

 

mov ax, term

 

1

 

op ax, term

 

2

 

mov var, ax

 

Op

 

 is the mnemonic that corresponds to the specified operation (e.g., “+” = 

 

add

 

, “-” = 

 

sub

 

,
etc.).

 There are a few inconsistencies you need to be aware of. First, the 80x86’s 

 

{i}mul

 

instructions do not allow immediate operands on processors earlier than the 80286. Fur-
ther, none of the processors allow immediate operands with 

 

{i}div

 

. Therefore, if the opera-
tion is multiplication or division and one of the terms is a constant value, you may need to
load this constant into a register or memory location and then multiply or divide 

 

ax 

 

by
that value. Of course, when dealing with the multiply and divide instructions on the
8086/8088, you must use the 

 

ax 

 

and 

 

dx 

 

registers. You cannot use arbitrary registers as you
can with other operations. Also, don’t forget the sign extension instructions if you’re per-
forming a division operation and you’re dividing one 16/32 bit number by another.
Finally, don’t forget that some instructions may cause overflow. You may want to check
for an overflow (or underflow) condition after an arithmetic operation. 

Examples of common simple expressions:

 

X := Y + Z;

mov ax, y
add ax, z
mov x, ax

X := Y - Z;

mov ax, y
sub ax, z
mov x, ax

X := Y * Z; {unsigned}

mov ax, y
mul z ;Use IMUL for signed arithmetic.
mov x, ax ;Don’t forget this wipes out DX.

X := Y div Z; {unsigned div}

mov ax, y
mov dx, 0 ;Zero extend AX into DX
div z
mov x, ax

X := Y div Z; {signed div}

mov ax, y
cwd ;Sign extend AX into DX
idiv z
mov x, ax

X := Y mod Z; {unsigned remainder}

mov ax, y
mov dx, 0 ;Zero extend AX into DX
div z
mov x, dx ;Remainder is in DX



 

Chapter 09

Page 462

 

X := Y mod Z; {signed remainder}

mov ax, y
cwd ;Sign extend AX into DX
idiv z
mov x, dx ;Remainder is in DX

 

Since it is possible for an arithmetic error to occur, you should generally test the result
of each expression for an error before or after completing the operation. For example,
unsigned addition, subtraction, and multiplication set the carry flag if an overflow occurs.
You can use the 

 

jc

 

 or 

 

jnc

 

 instructions immediately after the corresponding instruction
sequence to test for overflow. Likewise, you can use the 

 

jo

 

 or 

 

jno

 

 instructions after these
sequences to test for signed arithmetic overflow. The next two examples demonstrate how
to do this for the 

 

add

 

 instruction:

 

X := Y + Z; {unsigned}

mov ax, y
add ax, z
mov x, ax
jc uOverflow

X := Y + Z; {signed}

mov ax, y
add ax, z
mov x, ax
jo sOverflow

 

Certain unary operations also qualify as simple expressions. A good example of a
unary operation is negation. In a high level language negation takes one of two possible
forms:

 

var := -var or var

 

1

 

 := -var

 

2

 

Note that 

 

var := -constant

 

 is really a simple assignment, not a simple expression. You can
specify a negative constant as an operand to the 

 

mov

 

 instruction:

 

mov var, -14

 

 To handle the first form of the negation operation above use the single assembly lan-
guage statement: 

 

neg var

 

If two different variables are involved, then use the following:

 

mov ax, var

 

2

 

neg ax
mov var

 

1

 

, ax

 

Overflow only occurs if you attempt to negate the most negative value (-128 for eight
bit values, -32768 for sixteen bit values, etc.). In this instance the 80x86 sets the overflow
flag, so you can test for arithmetic overflow using the 

 

jo

 

 or 

 

jno

 

 instructions. In all other
cases the80x86 clears the overflow flag. The carry flag has no meaning after executing the

 

neg

 

 instruction since 

 

neg

 

 (obviously) does not apply to unsigned operands.

 

9.1.3 Complex Expressions

 

A complex expression is any arithmetic expression involving more than two terms
and one operator. Such expressions are commonly found in programs written in a high
level language. Complex expressions may include parentheses to override operator prece-
dence, function calls, array accesses, etc. While the conversion of some complex expres-
sions to assembly language is fairly straight-forward, others require some effort. This
section outlines the rules you use to convert such expressions.

A complex function that is easy to convert to assembly language is one that involves
three terms and two operators, for example:

 

W := W - Y - Z;
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Clearly the straight-forward assembly language conversion of this statement will require
two 

 

sub

 

 instructions. However, even with an expression as simple as this one, the conver-
sion is not trivial. There are actually 

 

two ways

 

 to convert this from the statement above into
assembly language:

 

mov ax, w
sub ax, y
sub ax, z
mov w, ax

and
mov ax, y
sub ax, z
sub w, ax

 

The second conversion, since it is shorter, looks better. However, it produces an incorrect
result (assuming Pascal-like semantics for the original statement). Associativity is the
problem. The second sequence above computes W := W - (Y - Z) which is not the same as
W := (W - Y) - Z. How we place the parentheses around the subexpressions can affect the
result. Note that if you are interested in a shorter form, you can use the following
sequence:

 

mov ax, y
add ax, z
sub w, ax

 

This computes W:=W-(Y+Z). This is equivalent to W := (W - Y) - Z.

Precedence is another issue. Consider the Pascal expression:

 

X := W * Y + Z;

 

Once again there are two ways we can evaluate this expression:

 

X := (W * Y) + Z;
or

X := W * (Y + Z);

 

By now, you’re probably thinking that this text is crazy. Everyone knows the correct way
to evaluate these expressions is the second form provided in these two examples. How-
ever, you’re wrong to think that way. The APL programming language, for example, eval-
uates expressions solely from right to left and does not give one operator precedence over
another.

Most high level languages use a fixed set of precedence rules to describe the order of
evaluation in an expression involving two or more different operators. Most program-
ming languages, for example, compute multiplication and division before addition and
subtraction. Those that support exponentiation (e.g., FORTRAN and BASIC) usually com-
pute that before multiplication and division. These rules are intuitive since almost every-
one learns them before high school. Consider the expression:

 

X op

 

1

 

 Y op

 

2

 

 Z

 

If op

 

1

 

 takes precedence over op

 

2

 

 then this evaluates to (X op

 

1

 

 Y) op

 

2

 

 Z otherwise if op

 

2

 

takes precedence over op

 

1

 

 then this evaluates to X op

 

1

 

 (Y op

 

2

 

 Z ). Depending upon the
operators and operands involved, these two computations could produce different
results.

When converting an expression of this form into assembly language, you must be
sure to compute the subexpression with the highest precedence first. The following exam-
ple demonstrates this technique:

 

; W := X + Y * Z;

mov bx, x
mov ax, y ;Must compute Y * Z first since
mul z ; “*” has the highest precedence.
add bx, ax ;Now add product with X’s value.
mov w, bx ;Save away result.

Since addition is a commutative operation, we could optimize the above code to produce:
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; W := X + Y * Z;

mov ax, y ;Must compute Y * Z first since
mul z ; “*” has the highest precedence.
add ax, x ;Now add product with X’s value.
mov w, ax ;Save away result.

If two operators appearing within an expression have the same precedence, then you
determine the order of evaluation using associativity rules. Most operators are left associa-
tive meaning that they evaluate from left to right. Addition, subtraction, multiplication,
and division are all left associative. A right associative operator evaluates from right to left.
The exponentiation operator in FORTRAN and BASIC is a good example of a right asso-
ciative operator:

2^2^3 is equal to 2^(2^3) not (2^2)^3

The precedence and associativity rules determine the order of evaluation. Indirectly,
these rules tell you where to place parentheses in an expression to determine the order of
evaluation. Of course, you can always use parentheses to override the default precedence
and associativity. However, the ultimate point is that your assembly code must complete
certain operations before others to correctly compute the value of a given expression. The
following examples demonstrate this principle:

; W := X - Y - Z

mov ax, x ;All the same operator, so we need
sub ax, y ; to evaluate from left to right
sub ax, z ; because they all have the same
mov w, ax ; precedence.

; W := X + Y * Z

mov ax, y ;Must compute Y * Z first since
imul z ; multiplication has a higher
add ax, x ; precedence than addition.
mov w, ax

; W := X / Y - Z

mov ax, x ;Here we need to compute division
cwd ; first since it has the highest
idiv y ; precedence.
sub ax, z
mov w, ax

; W := X * Y * Z

mov ax, y ;Addition and multiplication are
imul z ; commutative, therefore the order
imul x ; of evaluation does not matter
mov w, ax

There is one exception to the associativity rule. If an expression involves multiplica-
tion and division it is always better to perform the multiplication first. For example, given
an expression of the form:

W := X/Y * Z

It is better to compute X*Z and then divide the result by Y rather than divide X by Y and
multiply the quotient by Z. There are two reasons this approach is better. First, remember
that the imul instruction always produces a 32 bit result (assuming 16 bit operands). By
doing the multiplication first, you automatically sign extend the product into the dx regis-
ter so you do not have to sign extend ax prior to the division. This saves the execution of
the cwd instruction. A second reason for doing the multiplication first is to increase the
accuracy of the computation. Remember, (integer) division often produces an inexact
result. For example, if you compute 5/2 you will get the value two, not 2.5. Computing
(5/2)*3 produces six. However, if you compute (5*3)/2 you get the value seven which is a
little closer to the real quotient (7.5). Therefore, if you encounter an expression of the form:

W := X/Y*Z;

You can usually convert this to assembly code:
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mov ax, x
imul z
idiv z
mov w, ax

Of course, if the algorithm you’re encoding depends on the truncation effect of the divi-
sion operation, you cannot use this trick to improve the algorithm. Moral of the story:
always make sure you fully understand any expression you are converting to assembly
language. Obviously if the semantics dictate that you must perform the division first, do
so.

Consider the following Pascal statement:

W := X - Y * Z;

This is similar to a previous example except it uses subtraction rather than addition. Since
subtraction is not commutative, you cannot compute Y * Z and then subtract X from this
result. This tends to complicate the conversion a tiny amount. Rather than a straight for-
ward multiply and addition sequence, you’ll have to load X into a register, multiply Y and
Z leaving their product in a different register, and then subtract this product from X, e.g.,

mov bx, x
mov ax, y
imul z
sub bx, ax
mov w, bx

This is a trivial example that demonstrates the need for temporary variables in an expres-
sion. The code uses the bx register to temporarily hold a copy of X until it computes the
product of Y and Z. As your expression increase in complexity, the need for temporaries
grows. Consider the following Pascal statement:

W := (A + B) * (Y + Z);

Following the normal rules of algebraic evaluation, you compute the subexpressions
inside the parentheses (i.e., the two subexpressions with the highest precedence) first and
set their values aside. When you computed the values for both subexpressions you can
compute their sum. One way to deal with complex expressions like this one is to reduce it
to a sequence of simple expressions whose results wind up in temporary variables. For
example, we can convert the single expression above into the following sequence:

Temp1 := A + B;
Temp2 := Y + Z;
W := Temp1 * Temp2;

Since converting simple expressions to assembly language is quite easy, it’s now a snap to
compute the former, complex, expression in assembly. The code is

mov ax, a
add ax, b
mov Temp1, ax
mov ax, y
add ax, z
mov temp2, ax
mov ax, temp1,
imul temp2
mov w, ax

Of course, this code is grossly inefficient and it requires that you declare a couple of tem-
porary variables in your data segment. However, it is very easy to optimize this code by
keeping temporary variables, as much as possible, in 80x86 registers. By using 80x86 regis-
ters to hold the temporary results this code becomes:

mov ax, a
add ax, b
mov bx, y
add bx, z
imul bx
mov w, ax

Yet another example:
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X := (Y+Z) * (A-B) / 10;

This can be converted to a set of four simple expressions:

Temp1 := (Y+Z)
Temp2 := (A-B)
Temp1 := Temp1 * Temp2
X := Temp1 / 10

You can convert these four simple expressions into the assembly language statements:

mov ax, y ;Compute AX := Y+Z
add ax, z
mov bx, a ;Compute BX := A-B
sub bx, b
mul bx ;Compute AX := AX * BX, this also sign
mov bx, 10 ; extends AX into DX for idiv.
idiv bx ;Compute AX := AX / 10
mov x, ax ;Store result into X

The most important thing to keep in mind is that temporary values, if possible, should
be kept in registers. Remember, accessing an 80x86 register is much more efficient than
accessing a memory location. Use memory locations to hold temporaries only if you’ve
run out of registers to use.

Ultimately, converting a complex expression to assembly language is little different
than solving the expression by hand. Instead of actually computing the result at each
stage of the computation, you simply write the assembly code that computes the results.
Since you were probably taught to compute only one operation at a time, this means that
manual computation works on “simple expressions” that exist in a complex expression.
Of course, converting those simple expressions to assembly is fairly trivial. Therefore,
anyone who can solve a complex expression by hand can convert it to assembly language
following the rules for simple expressions.

9.1.4 Commutative Operators

If “@” represents some operator, that operator is commutative if the following relation-
ship is always true:

(A @ B) = (B @ A)

As you saw in the previous section, commutative operators are nice because the order
of their operands is immaterial and this lets you rearrange a computation, often making
that computation easier or more efficient. Often, rearranging a computation allows you to
use fewer temporary variables. Whenever you encounter a commutative operator in an
expression, you should always check to see if there is a better sequence you can use to
improve the size or speed of your code. The following tables list the commutative and
non-commutative operators you typically find in high level languages:

Table 46: Some Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

AND && or & Logical or bitwise AND

OR || or | Logical or bitwise OR

XOR ^ (Logical or) Bitwise exclusive-OR

= == Equality

<> != Inequality
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9.2 Logical (Boolean) Expressions

Consider the following expression from a Pascal program:

B := ((X=Y) and (A <= C)) or ((Z-A) <> 5);

B is a boolean variable and the remaining variables are all integers. 

How do we represent boolean variables in assembly language? Although it takes only
a single bit to represent a boolean value, most assembly language programmers allocate a
whole byte or word for this purpose. With a byte, there are 256 possible values we can use
to represent the two values true and false. So which two values (or which two sets of val-
ues) do we use to represent these boolean values? Because of the machine’s architecture,
it’s much easier to test for conditions like zero or not zero and positive or negative rather
than to test for one of two particular boolean values. Most programmers (and, indeed,
some programming languages like “C”) choose zero to represent false and anything else
to represent true. Some people prefer to represent true and false with one and zero
(respectively) and not allow any other values. Others select 0FFFFh for true and 0 for false.
You could also use a positive value for true and a negative value for false. All these mech-
anisms have their own advantages and drawbacks. 

Using only zero and one to represent false and true offers one very big advantage: the
80x86 logical instructions (and, or, xor and, to a lesser extent, not) operate on these values
exactly as you would expect. That is, if you have two boolean variables A and B, then the
following instructions perform the basic logical operations on these two variables:

mov ax, A
and ax, B
mov C, ax ;C := A and B;

mov ax, A 
or ax, B 
mov C, ax ;C := A or B;

mov ax, A
xor ax, B
mov C, ax ;C := A xor B;

mov ax, A ;Note that the NOT instruction does not
not ax ; properly compute B := not A by itself.
and ax, 1 ; I.e., (NOT 0)does not equal one.
mov B, ax ;B := not A;

mov ax, A ;Another way to do B := NOT A;
xor ax, 1
mov B, ax ;B := not A;

Note, as pointed out above, that the not instruction will not properly compute logical
negation. The bitwise not of zero is 0FFh and the bitwise not of one is 0FEh. Neither result
is zero or one. However, by anding the result with one you get the proper result. Note that

Table 47: Some Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or DIV / Division

MOD % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal
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you can implement the not operation more efficiently using the xor ax, 1 instruction since
it only affects the L.O. bit. 

As it turns out, using zero for false and anything else for true has a lot of subtle advan-
tages. Specifically, the test for true or false is often implicit in the execution of any logical
instruction. However, this mechanism suffers from a very big disadvantage: you cannot
use the 80x86 and, or, xor, and not instructions to implement the boolean operations of the
same name. Consider the two values 55h and 0AAh. They’re both non-zero so they both
represent the value true. However, if you logically and 55h and 0AAh together using the
80x86 and instruction, the result is zero. (True and true) should produce true, not false. A
system that uses non-zero values to represent true and zero to represent false is an arith-
metic logical system. A system that uses the two distinct values like zero and one to repre-
sent false and true is called a boolean logical system, or simply a boolean system. You can
use either system, as convenient. Consider again the boolean expression:

B := ((X=Y) and (A <= D)) or ((Z-A) <> 5);

The simple expressions resulting from this expression might be:

Temp2 := X = Y
Temp := A <= D
Temp := Temp and Temp2
Temp2 := Z-A
Temp2 := Temp2 <> 5
B := Temp or Temp2

The assembly language code for these expressions could be:

mov ax, x ;See if X = Y and load zero or
cmp ax, y ; one into AX to denote the result
jnz L1 ; of this comparison.
mov al, 1 ;X = Y
jmp L2

L1: mov al, 0 ;X <> Y
L2:

mov bx, A ;See if A <= D and load zero or one
cmp bx, D ; into BX to denote the result of
jle ST1 ; this comparison.
mov bl, 0
jmp L3

ST1: mov bl, 1 
L3:

and bl, al ;Temp := Temp and Temp2

mov ax, Z ;See if (Z-A) <> 5.
sub ax, A ;Temp2 := Z-A;
cmp ax, 5 ;Temp2 := Temp2 <> 5;
jnz ST2
mov al, 0
jmp short L4

ST2: mov al, 1 
L4:

or al, bl ;Temp := Temp or Temp2;
mov B, al ;B := Temp;

As you can see, this is a rather unwieldy sequence of statements. One slight optimization
you can use is to assume a result is going to be true or false and initialize the correspond-
ing boolean result ahead of time:

mov bl, 0 ;Assume X <> Y
mov ax, x
cmp ax, Y
jne L1
mov bl, 1 ;X is equal to Y, so make this true.

L1:
mov bh, 0 ;Assume not (A <= D)
mov ax, A
cmp ax, D
jnle L2
mov bh, 1 ;A <= D so make this true
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L2:
and bl, bh ;Compute logical AND of results.

mov bh, 0 ;Assume (Z-A) = 5
mov ax, Z
sub ax, A
cmp ax, 5
je L3:
mov bh, 1 ;(Z-A) <> 5

L3:
or bl, bh ;Logical OR of results.
mov B, bl ;Save boolean result.

Of course, if you have an 80386 or later processor, you can use the setcc instructions to
simplify this a bit:

mov ax, x
cmp ax, y
sete al ;TEMP2 := X = Y

mov bx, A
cmp bx, D
setle bl ;TEMP := A <= D
and bl, al ;Temp := Temp and Temp2
mov ax, Z 
sub ax, A ;Temp2 := Z-A;
cmp ax, 5 ;Temp2 := Temp2 <> 5;
setne al
or bl, al ;Temp := Temp or Temp2;
mov B, bl ;B := Temp;

This code sequence is obviously much better than the previous one, but it will only exe-
cute on 80386 and later processors.

Another way to handle boolean expressions is to represent boolean values by states
within your code. The basic idea is to forget maintaining a boolean variable throughout
the execution of a code sequence and use the position within the code to determine the
boolean result. Consider the following implementation of the above expression. First, let’s
rearrange the expression to be

B := ((Z-A) <> 5) or ((X=Y) and (A <= D));

This is perfectly legal since the or operation is commutative. Now consider the following
implementation:

mov B, 1 ;Assume the result is true.
mov ax, Z ;See if (Z-A) <> 5
sub ax, A ;If this condition is true, the
cmp ax, 5 ; result is always true so there
jne Done ; is no need to check the rest.

mov ax, X ;If X <> Y, the result is false,
cmp ax, Y ; no matter what A and D contain
jne SetBtoFalse

mov ax, A ;Now see if A <= D.
cmp ax, D
jle Done ;If so, quit.

SetBtoFalse: mov B, 0 ;If B is false, handle that here.
Done:

Notice that this section of code is a lot shorter than the first version above (and it runs
on all processors). The previous translations did everything computationally. This version
uses program flow logic to improve the code. It begins by assuming a true result and sets
the B variable to true. It then checks to see if (Z-A) <> 5. If this is true the code branches to
the done table because B is true no matter what else happens. If the program falls through
to the mov ax, X instruction, we know that the result of the previous comparison is false.
There is no need to save this result in a temporary since we implicitly know its value by
the fact that we’re executing the mov ax, X instruction. Likewise, the second group of state-
ments above checks to see if X is equal to Y. If it is not, we already know the result is false
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so this code jumps to the SetBtoFalse label. If the program begins executing the third set of
statements above, we know that the first result was false and the second result was true;
the position of the code guarantees this. Therefore, there is no need to maintain temporary
boolean variables that keep track of the state of this computation.

Consider another example:

B := ((A = E) or (F <> D)) and ((A<>B) or (F = D));

Computationally, this expression would yield a considerable amount of code. However,
by using flow control you can reduce it to the following:

mov b, 0 ;Assume result is false.
mov ax, a ;See if A = E.
cmp ax, e
je test2 ;If so, 1st subexpression is true.

mov ax, f ;If not, check 2nd subexpression
cmp ax, d ; to see if F <> D.
je Done ;If so, we’re done, else fall

; through to next tests.
Test2: mov ax, a ;Does A <> B?

cmp ax, b
jne SetBto1 ;If so, we’re done.

mov ax, f ;If not, see if F = D.
cmp ax, d
jne Done

SetBto1: mov b, 1
Done:

There is one other difference between using control flow vs. computation logic: when
using control flow methods, you may skip the majority of the instructions that implement
the boolean formula. This is known as short-circuit evaluation. When using the computa-
tion model, even with the setcc instruction, you wind up executing most of the statements.
Keep in mind that this is not necessarily a disadvantage. On pipelined processors it may
be much faster to execute several additional instructions rather than flush the pipeline and
prefetch queue. You may need to experiment with your code to determine the best solu-
tion.

When working with boolean expressions don’t forget the that you might be able to
optimize your code by simplifying those boolean expressions (see “Simplification of Bool-
ean Functions” on page 52). You can use algebraic transformations (especially DeMor-
gan’s theorems) and the mapping method to help reduce the complexity of an expression. 

9.3 Multiprecision Operations

One big advantage of assembly language over HLLs is that assembly language does
not limit the size of integers. For example, the C programming language defines a maxi-
mum of three different integer sizes: short int, int, and long int. On the PC, these are often 16
or 32 bit integers. Although the 80x86 machine instructions limit you to processing eight,
sixteen, or thirty-two bit integers with a single instruction, you can always use more than
one instruction to process integers of any size you desire. If you want 256 bit integer val-
ues, no problem. The following sections describe how extended various arithmetic and
logical operations from 16 or 32 bits to as many bits as you please.

9.3.1 Multiprecision Addition Operations 

The 80x86 add instruction adds two 8, 16, or 32 bit numbers1. After the execution of
the add instruction, the 80x86 carry flag is set if there is an overflow out of the H.O. bit of

1. As usual, 32 bit arithmetic is available only on the 80386 and later processors.
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the sum. You can use this information to do multiprecision addition operations. Consider
the way you manually perform a multidigit (multiprecision) addition operation:

Step 1: Add the least significant digits together:

 289   289
+456   produces +456
---- ----

   5 with carry 1.

 Step 2: Add the next significant digits plus the carry:

   1 (previous carry)
  289  289

+456 produces +456
---- ----
   5   45 with carry 1.

 Step 3: Add the most significant digits plus the carry:

  1 (previous carry)
 289  289
+456 produces +456
---- ----
  45  745

 The 80x86 handles extended precision arithmetic in an identical fashion, except instead of
adding the numbers a digit at a time, it adds them a byte or a word at a time. Consider the
three-word (48 bit) addition operation in Figure 8.1. 

Figure 8.1 Multiprecision (48-bit) Addition

Step 1: Add the least significant words together:

Step 2: Add the middle words together:

(plus carry, if any)

C

Step 3: Add the most significant words together:

(plus carry, if any)

C
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The add instruction adds the L.O. words together. The adc (add with carry) instruction
adds all other word pairs together. The adc instruction adds two operands plus the carry
flag together producing a word value and (possibly) a carry. 

For example, suppose that you have two thirty-two bit values you wish to add
together, defined as follows: 

X dword ?
Y dword ?

Suppose, also, that you want to store the sum in a third variable, Z, that is likewise
defined with the dword directive. The following 80x86 code will accomplish this task:

mov ax, word ptr X
add ax, word ptr Y
mov word ptr Z, ax
mov ax, word ptr X+2
adc ax, word ptr Y+2
mov word ptr Z+2, ax

Remember, these variables are declared with the dword directive. Therefore the assem-
bler will not accept an instruction of the form mov ax, X because this instruction would
attempt to load a 32 bit value into a 16 bit register. Therefore this code uses the word ptr
coercion operator to coerce symbols X, Y, and Z to 16 bits. The first three instructions add
the L.O. words of X and Y together and store the result at the L.O. word of Z. The last three
instructions add the H.O. words of X and Y together, along with the carry out of the L.O.
word, and store the result in the H.O. word of Z. Remember, address expressions of the
form “X+2” access the H.O. word of a 32 bit entity. This is due to the fact that the 80x86
address space addresses bytes and it takes two consecutive bytes to form a word.

Of course, if you have an 80386 or later processor you needn’t go through all this just
to add two 32 bit values together, since the 80386 directly supports 32 bit operations.
However, if you wanted to add two 64 bit integers together on the 80386, you would still
need to use this technique.

You can extend this to any number of bits by using the adc instruction to add in the
higher order words in the values. For example, to add together two 128 bit values, you
could use code that looks something like the following:

BigVal1 dword 0,0,0,0 ;Four double words in 128 bits!
BigVal2 dword 0,0,0,0
BigVal3 dword 0,0,0,0

 .
 .
 .

mov eax, BigVal1 ;No need for dword ptr operator since
add eax, BigVal2 ; these are dword variables.
mov BigVal3, eax

mov eax, BigVal1+4 ;Add in the values from the L.O.
adc eax, BigVal2+4 ; entity to the H.O. entity using
mov BigVal3+4, eax ; the ADC instruction.

mov eax, BigVal1+8
adc eax, BigVal2+8
mov BigVal3+8, eax

mov eax, BigVal1+12
adc eax, BigVal2+12
mov BigVal3+12, eax

9.3.2 Multiprecision Subtraction Operations

Like addition, the 80x86 performs multi-byte subtraction the same way you would
manually, except it subtracts whole bytes , words, or double words at a time rather than
decimal digits. The mechanism is similar to that for the add operation, You use the sub
instruction on the L.O. byte/word/double word and the sbb instruction on the high order
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values. The following example demonstrates a 32 bit subtraction using the 16 bit registers
on the 8086:

var1 dword ?
var2 dword ?
diff  dword ?

mov ax, word ptr var1
sub ax, word ptr var2
mov word ptr diff, ax
mov ax, word ptr var1+2
sbb ax, word ptr var2+2
mov word ptr diff+2, ax

The following example demonstrates a 128-bit subtraction using the 80386 32 bit register
set:

BigVal1 dword 0,0,0,0 ;Four double words in 128 bits!
BigVal2 dword 0,0,0,0
BigVal3 dword 0,0,0,0

.

.

.

mov eax, BigVal1 ;No need for dword ptr operator since
sub eax, BigVal2 ; these are dword variables.
mov BigVal3, eax

mov eax, BigVal1+4 ;Subtract the values from the L.O.
sbb eax, BigVal2+4 ; entity to the H.O. entity using
mov BigVal3+4, eax ; the SUB and SBB instructions.

mov eax, BigVal1+8
sbb eax, BigVal2+8
mov BigVal3+8, eax

mov eax, BigVal1+12
sbb eax, BigVal2+12
mov BigVal3+12, eax

9.3.3 Extended Precision Comparisons

Unfortunately, there isn’t a “compare with borrow” instruction that can be used to
perform extended precision comparisons. Since the cmp and sub instructions perform the
same operation, at least as far as the flags are concerned, you’d probably guess that you
could use the sbb instruction to synthesize an extended precision comparison; however,
you’d only be partly right. There is, however, a better way.

Consider the two unsigned values 2157h and 1293h. The L.O. bytes of these two val-
ues do not affect the outcome of the comparison. Simply comparing 21h with 12h tells us
that the first value is greater than the second. In fact, the only time you ever need to look
at both bytes of these values is if the H.O. bytes are equal. In all other cases comparing the
H.O. bytes tells you everything you need to know about the values. Of course, this is true
for any number of bytes, not just two. The following code compares two signed 64 bit inte-
gers on an 80386 or later processor:

; This sequence transfers control to location “IsGreater” if
; QwordValue > QwordValue2. It transfers control to “IsLess” if
; QwordValue < QwordValue2. It falls though to the instruction
; following this sequence if QwordValue = QwordValue2. To test for
; inequality, change the “IsGreater” and “IsLess” operands to “NotEqual”
; in this code.

mov eax, dword ptr QWordValue+4 ;Get H.O. dword
cmp eax, dword ptr QWordValue2+4
jg IsGreater
jl IsLess
mov eax, dword ptr QWordValue
cmp eax, dword ptr QWordValue2
jg IsGreater
jl IsLess
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To compare unsigned values, simply use the ja and jb instructions in place of jg and jl.

You can easily synthesize any possible comparison from the sequence above, the fol-
lowing examples show how to do this. These examples do signed comparisons, substitute
ja, jae, jb, and jbe for jg, jge, jl, and jle (respectively) to do unsigned comparisons.

QW1 qword ?
QW2 qword ?

dp textequ <dword ptr>

; 64 bit test to see if QW1 < QW2 (signed).
; Control transfers to “IsLess” label if QW1 < QW2. Control falls
; through to the next statement if this is not true.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg NotLess
jl IsLess
mov eax, dp QW1 ;Fall through to here if H.O. 
cmp eax, dp QW2 ; dwords are equal.
jl IsLess

NotLess:

; 64 bit test to see if QW1 <= QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg NotLessEq
jl IsLessEq
mov eax, dp QW1
cmp eax, dword ptr QW2
jle IsLessEq

NotLessEQ:

; 64 bit test to see if QW1 >QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg IsGtr
jl NotGtr
mov eax, dp QW1 ;Fall through to here if H.O. 
cmp eax, dp QW2 ; dwords are equal.
jg IsGtr

NotGtr:

; 64 bit test to see if QW1 >= QW2 (signed).

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jg IsGtrEq
jl NotGtrEq
mov eax, dp QW1
cmp eax, dword ptr QW2
jge IsGtrEq

NotGtrEq:

; 64 bit test to see if QW1 = QW2 (signed or unsigned). This code branches
; to the label “IsEqual” if QW1 = QW2. It falls through to the next instruction
; if they are not equal.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jne NotEqual
mov eax, dp QW1
cmp eax, dword ptr QW2
je IsEqual

NotEqual:
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; 64 bit test to see if QW1 <> QW2 (signed or unsigned). This code branches
; to the label “NotEqual” if QW1 <> QW2. It falls through to the next 
; instruction if they are equal.

mov eax, dp QW1+4 ;Get H.O. dword
cmp eax, dp QW2+4
jne NotEqual
mov eax, dp QW1
cmp eax, dword ptr QW2
jne NotEqual

9.3.4 Extended Precision Multiplication

Although a 16x16 or 32x32 multiply is usually sufficient, there are times when you
may want to multiply larger values together. You will use the 80x86  single operand mul
and imul instructions for extended precision multiplication. 

Not surprisingly (in view of how adc and sbb work), you use the same techniques to
perform extended precision multiplication on the 80x86 that you employ when manually
multiplying two values.

 Consider a simplified form of the way you perform multi-digit multiplication by
hand:

1) Multiply the first two 2) Multiply 5*2: 
   digits together (5*3):

123 123
 45  45
---  ---
 15  15

10

 3) Multiply 5*1: 4) 4*3:

123 123
 45  45
---  ---
 15  15
10 10
5 5

12

 5) Multiply 4*2: 6) 4*1:

 123  123
  45   45
 ---  ---
  15   15
 10  10
 5  5
 12  12
 8  8

4

 7) Add all the partial products together:

 123
  45
 ---
  15
 10
 5
 12
 8
4
------
5535
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 The 80x86 does extended precision multiplication in the same manner except that it
works with bytes, words, and double words rather than digits. Figure 8.2 shows how this
works.

Probably the most important thing to remember when performing an extended preci-
sion multiplication is that you must also perform a multiple precision addition at the same
time. Adding up all the partial products requires several additions that will produce the
result. The following listing demonstrates the proper way to multiply two 32 bit values on
a 16 bit processor:

Note: Multiplier and Multiplicand are 32 bit variables declared in the data segment via the
dword directive. Product is a 64 bit variable declared in the data segment via the qword
directive.

Figure 8.2 Multiprecision Multiplication

A B
C D

D * B

1) Multiply the L.O. words 2) Multiply D * A

A B
C D

D * B
D * A

A B
C D

D * B

C D

D * A
C * B

3) Multiply C times B 4) Multiply C * A

A B
C D

D * B

C D

D * A
C * B

C * A

5) Compute sum of partial products

A B
C D

D * B

C D

D * A
C * B

C * A
AB * CB
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Multiply proc near 
push ax
push dx
push cx
push bx

; Multiply the L.O. word of Multiplier times Multiplicand:

mov ax, word ptr Multiplier
mov bx, ax ;Save Multiplier val
mul word ptr Multiplicand ;Multiply L.O. words
mov word ptr Product, ax ;Save partial product
mov cx, dx ;Save H.O. word

mov ax, bx ;Get Multiplier in BX
mul word ptr Multiplicand+2 ;Multiply L.O. * H.O.
add ax, cx ;Add partial product
adc dx, 0 ;Don’t forget carry!
mov bx, ax ;Save partial product
mov cx, dx ; for now.

; Multiply the H.O. word of Multiplier times Multiplicand:

mov ax, word ptr Multiplier+2 ;Get H.O. Multiplier
mul word ptr Multiplicand ;Times L.O. word
add ax, bx ;Add partial product
mov word ptr product+2, ax ;Save partial product
adc cx, dx ;Add in carry/H.O.!

mov ax, word ptr Multiplier+2 ;Multiply the H.O.
mul word ptr Multiplicand+2 ; words together.
add ax, cx ;Add partial product
adc dx, 0 ;Don’t forget carry!
mov word ptr Product+4, ax ;Save partial product
mov word ptr Product+6, dx

pop bx
pop cx
pop dx
pop ax
ret

Multiply endp

 One thing you must keep in mind concerning this code, it only works for unsigned
operands. Multiplication of signed operands appears in the exercises.

9.3.5 Extended Precision Division

You cannot synthesize a general n-bit/m-bit division operation using the div and idiv
instructions. Such an operation must be performed using a sequence of shift and subtract
instructions. Such an operation is extremely messy. A less general operation, dividing an n
bit quantity by a 32 bit (on the 80386 or later) or 16 bit quantity is easily synthesized using
the div instruction. The following code demonstrates how to divide a 64 bit quantity by a
16 bit divisor, producing a 64 bit quotient and a 16 bit remainder: 

dseg segment para public ‘DATA’
dividend dword 0FFFFFFFFh, 12345678h
divisor word 16
Quotient dword 0,0
Modulo word 0
dseg ends

cseg segment para public ‘CODE’
assume cs:cseg, ds:dseg

; Divide a 64 bit quantity by a 16 bit quantity:

Divide64 proc near

mov ax, word ptr dividend+6
sub dx, dx
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div divisor
mov word ptr Quotient+6, ax
mov ax, word ptr dividend+4
div divisor
mov word ptr Quotient+4, ax
mov ax, word ptr dividend+2
div divisor
mov word ptr Quotient+2, ax
mov ax, word ptr dividend
div divisor
mov word ptr Quotient, ax
mov Modulo, dx
ret

Divide64 endp
cseg ends

This code can be extended to any number of bits by simply adding additional mov / div /
mov   instructions at the beginning of the sequence. Of course, on the 80386 and later pro-
cessors you can divide by a 32 bit value by using edx and eax in the above sequence (with
a few other appropriate adjustments).

If you need to use a divisor larger than 16 bits (32 bits on an 80386 or later), you’re
going to have to implement the division using a shift and subtract strategy. Unfortunately,
such algorithms are very slow. In this section we’ll develop two division algorithms that
operate on an arbitrary number of bits. The first is slow but easier to understand, the sec-
ond is quite a bit faster (in general).

As for multiplication, the best way to understand how the computer performs divi-
sion is to study how you were taught to perform long division by hand. Consider the
operation 3456/12 and the steps you would take to manually perform this operation:

This algorithm is actually easier in binary since at each step you do not have to guess
how many times 12 goes into the remainder nor do you have to multiply 12 by your guess
to obtain the amount to subtract. At each step in the binary algorithm the divisor goes into
the remainder exactly zero or one times. As an example, consider the division of 27 (11011)
by three (11):

     2
12 3456
     24
     105

(2) Subtract 24 from 35
and drop down the
105.

12 3456
     24

(1) 12 goes into 34 two times.

     28
12 3456
     24
     105
       96
         96

(4) Subtract 96 from 105
and drop down the 96.

(3) 12 goes into 105
 eight times.

     2
12 3456
     24
     105
       96

     288
12 3456
     24
     105
       96
         96
         96

(6) Therefore, 12
goes into 3456
exactly 288 times.

(5) 12 goes into 96
 exactly eight times.

     28
12 3456
     24
     105
       96
         96
         96

11   11011
       11

11 goes into 11 one time.
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11   11011
       11
         00

Subtract out the 11 and bring down the zero.

1

11   11011
       11
         00
         00

11 goes into 00 zero times.

1

11   11011
       11
         00
         00
           01

Subtract out the zero and bring down the one.

10

11   11011
       11
         00
         00
           01
           00

11 goes into 01 zero times.

10

11   11011
       11
         00
         00
           01
           00
             11

Subtract out the zero and bring down the one.

100

11   11011
       11
         00
         00
           01
           00
             11
             11

11 goes into 11 one time.

100

11   11011
       11
         00
         00
           01
           00
             11
             11
             00

This produces the final result
of 1001.

1001
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There is a novel way to implement this binary division algorithm that computes the
quotient and the remainder at the same time. The algorithm is the following:

Quotient := Dividend;
Remainder := 0;
for i:= 1 to NumberBits do

Remainder:Quotient := Remainder:Quotient SHL 1;
if Remainder >= Divisor then

Remainder := Remainder - Divisor;
Quotient := Quotient + 1;

endif
endfor

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and Dividend variables.
Note that the Quotient := Quotient + 1 statement sets the L.O. bit of Quotient to one since this
algorithm previously shifts Quotient one bit to the left. The 80x86 code to implement this
algorithm is

; Assume Dividend (and Quotient) is DX:AX, Divisor is in CX:BX,
; and Remainder is in SI:DI.

mov bp, 32 ;Count off 32 bits in BP
sub si, si ;Set remainder to zero
sub di, di

BitLoop: shl ax, 1 ;See the section on shifts
rcl dx, 1 ; that describes how this
rcl di, 1 ; 64 bit SHL operation works
rcl si, 1
cmp si, cx ;Compare H.O. words of Rem,
ja GoesInto ; Divisor.
jb TryNext
cmp di, bx ;Compare L.O. words.
jb TryNext

GoesInto: sub di, bx ;Remainder := Remainder -
sbb si, cx ;                Divisor
inc ax ;Set L.O. bit of AX

TryNext: dec bp ;Repeat 32 times.
jne BitLoop

This code looks short and simple, but there are a few problems with it. First, it does
not check for division by zero (it will produce the value 0FFFFFFFFh if you attempt to
divide by zero), it only handles unsigned values, and it is very slow. Handling division by
zero is very simple, just check the divisor against zero prior to running this code and
return an appropriate error code if the divisor is zero. Dealing with signed values is
equally simple, you’ll see how to do that in a little bit. The performance of this algorithm,
however, leaves a lot to be desired. Assuming one pass through the loop takes about 30
clock cycles2, this algorithm would require almost 1,000 clock cycles to complete! That’s
an order of magnitude worse than the DIV/IDIV instructions on the 80x86 that are among
the slowest instructions on the 80x86.

There is a technique you can use to boost the performance of this division by a fair
amount: check to see if the divisor variable really uses 32 bits. Often, even though the divi-
sor is a 32 bit variable, the value itself fits just fine into 16 bits (i.e., the H.O. word of Divisor
is zero). In this special case, that occurs frequently, you can use the DIV instruction which
is much faster. 

9.3.6 Extended Precision NEG Operations

Although there are several ways to negate an extended precision value, the shortest
way is to use a combination of neg and sbb instructions. This technique uses the fact that
neg subtracts its operand from zero. In particular, it sets the flags the same way the sub

2. This will vary depending upon your choice of processor.
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instruction would if you subtracted the destination value from zero. This code takes the
following form:

neg dx
neg ax
sbb dx,0

The sbb instruction decrements dx if there is a borrow out of the L.O. word of the negation
operation (which always occurs unless ax is zero). 

To extend this operation to additional bytes, words, or double words is easy; all you
have to do is start with the H.O. memory location of the object you want to negate and
work towards the L.O. byte. The following code computes a 128 bit negation on the 80386
processor:

Value dword 0,0,0,0 ;128 bit integer.
 .
 .
 .
neg Value+12 ;Neg H.O. dword
neg Value+8 ;Neg previous dword in memory.
sbb Value+12, 0 ;Adjust H.O. dword
neg Value+4 ;Neg the second dword in object.
sbb Value+8, 0 ;Adjust 3rd dword in object.
sbb Value+12, 0 ;Carry any borrow through H.O. word.
neg Value ;Negate L.O. word.
sbb Value+4, 0 ;Adjust 2nd dword in object.
sbb Value+8, 0 ;Adjust 3rd dword in object.
sbb Value+12, 0 ;Carry any borrow through H.O. word.

Unfortunately, this code tends to get really large and slow since you need to pro-
pogate the carry through all the H.O. words after each negate operation. A simpler way to
negate larger values is to simply subract that value from zero:

Value dword 0,0,0,0,0 ;160 bit integer.
 .
 .
 .
mov eax, 0
sub eax, Value
mov Value, eax
mov eax, 0
sbb eax, Value+4
mov Value+8, ax
mov eax, 0
sbb eax, Value+8
mov Value+8, ax
mov eax, 0
sbb eax, Value+12
mov Value+12, ax
mov eax, 0
sbb eax, Value+16
mov Value+16, ax

9.3.7 Extended Precision AND Operations

Performing an n-word and operation is very easy – simply and the corresponding
words between the two operands, saving the result. For example, to perform the and
operation where all three operands are 32 bits long, you could use the following code:

mov ax, word ptr source1
and ax, word ptr source2
mov word ptr dest, ax
mov ax, word ptr source1+2
and ax, word ptr source2+2
mov word ptr dest+2, ax
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This technique easily extends to any number of words, all you need to is logically and the
corresponding bytes, words, or double words in the corresponding operands.

9.3.8 Extended Precision OR Operations

Multi-word logical or operations are performed in the same way as multi-word and
operations. You simply or the corresponding words in the two operand together. For
example, to logically or two 48 bit values, use the following code:

mov ax, word ptr operand1
or ax, word ptr operand2
mov word ptr operand3, ax
mov ax, word ptr operand1+2
or ax, word ptr operand2+2
mov word ptr operand3+2, ax
mov ax, word ptr operand1+4
or ax, word ptr operand2+4
mov word ptr operand3+4, ax

9.3.9 Extended Precision XOR Operations

Extended precision xor operations are performed in a manner identical to and/or –
simply xor the corresponding words in the two operands to obtain the extended precision
result. The following code sequence operates on two 64 bit operands, computes their
exclusive-or, and stores the result into a 64 bit variable. This example uses the 32 bit regis-
ters available on 80386 and later processors.

mov eax, dword ptr operand1
xor eax, dword ptr operand2
mov dword ptr operand3, eax
mov eax, dword ptr operand1+4
xor eax, dword ptr operand2+4
mov dword ptr operand3+4, eax

9.3.10 Extended Precision NOT Operations

The not instruction inverts all the bits in the specified operand. It does not affect any
flags (therefore, using a conditional jump after a not instruction has no meaning). An
extended precision not is performed by simply executing the not instruction on all the
affected operands. For example, to perform a 32 bit not operation on the value in (dx:ax),
all you need to do is execute the instructions:

not ax or not dx
not dx not ax

Keep in mind that if you execute the not instruction twice, you wind up with the orig-
inal value. Also note that exclusive-oring a value with all ones (0FFh, 0FFFFh, or 0FF..FFh)
performs the same operation as the not instruction.

9.3.11 Extended Precision Shift Operations

Extended precision shift operations require a shift and a rotate instruction. Consider
what must happen to implement a 32 bit shl using 16 bit operations:

1) A zero must be shifted into bit zero. 

2) Bits zero through 14 are shifted into the next higher bit. 

3) Bit 15 is shifted into bit 16. 
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4) Bits 16 through 30 must be shifted into the next higher bit.

5) Bit 31 is shifted into the carry flag.

The two instructions you can use to implement this 32 bit shift are shl and rcl. For
example, to shift the 32 bit quantity in (dx:ax) one position to the left, you’d use the
instructions:

shl ax, 1
rcl dx, 1

Note that you can only shift an extended precision value one bit at a time. You cannot
shift an extended precision operand several bits using the cl register or an immediate
value greater than one as the count using this technique

To understand how this instruction sequence works, consider the operation of these
instructions on an individual basis. The shl instruction shifts a zero into bit zero of the 32
bit operand and shifts bit 15 into the carry flag. The rcl instruction then shifts the carry flag
into bit 16 and then shifts bit 31 into the carry flag. The result is exactly what we want.

 To perform a shift left on an operand larger than 32 bits you simply add additional rcl
instructions. An extended precision shift left operation always starts with the least signifi-
cant word and each succeeding rcl instruction operates on the next most significant word.
For example, to perform a 48 bit shift left operation on a memory location you could use
the following instructions:

shl word ptr Operand, 1
rcl word ptr Operand+2, 1
rcl word ptr Operand+4, 1

If you need to shift your data by two or more bits, you can either repeat the above
sequence the desired number of times (for a constant number of shifts) or you can place
the instructions in a loop to repeat them some number of times. For example, the follow-
ing code shifts the 48 bit value Operand to the left the number of bits specified in cx:

ShiftLoop: shl word ptr Operand, 1
rcl word ptr Operand+2, 1
rcl word ptr Operand+4, 1
loop ShiftLoop

You implement shr and sar in a similar way, except you must start at the H.O. word of the
operand and work your way down to the L.O. word:

DblSAR: sar word ptr Operand+4, 1
rcr word ptr Operand+2, 1
rcr word ptr Operand, 1

DblSHR: shr word ptr Operand+4, 1
rcr word ptr Operand+2, 1
rcr word ptr Operand, 1

There is one major difference between the extended precision shifts described here
and their 8/16 bit counterparts – the extended precision shifts set the flags differently than

Figure 8.3 32-bit Shift Left Operation

31              20  19  18  17  16

...C

15                4    3    2    1     0

...
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the single precision operations. For example, the zero flag is set if the last rotate instruc-
tion produced a zero result, not if the entire shift operation produced a zero result. For the
shift right operations, the overflow, and sign flags aren’t set properly (they are set prop-
erly for the left shift operation). Additional testing will be required if you need to test one
of these flags after an extended precision shift operation. Fortunately, the carry flag is the
flag most often tested after a shift operation and the extended precision shift instructions
properly set this flag.

The shld and shrd instructions let you efficiently implement multiprecision shifts of
several bits on 80386 and later processors. Consider the following code sequence:

ShiftMe dword 1234h, 5678h, 9012h
 .
 .
 .
mov eax, ShiftMe+4
shld ShiftMe+8, eax, 6
mov eax, ShiftMe
shld ShiftMe+4, eax, 6
shl ShiftMe, 6

Recall that the shld instruction shifts bits from its second operand into its first operand.
Therefore, the first shld instruction above shifts the bits from ShiftMe+4 into ShiftMe+8 with-
out affecting the value in ShiftMe+4. The second shld instruction shifts the bits from ShiftMe
into ShiftMe+4. Finally, the shl instruction shifts the L.O. double word the appropriate
amount. There are two important things to note about this code. First, unlike the other
extended precision shift left operations, this sequence works from the H.O. double word
down to the L.O. double word. Second, the carry flag does not contain the carry out of the
H.O. shift operation. If you need to preserve the carry flag at that point, you will need to
push the flags after the first shld instruction and pop the flags after the shl instruction.

You can do an extended precision shift right operation using the shrd instruction. It
works almost the same way as the code sequence above except you work from the L.O.
double word to the H.O. double word. The solution is left as an exercise at the end of this
chapter.

9.3.12 Extended Precision Rotate Operations

The rcl and rcr operations extend in a manner almost identical to that for shl and shr .
For example, to perform 48 bit rcl and rcr operations, use the following instructions:

rcl word ptr operand,1
rcl word ptr operand+2, 1
rcl word ptr operand+4, 1

rcr word ptr operand+4, 1
rcr word ptr operand+2, 1
rcr word ptr operand, 1

The only difference between this code and the code for the extended precision shift opera-
tions is that the first instruction is a rcl or rcr rather than a shl or shr instruction. 

Performing an extended precision rol or ror instruction isn’t quite as simple an opera-
tion. The 8086 extended precision versions of these instructions appear in the exercises.
On the 80386 and later processors, you can use the bt, shld, and shrd instructions to easily
implement an extended precision rol or ror instruction. The following code shows how to
use the shld instruction to do an extended precision rol:

; Compute ROL EDX:EAX, 4

mov ebx, edx
shld edx, eax, 4
shld eax, ebx, 4
bt eax, 0 ;Set carry flag, if desired.
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An extended precision ror instruction is similar; just keep in mind that you work on the
L.O. end of the object first and the H.O. end last.

9.4 Operating on Different Sized Operands

Occasionally you may need to compute some value on a pair of operands that are not
the same size. For example, you may need to add a word and a double word together or
subtract a byte value from a word value. The solution is simple: just extend the smaller
operand to the size of the larger operand and then do the operation on two similarly sized
operands. For signed operands, you would sign extend the smaller operand to the same
size as the larger operand; for unsigned values, you zero extend the smaller operand. This
works for any operation, although the following examples demonstrate this for the addi-
tion operation.

To extend the smaller operand to the size of the larger operand, use a sign extension
or zero extension operation (depending upon whether you’re adding signed or unsigned
values). Once you’ve extended the smaller value to the size of the larger, the addition can
proceed. Consider the following code that adds a byte value to a word value:

var1 byte ?
var2 word ?

Unsigned addition: Signed addition:

mov al, var1 mov al, var1
mov ah, 0 cbw
add ax, var2 add ax, var2

 In both cases, the byte variable was loaded into the al register, extended to 16 bits, and
then added to the word operand. This code works out really well if you can choose the
order of the operations (e.g., adding the eight bit value to the sixteen bit value). Some-
times, you cannot specify the order of the operations. Perhaps the sixteen bit value is
already in the ax register and you want to add an eight bit value to it. For unsigned addi-
tion, you could use the following code:

mov ax, var2 ;Load 16 bit value into AX
 . ;Do some other operations leaving
 . ; a 16 bit quantity in AX.
add al, var1 ;Add in the 8 bit value.
adc ah, 0 ;Add carry into the H.O. word.

 The first add instruction in this example adds the byte at var1 to the L.O. byte of the value
in the accumulator. The adc instruction above adds the carry out of the L.O. byte into the
H.O. byte of the accumulator. Care must be taken to ensure that this adc instruction is
present. If you leave it out, you may not get the correct result.

Adding an eight bit signed operand to a sixteen bit signed value is a little more diffi-
cult. Unfortunately, you cannot add an immediate value (as above) to the H.O. word of ax.
This is because the H.O. extension byte can be either 00h or 0FFh. If a register is available,
the best thing to do is the following:

mov bx, ax ;BX is the available register.
mov al, var1
cbw
add ax, bx

 If an extra register is not available, you might try the following code:

add al, var1
cmp var1, 0
jge add0
adc ah, 0FFh
jmp addedFF

add0: adc ah, 0
addedFF:
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Of course, if another register isn’t available, you could always push one onto the stack and
save it while you’re performing the operation, e.g.,

push bx
mov bx, ax
mov al, var1
cbw
add ax, bx
pop bx

 Another alternative is to store the 16 bit value in the accumulator into a memory location
and then proceed as before:

mov temp, ax
mov al, var1
cbw
add ax, temp

All the examples above added a byte value to a word value. By zero or sign extending
the smaller operand to the size of the larger operand, you can easily add any two different
sized variables together. Consider the following code that adds a signed byte operand to a
signed double word:

var1 byte ?
var2  dword ?

 mov al, var1
cbw
cwd ;Extend to 32 bits in DX
add ax, word ptr var2
adc dx, word ptr var2+2

Of course, if you have an 80386 or later processor, you could use the following code:

 movsx eax, var1
add eax, var2

An example more applicable to the 80386 is adding an eight bit value to a quadword (64
bit) value, consider the following code:

BVal byte -1
QVal qword 1

movsx eax, BVal
cdq
add eax, dword ptr QVal
adc edx, dword ptr QVal+4

For additional examples, see the exercises at the end of this chapter.

9.5 Machine and Arithmetic Idioms

An idiom is an idiosyncrasy. Several arithmetic operations and 80x86 instructions
have idiosyncracies that you can take advantage of when writing assembly language
code. Some people refer to the use of machine and arithmetic idioms as “tricky program-
ming” that you should always avoid in well written programs. While it is wise to avoid
tricks just for the sake of tricks, many machine and arithmetic idioms are well-known and
commonly found in assembly language programs. Some of them can be really tricky, but a
good number of them are simply “tricks of the trade.” This text cannot even begin to
present all of the idioms in common use today; they are too numerous and the list is con-
stantly changing. Nevertheless, there are some very important idioms that you will see all
the time, so it makes sense to discuss those.
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9.5.1 Multiplying Without MUL and IMUL

If you take a quick look at the timing for the multiply instruction, you’ll notice that the
execution time for this instruction is rather long. Only the div and idiv instructions take
longer on the 8086. When multiplying by a constant, you can avoid the performance pen-
alty of the mul and imul instructions by using shifts, additions, and subtractions to perform
the multiplication. 

Remember, a shl operation performs the same operation as multiplying the specified
operand by two. Shifting to the left two bit positions multiplies the operand by four. Shift-
ing to the left three bit positions multiplies the operand by eight. In general, shifting an
operand to the left n bits multiplies it by 2n. Any value can be multiplied by some constant
using a series of shifts and adds or shifts and subtractions. For example, to multiply the ax
register by ten, you need only multiply it by eight and then add in two times the original
value. That is, 10*ax = 8*ax + 2*ax. The code to accomplish this is

shl ax, 1 ;Multiply AX by two
mov bx, ax ;Save 2*AX for later
shl ax, 1 ;Multiply AX by four
shl ax, 1 ;Multiply AX by eight
add ax, bx ;Add in 2*AX to get 10*AX

The ax register (or just about any register, for that matter) can be multiplied by most
constant values much faster using shl than by using the mul instruction. This may seem
hard to believe since it only takes two instructions to compute this product:

mov bx, 10
mul bx

However, if you look at the timings, the shift and add example above requires fewer clock
cycles on most processors in the 80x86 family than the mul instruction. Of course, the code
is somewhat larger (by a few bytes), but the performance improvement is usually worth it.
Of course, on the later 80x86 processors, the mul instruction is quite a bit faster than the
earlier processors, but the shift and add scheme is generally faster on these processors as
well.

You can also use subtraction with shifts to perform a multiplication operation. Con-
sider the following multiplication by seven:

mov bx, ax ;Save AX*1
shl ax, 1 ;AX := AX*2
shl ax, 1 ;AX := AX*4
shl ax, 1 ;AX := AX*8
sub ax, bx ;AX := AX*7

This follows directly from the fact that ax*7 = (ax*8)-ax.

A common error made by beginning assembly language students is subtracting or
adding one or two rather than ax*1 or ax*2. The following does not compute ax*7:

shl ax, 1
shl ax, 1
shl ax, 1
sub ax, 1

It computes (8*ax)-1, something entirely different (unless, of course, ax = 1). Beware of
this pitfall when using shifts, additions, and subtractions to perform multiplication opera-
tions.

You can also use the lea instruction to compute certain products on 80386 and later
processors. The trick is to use the 80386 scaled index mode. The following examples dem-
onstrate some simple cases:

lea eax, [ecx][ecx] ;EAX := ECX * 2
lea eax, [eax]eax*2] ;EAX := EAX * 3
lea eax, [eax*4] ;EAX := EAX * 4
lea eax, [ebx][ebx*4] ;EAX := EBX * 5
lea eax, [eax*8] ;EAX := EAX * 8
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lea eax, [edx][edx*8] ;EAX := EDX * 9

9.5.2 Division Without DIV and IDIV

Much as the shl instruction can be used for simulating a multiplication by some power
of two, the shr and sar instructions can be used to simulate a division by a power of two.
Unfortunately, you cannot use shifts, additions, and subtractions to perform a division by
an arbitrary constant as easily as you can use these instructions to perform a multiplica-
tion operation. 

Another way to perform division is to use the multiply instructions. You can divide
by some value by multiplying by its reciprocal. The multiply instruction is marginally
faster than the divide instruction; multiplying by a reciprocal is almost always faster than
division.

Now you’re probably wondering “how does one multiply by a reciprocal when the
values we’re dealing with are all integers?” The answer, of course, is that we must cheat to
do this. If you want to multiply by one tenth, there is no way you can load the value
1/10th into an 80x86 register prior to performing the division. However, we could multi-
ply 1/10th by 10, perform the multiplication, and then divide the result by ten to get the
final result. Of course, this wouldn’t buy you anything at all, in fact it would make things
worse since you’re now doing a multiplication by ten as well as a division by ten. How-
ever, suppose you multiply 1/10th by 65,536 (6553), perform the multiplication, and then
divide by 65,536. This would still perform the correct operation and, as it turns out, if you
set up the problem correctly, you can get the division operation for free. Consider the fol-
lowing code that divides ax by ten:

mov dx, 6554 ;Round (65,536/10)
mul dx

This code leaves ax/10 in the dx register. 

To understand how this works, consider what happens when you multiply ax by
65,536 (10000h). This simply moves ax into dx and sets ax to zero. Multiplying by 6,554
(65,536 divided by ten) puts ax divided by ten into the dx register. Since mul is marginally
faster than div , this technique runs a little faster than using a straight division.

Multiplying by the reciprocal works well when you need to divide by a constant. You
could even use it to divide by a variable, but the overhead to compute the reciprocal only
pays off if you perform the division many, many times (by the same value).

9.5.3 Using AND to Compute Remainders

The and instruction can be used to quickly compute remainders of the form:

dest := dest MOD 2n

To compute a remainder using the and instruction, simply and the operand with the
value 2n-1. For example, to compute ax = ax mod 8 simply use the instruction:

and ax, 7

Additional examples:

and ax, 3 ;AX := AX mod 4
and ax, 0Fh ;AX := AX mod 16
and ax, 1Fh ;AX := AX mod 32
and ax, 3Fh ;AX := AX mod 64
and ax, 7Fh ;AX := AX mod 128
mov ah, 0 ;AX := AX mod 256

; (Same as ax and 0FFh)
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9.5.4 Implementing Modulo-n Counters with AND

If you want to implement a counter variable that counts up to 2n-1 and then resets to
zero, simply using the following code:

inc CounterVar
and CounterVar, nBits

where nBits is a binary value containing n one bits right justified in the number. For exam-
ple, to create a counter that cycles between zero and fifteen, you could use the following:

inc CounterVar
and CounterVar, 00001111b

9.5.5 Testing an Extended Precision Value for 0FFFF..FFh

The and instruction can be used to quickly check a multi-word value to see if it con-
tains ones in all its bit positions. Simply load the first word into the ax register and then
logically and the ax register with all the remaining words in the data structure. When the
and operation is complete, the ax register will contain 0FFFFh if and only if all the words
in that structure contained 0FFFFh. E.g.,

mov ax, word ptr var
and ax, word ptr var+2
and ax, word ptr var+4
 . 
 . 
 . 

and ax, word ptr var+n
cmp ax, 0FFFFh
je Is0FFFFh

9.5.6  TEST Operations

Remember, the test instruction is an and instruction that doesn’t retain the results of
the and operation (other than the flag settings). Therefore, many of the comments con-
cerning the and operation (particularly with respect to the way it affects the flags) also
hold for the test instruction. However, since the test instruction doesn’t affect the destina-
tion operand, multiple bit tests may be performed on the same value. Consider the follow-
ing code:

test ax, 1 
jnz Bit0 
test ax, 2
jnz Bit1
test ax, 4
jnz Bit3
etc.

This code can be used to successively test each bit in the ax register (or any other oper-
and for that matter). Note that you cannot use the test/cmp instruction pair to test for a spe-
cific value within a string of bits (as you can with the and/cmp instructions). Since test
doesn’t strip out any unwanted bits, the cmp instruction would actually be comparing the
original value rather than the stripped value. For this reason, you’ll normally use the test
instruction to see if a single bit is set or if one or more bits out of a group of bits are set. Of
course, if you have an 80386 or later processor, you can also use the bt instruction to test
individual bits in an operand.

Another important use of the test instruction is to efficiently compare a register
against zero. The following test instruction sets the zero flag if and only if ax contains zero
(anything anded with itself produces its original value; this sets the zero flag only if that
value is zero):

test ax, ax 



Chapter 09

Page 490

The test instruction is shorter than 

cmp ax, 0 
or 

cmp eax, 0 

though it is no better than 

cmp al, 0

Note that you can use the and and or instructions to test for zero in a fashion identical
to test. However, on pipelined processors like the 80486 and Pentium chips, the test
instruction is less likely to create a hazard since it does not store a result back into its des-
tination register.

9.5.7 Testing Signs with the XOR Instruction

Remember the pain associated with a multi-precision signed multiplication opera-
tion? You need to determine the sign of the result, take the absolute value of the operands,
multiply them, and then adjust the sign of the result as determined before the multiplica-
tion operation. The sign of the product of two numbers is simply the exclusive-or of their
signs before performing the multiplication. Therefore, you can use the xor instruction to
determine the sign of the product of two extended precision numbers. E.g.,

32x32 Multiply:
mov al, byte ptr Oprnd1+3
xor al, byte ptr Oprnd2+3
mov cl, al ;Save sign

; Do the multiplication here (don’t forget to take the absolute
; value of the two operands before performing the multiply).

 .
 .
 .

; Now fix the sign.

cmp cl, 0 ;Check sign bit
jns ResultIsPos

; Negate the product here.

 .
 .
 .

ResultIsPos:

9.6 Masking Operations

A mask is a value used to force certain bits to zero or one within some other value. A
mask typically affects certain bits in an operand (forcing them to zero or one) and leaves
other bits unaffected. The appropriate use of masks allows you to extract bits from a value,
insert bits into a value, and pack or unpacked a packed data type. The following sections
describe these operations in detail.

9.6.1 Masking Operations with the AND Instruction

If you’ll take a look at the truth table for the and operation back in Chapter One, you’ll
note that if you fix either operand at zero the result is always zero. If you set that operand
to one, the result is always the value of the other operand. We can use this property of the
and instruction to selectively force certain bits to zero in a value without affecting other
bits. This is called masking out bits. 
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As an example, consider the ASCII codes for the digits “0”..”9”. Their codes fall in the
range 30h..39h respectively. To convert an ASCII digit to its corresponding numeric value,
you must subtract 30h from the ASCII code. This is easily accomplished by logically and-
ing the value with 0Fh. This strips (sets to zero) all but the L.O. four bits producing the
numeric value. You could have used the subtract instruction, but most people use the and
instruction for this purpose.

9.6.2 Masking Operations with the OR Instruction

Much as you can use the and instruction to force selected bits to zero, you can use the
or instruction to force selected bits to one. This operation is called masking in bits. 

Remember the masking out operation described earlier with the and instruction? In
that example we wanted to convert an ASCII code for a digit to its numeric equivalent.
You can use the or instruction to reverse this process. That is, convert a numeric value in
the range 0..9 to the ASCII code for the corresponding digit, i.e., ‘0’..’9’. To do this, logi-
cally or the specified numeric value with 30h. 

9.7 Packing and Unpacking Data Types

One of the primary uses of the shift and rotate instructions is packing and unpacking
data. Byte and word data types are chosen more often than any other since the 80x86 sup-
ports these two data sizes with hardware. If you don’t need exactly eight or 16 bits, using
a byte or word to hold your data might be wasteful. By packing data, you may be able to
reduce memory requirements for your data by inserting two or more values into a single
byte or word. The cost for this reduction in memory use is lower performance. It takes
time to pack and unpack the data. Nevertheless, for applications that aren’t speed critical
(or for those portions of the application that aren’t speed critical), the memory savings
might justify the use of packed data. 

The data type that offers the most savings when using packing techniques is the bool-
ean data type. To represent true or false requires a single bit. Therefore, up to eight differ-
ent boolean values can be packed into a single byte. This represents an 8:1 compression
ratio, therefore, a packed array of boolean values requires only one-eighth the space of an
equivalent unpacked array (where each boolean variable consumes one byte). For exam-
ple, the Pascal array 

B:packed array[0..31] of boolean; 

requires only four bytes when packed one value per bit. When packed one value per byte,
this array requires 32 bytes. 

Dealing with a packed boolean array requires two operations. You’ll need to insert a
value into a packed variable (often called a packed field) and you’ll need to extract a value
from a packed field. 

To insert a value into a packed boolean array, you must align the source bit with its
position in the destination operand and then store that bit into the destination operand.
You can do this with a sequence of and, or, and shift instructions. The first step is to mask
out the corresponding bit in the destination operand. Use an and instruction for this. Then
the source operand is shifted so that it is aligned with the destination position, finally the
source operand is or’d into the destination operand. For example, if you want to insert bit
zero of the ax register into bit five of the cx register, the following code could be used:

and cl, 0DFh ;Clear bit five (the destination bit)
and al, 1 ;Clear all AL bits except the src bit.
ror al, 1 ;Move to bit 7
shr al, 1 ;Move to bit 6
shr al, 1 ;move to bit 5
or cl, al
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This code is somewhat tricky. It rotates the data to the right rather than shifting it to
the left since this requires fewer shifts and rotate instructions.

To extract a boolean value, you simply reverse this process. First, you move the
desired bit into bit zero and then mask out all the other bits. For example, to extract the
data in bit five of the cx register leaving the single boolean value in bit zero of the ax regis-
ter, you’d use the following code:

mov al, cl
shl al, 1 ;Bit 5 to bit 6
shl al, 1 ;Bit 6 to bit 7
rol al, 1 ;Bit 7 to bit 0
and ax, 1 ;Clear all bits except 0

To test a boolean variable in a packed array you needn’t extract the bit and then test it,
you can test it in place. For example, to test the value in bit five to see if it is zero or one,
the following code could be used:

test cl, 00100000b
jnz BitIsSet

Other types of packed data can be handled in a similar fashion except you need to
work with two or more bits. For example, suppose you’ve packed five different three bit
fields into a sixteen bit value as shown in Figure 8.4. 

If the ax register contains the data to pack into value3, you could use the following
code to insert this data into field three:

mov ah, al  ;Do a shl by 8
shr ax, 1  ;Reposition down to bits 6..8
shr ax, 1
and ax, 11100000b ;Strip undesired bits
and DATA, 0FE3Fh  ;Set destination field to zero.
or DATA, ax  ;Merge new data into field.

Extraction is handled in a similar fashion. First you strip the unneeded bits and then you
justify the result:

mov ax, DATA
and ax, 1Ch
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1
shr ax, 1

This code can be improved by using the following code sequence:

mov ax, DATA
shl ax, 1
shl ax, 1
mov al, ah
and ax, 07h

Additional uses for packed data will be explored throughout this book.

Figure 8.4 Packed Data

Val  1      Val  2     Va l  3     Va l 4     Val  5

Unused
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9.8 Tables

The term “table” has different meanings to different programmers. To most assembly
language programmers, a table is nothing more than an array that is initialized with some
data. The assembly language programmer often uses tables to compute complex or other-
wise slow functions. Many very high level languages (e.g., SNOBOL4 and Icon) directly
support a table data type. Tables in these languages are essentially arrays whose elements
you can access with an non-integer value (e.g., floating point, string, or any other data
type). In this section, we will adopt the assembly language programmer’s view of tables. 

A Table is an array containing preinitialized values that do not change during the exe-
cution of the program. A table can be compared to an array in the same way an integer
constant can be compared to an integer variable. In assembly language, you can use tables
for a variety of purposes: computing functions, controlling program flow, or simply “look-
ing things up”. In general, tables provide a fast mechanism for performing some opera-
tion at the expense of some space in your program (the extra space holds the tabular data).
In the following sections we’ll explore some of the many possible uses of tables in an
assembly language program.

9.8.1 Function Computation via Table Look Up

Tables can do all kinds of things in assembly language. In HLLs, like Pascal, it’s real
easy to create a formula which computes some value. A simple looking arithmetic expres-
sion is equivalent to a considerable amount of 80x86 assembly language code. Assembly
language programmers tend to compute many values via table look up rather than
through the execution of some function. This has the advantage of being easier, and often
more efficient as well. Consider the following Pascal statement:

if (character >= ‘a’) and (character <= ‘z’) then character := chr(ord(character) - 32);

This Pascal if statement converts the character variable character from lower case to
upper case if character is in the range ‘a’..’z’. The 80x86 assembly language code that does
the same thing is

mov al, character
cmp al, ‘a’ 
jb NotLower

 cmp al, ‘z’ 
ja NotLower

 and al, 05fh ;Same operation as SUB AL,32 
NotLower: mov character, al

Had you buried this code in a nested loop, you’d be hard pressed to improve the speed of
this code without using a table look up. Using a table look up, however, allows you to
reduce this sequence of instructions to just four instructions:

mov al, character 
lea bx, CnvrtLower 
xlat

 mov character, al

CnvrtLower is a 256-byte table which contains the values 0..60h at indices 0..60h,
41h..5Ah at indices 61h..7Ah, and 7Bh..0FFh at indices 7Bh..0FFh. Often, using this table
look up facility will increase the speed of your code. 

As the complexity of the function increases, the performance benefits of the table look
up method increase dramatically. While you would almost never use a look up table to
convert lower case to upper case, consider what happens if you want to swap cases: 

Via computation:

mov al, character
cmp al, ‘a’ 
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jb NotLower
 cmp al, ‘z’
 ja NotLower
 and al, 05fh
 jmp ConvertDone 

 NotLower: cmp al, ‘A’
 jb ConvertDone
 cmp al, ‘Z’
 ja ConvertDone
 or al, 20h
 ConvertDone:

mov character, al

The table look up code to compute this same function is:

mov al, character
lea bx, SwapUL

 xlat
 mov character, al

As you can see, when computing a function via table look up, no matter what the
function is, only the table changes, not the code doing the look up. 

Table look ups suffer from one major problem – functions computed via table look
ups have a limited domain. The domain of a function is the set of possible input values
(parameters) it will accept. For example, the upper/lower case conversion functions
above have the 256-character ASCII character set as their domain. 

A function such as SIN or COS accepts the set of real numbers as possible input val-
ues. Clearly the domain for SIN and COS is much larger than for the upper/lower case
conversion function. If you are going to do computations via table look up, you must limit
the domain of a function to a small set. This is because each element in the domain of a
function requires an entry in the look up table. You won’t find it very practical to imple-
ment a function via table look up whose domain the set of real numbers.

 Most look up tables are quite small, usually 10 to 128 entries. Rarely do look up tables
grow beyond 1,000 entries. Most programmers don’t have the patience to create (and ver-
ify the correctness) of a 1,000 entry table. 

Another limitation of functions based on look up tables is that the elements in the
domain of the function must be fairly contiguous. Table look ups take the input value for a
function, use this input value as an index into the table, and return the value at that entry
in the table. If you do not pass a function any values other than 0, 100, 1,000, and 10,000 it
would seem an ideal candidate for implementation via table look up, its domain consists
of only four items. However, the table would actually require 10,001 different elements
due to the range of the input values. Therefore, you cannot efficiently create such a func-
tion via a table look up. Throughout this section on tables, we’ll assume that the domain
of the function is a fairly contiguous set of values. 

The best functions that can be implemented via table look ups are those whose
domain and range is always 0..255 (or some subset of this range). Such functions are effi-
ciently implemented on the 80x86 via the XLAT instruction. The upper/lower case con-
version routines presented earlier are good examples of such a function. Any function in
this class (those whose domain and range take on the values 0..255) can be computed
using the same two instructions (lea bx,table / xlat) above. The only thing that ever changes
is the look up table. 

The xlat instruction cannot be (conveniently) used to compute a function value once
the range or domain of the function takes on values outside 0..255. There are three situa-
tions to consider: 

• The domain is outside 0..255 but the range is within 0..255,
• The domain is inside 0..255 but the range is outside 0..255, and 
• Both the domain and range of the function take on values outside 0..255. 

We will consider each of these cases separately. 
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If the domain of a function is outside 0..255 but the range of the function falls within
this set of values, our look up table will require more than 256 entries but we can represent
each entry with a single byte. Therefore, the look up table can be an array of bytes. Next to
look ups involving the xlat instruction, functions falling into this class are the most effi-
cient. The following Pascal function invocation,

B := Func(X); 

where Func is

function Func(X:word):byte; 

consists of the following 80x86 code:

mov bx, X
 mov al, FuncTable [bx]
 mov B, al

This code loads the function parameter into bx, uses this value (in the range 0..??) as
an index into the FuncTable table, fetches the byte at that location, and stores the result into
B. Obviously, the table must contain a valid entry for each possible value of X. For exam-
ple, suppose you wanted to map a cursor position on the video screen in the range 0..1999
(there are 2,000 character positions on an 80x25 video display) to its X or Y coordinate on
the screen. You could easily compute the X coordinate via the function X:=Posn mod 80 and
the Y coordinate with the formula Y:=Posn div 80 (where Posn is the cursor position on the
screen). This can be easily computed using the 80x86 code:

mov bl, 80
 mov ax, Posn
 div bx

; X is now in AH, Y is now in AL 

However, the div instruction on the 80x86 is very slow. If you need to do this computa-
tion for every character you write to the screen, you will seriously degrade the speed of
your video display code. The following code, which realizes these two functions via table
look up, would improve the performance of your code considerably:

mov bx, Posn
 mov al, YCoord[bx] 

mov ah, XCoord[bx]

If the domain of a function is within 0..255 but the range is outside this set, the look up
table will contain 256 or fewer entries but each entry will require two or more bytes. If
both the range and domains of the function are outside 0..255, each entry will require two
or more bytes and the table will contain more than 256 entries. 

Recall from Chapter Four the formula for indexing into a single dimensional array (of
which a table is a special case): 

Address := Base + index * size

 If elements in the range of the function require two bytes, then the index must be
multiplied by two before indexing into the table. Likewise, if each entry requires three,
four, or more bytes, the index must be multiplied by the size of each table entry before
being used as an index into the table. For example, suppose you have a function, F(x),
defined by the following (pseudo) Pascal declaration:

function F(x:0..999):word;

You can easily create this function using the following 80x86 code (and, of course, the
appropriate table):

mov bx, X ;Get function input value and 
shl bx, 1 ; convert to a word index into F.
mov ax, F[bx]



Chapter 09

Page 496

The shl instruction multiplies the index by two, providing the proper index into a table
whose elements are words.

 Any function whose domain is small and mostly contiguous is a good candidate for
computation via table look up. In some cases, non-contiguous domains are acceptable as
well, as long as the domain can be coerced into an appropriate set of values. Such opera-
tions are called conditioning and are the subject of the next section.

9.8.2 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and massag-
ing them so that they are more acceptable as inputs to that function. Consider the follow-
ing function:

This says that the (computer) function SIN(x) is equivalent to the (mathematical) func-
tion sin x  where

-2π ≤ x ≤ 2π
As we all know, sine is a circular function which will accept any real valued input.

The formula used to compute sine, however, only accept a small set of these values. 

This range limitation doesn’t present any real problems, by simply computing
SIN(X mod (2*pi)) we can compute the sine of any input value. Modifying an input value so
that we can easily compute a function is called conditioning the input. In the example
above we computed X mod 2*pi and used the result as the input to the sin function. This
truncates X to the domain sin needs without affecting the result. We can apply input condi-
tioning can be applied to table look ups as well. In fact, scaling the index to handle word
entries is a form of input conditioning. Consider the following Pascal function:

function val(x:word):word; begin
case x of

0: val := 1;
 1: val := 1; 

2: val := 4; 
3: val := 27; 
4: val := 256; 
otherwise val := 0;

end;
end; 

This function computes some value for x in the range 0..4 and it returns zero if x is out-
side this range. Since x can take on 65,536 different values (being a 16 bit word), creating a
table containing 65,536 words where only the first five entries are non-zero seems to be
quite wasteful. However, we can still compute this function using a table look up if we use
input conditioning. The following assembly language code presents this principle:

xor ax, ax ;AX := 0, assume X > 4.
mov bx, x 
cmp bx, 4 
ja ItsZero 
shl bx, 1 
mov ax, val[bx]

ItsZero:

This code checks to see if x is outside the range 0..4. If so, it manually sets ax to zero,
otherwise it looks up the function value through the val table. With input conditioning,
you can implement several functions that would otherwise be impractical to do via table
look up.

xsin xsin x 2– π 2π,[ ]∈〈 | 〉=
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9.8.3 Generating Tables

One big problem with using table look ups is creating the table in the first place. This
is particularly true if there are a large number of entries in the table. Figuring out the data
to place in the table, then laboriously entering the data, and, finally, checking that data to
make sure it is valid, is a very time-staking and boring process. For many tables, there is
no way around this process. For other tables there is a better way – use the computer to
generate the table for you. An example is probably the best way to describe this. Consider
the following modification to the sine function:

This states that x is an integer in the range 0..359 and r is an integer. The computer can
easily compute this with the following code:

mov bx, X 
shl bx, 1 
mov ax, Sines [bx] ;Get SIN(X)*1000 
mov bx, R   ;Compute R*(SIN(X)*1000) 
mul bx 
mov bx, 1000   ;Compute (R*(SIN(X)*1000))/1000 
div bx

Note that integer multiplication and division are not associative. You cannot remove
the multiplication by 1000 and the division by 1000 because they seem to cancel one
another out. Furthermore, this code must compute this function in exactly this order. All
that we need to complete this function is a table containing 360 different values corre-
sponding to the sine of the angle (in degrees) times 1,000. Entering a table into an assem-
bly language program containing such values is extremely boring and you’d probably
make several mistakes entering and verifying this data. However, you can have the pro-
gram generate this table for you. Consider the following Turbo Pascal program:

program maketable;
var i:integer;
 r:integer;
 f:text;
begin
 assign(f,’sines.asm’); 

rewrite(f); 
for i := 0 to 359 do begin 

r := round(sin(I * 2.0 * pi / 360.0) * 1000.0); 
if (i mod 8) = 0 then begin

 writeln(f);
 write(f,’ dw ‘,r); 

end
 else write(f,’,’,r);
 end; 

close(f);
 end.

 This program produces the following output:

dw 0,17,35,52,70,87,105,122
dw 139,156,174,191,208,225,242,259
dw 276,292,309,326,342,358,375,391
dw 407,423,438,454,469,485,500,515
dw 530,545,559,574,588,602,616,629
dw 643,656,669,682,695,707,719,731
dw 743,755,766,777,788,799,809,819
dw 829,839,848,857,866,875,883,891
dw 899,906,914,921,927,934,940,946
dw 951,956,961,966,970,974,978,982
dw 985,988,990,993,995,996,998,999
dw 999,1000,1000,1000,999,999,998,996
dw 995,993,990,988,985,982,978,974
dw 970,966,961,956,951,946,940,934
dw 927,921,914,906,899,891,883,875

xsin( ) r× r 1000 xsin×( )×( )
1000

---------------------------------------------------x 0 3,[∈〈 |=
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dw 866,857,848,839,829,819,809,799
dw 788,777,766,755,743,731,719,707
dw 695,682,669,656,643,629,616,602
dw 588,574,559,545,530,515,500,485
dw 469,454,438,423,407,391,375,358
dw 342,326,309,292,276,259,242,225
dw 208,191,174,156,139,122,105,87
dw 70,52,35,17,0,-17,-35,-52
dw -70,-87,-105,-122,-139,-156,-174,-191
dw -208,-225,-242,-259,-276,-292,-309,-326
dw -342,-358,-375,-391,-407,-423,-438,-454
dw -469,-485,-500,-515,-530,-545,-559,-574
dw -588,-602,-616,-629,-643,-656,-669,-682
dw -695,-707,-719,-731,-743,-755,-766,-777
dw -788,-799,-809,-819,-829,-839,-848,-857
dw -866,-875,-883,-891,-899,-906,-914,-921
dw -927,-934,-940,-946,-951,-956,-961,-966
dw -970,-974,-978,-982,-985,-988,-990,-993
dw -995,-996,-998,-999,-999,-1000,-1000,-1000
dw -999,-999,-998,-996,-995,-993,-990,-988
dw -985,-982,-978,-974,-970,-966,-961,-956
dw -951,-946,-940,-934,-927,-921,-914,-906
dw -899,-891,-883,-875,-866,-857,-848,-839
dw -829,-819,-809,-799,-788,-777,-766,-755
dw -743,-731,-719,-707,-695,-682,-669,-656
dw -643,-629,-616,-602,-588,-574,-559,-545
dw -530,-515,-500,-485,-469,-454,-438,-423
dw -407,-391,-375,-358,-342,-326,-309,-292
dw -276,-259,-242,-225,-208,-191,-174,-156 
dw -139,-122,-105,-87,-70,-52,-35,-17

 Obviously it’s much easier to write the Turbo Pascal program that generated this data
than to enter (and verify) this data by hand. This little example shows how useful Pascal
can be to the assembly language programmer!

9.9 Sample Programs

This chapter’s sample programs demonstrate several important concepts including extended preci-
sion arithmetic and logical operations, arithmetic expression evaluation, boolean expression evaluation,
and packing/unpacking data.

9.9.1 Converting Arithmetic Expressions to Assembly Language

The following sample program (Pgm9_1.asm on the companion CD-ROM) provides
some examples of converting arithmetic expressions into assembly language:

; Pgm9_1.ASM
;
; Several examples demonstrating how to convert various
; arithmetic expressions into assembly language.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Arbitrary variables this program uses.

u word ?
v word ?
w word ?
x word ?
y word ?
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dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.

geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Abitrary expression program",cr,lf
byte "---------------------------",cr,lf
byte lf
byte "Enter a value for u: ",0

geti
mov u, ax

print
byte "Enter a value for v: ",0
geti
mov v, ax

print
byte "Enter a value for w: ",0
geti
mov w, ax

print
byte "Enter a non-zero value for x: ",0
geti
mov x, ax

print
byte "Enter a non-zero value for y: ",0
geti
mov y, ax

; Okay, compute Z := (X+Y)*(U+V*W)/X and print the result.

print
byte cr,lf
byte "(X+Y) * (U+V*W)/X is ",0

mov ax, v ;Compute V*W
imul w ; and then add in
add ax, u      ; U.
mov bx, ax ;Save in a temp location for now.

mov ax, x ;Compute X+Y, multiply this
add ax, y ; sum by the result above,
imul bx ; and then divide the whole
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idiv x ; thing by X.

puti
putcr

; Compute ((X-Y*U) + (U*V) - W)/(X*Y)

print
byte "((X-Y*U) + (U*V) - W)/(X*Y) = ",0

mov ax, y ;Compute y*u first
imul u
mov dx, X ;Now compute X-Y*U
sub dx, ax
mov cx, dx ;Save in temp

mov ax, u ;Compute U*V
imul V
add cx, ax ;Compute (X-Y*U) + (U*V)

sub cx, w ;Compute ((X-Y*U) + (U*V) - W)

mov ax, x ;Compute (X*Y)
imul y

xchg ax, cx
cwd ;Compute NUMERATOR/(X*Y)
idiv cx

puti
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.2 Boolean Operations Example

The following sample program (Pgm9_2.asm on the companion CD-ROM) demon-
strates how to manipulate boolean values in assembly language. It also provides an exam-
ple of Demorgan’s Theorems in operation.

; Pgm9_2.ASM
;
; This program demonstrates DeMorgan's theorems and
; various other logical computations.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

; Boolean input variables for the various functions
; we are going to test.
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a byte 0
b byte 0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; Get0or1-Reads a "0" or "1" from the user and returns its
; its value in the AX register.

get0or1 textequ <call _get0or1>
_get0or1 proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_get0or1 endp

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Demorgan's Theorems",cr,lf
byte "-------------------",cr,lf
byte lf
byte "According to Demorgan's theorems, all results "
byte "between the dashed lines",cr,lf
byte "should be equal.",cr,lf
byte lf
byte "Enter a value for a: ",0

get0or1
mov a, al

print
byte "Enter a value for b: ",0
get0or1
mov b, al

print
byte "---------------------------------",cr,lf
byte "Computing not (A and B): ",0

mov ah, 0
mov al, a
and al, b
xor al, 1 ;Logical NOT operation.

puti
putcr

print
byte "Computing (not A) OR (not B): ",0
mov al, a
xor al, 1
mov bl, b
xor bl, 1
or al, bl
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puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing (not A) OR B: ",0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte "Computing not (A AND (not B)): ",0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing (not A) OR B: ",0
mov al, a
xor al, 1
or al, b
puti

print
byte cr,lf
byte "Computing not (A AND (not B)): ",0
mov al, b
xor al, 1
and al, a
xor al, 1
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte "Computing not (A OR B): ",0
mov al, a
or al, b
xor al, 1
puti

print
byte cr,lf
byte "Computing (not A) AND (not B): ",0
mov al, a
xor al, 1
and bl, b
xor bl, 1
and al, bl
puti

print
byte cr,lf
byte "---------------------------------",cr,lf
byte 0

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends
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zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.3 64-bit Integer I/O

This sample program (Pgm9_3.asm on the companion CD-ROM) shows how to read
and write 64-bit integers. It provides the ATOU64 and PUTU64 routines that let you con-
vert a string of digits to a 64-bit unsigned integer and output a 64-bit unsigned integer as a
decimal string to the display.

; Pgm9_3.ASM
;
; This sample program provides two procedures that read and write
; 64-bit unsigned integer values on an 80386 or later processor.

.xlist
include stdlib.a
includelib stdlib.lib
.list

.386
option segment:use16

dp textequ <dword ptr>
byp textequ <byte ptr>

dseg segment para public 'data'

; Acc64 is a 64 bit value that the ATOU64 routine uses to input
; a 64-bit value.

Acc64 qword 0

; Quotient holds the result of dividing the current PUTU value by
; ten.

Quotient qword 0

; NumOut holds the string of digits created by the PUTU64 routine.

NumOut byte 32 dup (0)

; A sample test string for the ATOI64 routine:

LongNumber byte "123456789012345678",0

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; ATOU64- On entry, ES:DI point at a string containing a
; sequence of digits.  This routine converts that
; string to a 64-bit integer and returns that
; unsigned integer value in EDX:EAX.
;
; This routine uses the algorithm:
;
; Acc := 0
; while digits left
;
; Acc := (Acc * 10) + (Current Digit - '0')
; Move on to next digit
;
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; endwhile

ATOU64 proc near
push di ;Save because we modify it.
mov dp Acc64, 0 ;Initialize our accumulator.
mov dp Acc64+4, 0

; While we've got some decimal digits, process the input string:

sub eax, eax ;Zero out eax's H.O. 3 bytes.
WhileDigits: mov al, es:[di]

xor al, '0' ;Translates '0'..'9' -> 0..9
cmp al, 10 ; and everything else is > 9.
ja NotADigit

; Multiply Acc64 by ten.  Use shifts and adds to accomplish this:

shl dp Acc64, 1 ;Compute Acc64*2
rcl dp Acc64+4, 1

push dp Acc64+4 ;Save Acc64*2
push dp Acc64

shl dp Acc64, 1 ;Compute Acc64*4
rcl dp Acc64+4, 1
shl dp Acc64, 1 ;Compute Acc64*8
rcl dp Acc64+4, 1

pop edx ;Compute Acc64*10 as
add dp Acc64, edx ; Acc64*2 + Acc64*8
pop edx
adc dp Acc64+4, edx

; Add in the numeric equivalent of the current digit.
; Remember, the H.O. three words of eax contain zero.

add dp Acc64, eax ;Add in this digit

inc di ;Move on to next char.
jmp WhileDigits ;Repeat for all digits.

; Okay, return the 64-bit integer value in eax.

NotADigit: mov eax, dp Acc64
mov edx, dp Acc64+4
pop di
ret

ATOU64 endp

; PUTU64- On entry, EDX:EAX contain a 64-bit unsigned value.
; Output a string of decimal digits providing the
; decimal representation of that value.
;
; This code uses the following algorithm:
;
;     di := 30;
;     while edx:eax <> 0 do
;
;                       OutputNumber[di] := digit;
; edx:eax := edx:eax div 10
; di := di - 1;
;
;     endwhile
;     Output digits from OutNumber[di+1]
; through OutputNumber[30]

PUTU64 proc
push es
push eax
push ecx
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push edx
push di
pushf

mov di, dseg ;This is where the output
mov es, di ; string will go.
lea di, NumOut+30 ;Store characters in string
std ; backwards.
mov byp es:[di+1],0 ;Output zero terminator.

; Save the value to print so we can divide it by ten using an
; extended precision division operation.

mov dp Quotient, eax
mov dp Quotient+4, edx

; Okay, begin converting the number into a string of digits.

mov ecx, 10 ;Value to divide by.
DivideLoop: mov eax, dp Quotient+4 ;Do a 64-bit by

sub edx, edx ; 32-bit division
div ecx                     ; (see the text
mov dp Quotient+4, eax ;  for details).

mov eax, dp Quotient
div ecx
mov dp Quotient, eax

; At this time edx (dl, actually) contains the remainder of the
; above division by ten, so dl is in the range 0..9.  Convert
; this to an ASCII character and save it away.

mov al, dl
or al, '0'
stosb

; Now check to see if the result is zero.  When it is, we can
; quit.

mov eax, dp Quotient
or eax, dp Quotient+4
jnz DivideLoop

OutputNumber: inc di
puts
popf
pop di
pop edx
pop ecx
pop eax
pop es
ret

PUTU64 endp

; The main program provides a simple test of the two routines
; above.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

lesi LongNumber
call ATOU64
call PutU64
printf
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byte cr,lf
byte "%x %x %x %x",cr,lf,0
dword Acc64+6, Acc64+4, Acc64+2, Acc64

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.9.4 Packing and Unpacking Date Data Types

This sample program demonstrates how to pack and unpack data using the Date data
type introduced in Chapter One.

; Pgm9_4.ASM
;
; This program demonstrates how to pack and unpack
; data types.  It reads in a month, day, and year value.
; It then packs these values into the format the textbook
; presents in chapter two.  Finally, it unpacks this data
; and calls the stdlib DTOA routine to print it as text.

.xlist
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public 'data'

Month byte ? ;Holds month value (1-12)
Day byte ? ;Holds day value (1-31)
Year byte ? ;Holds year value (80-99)

Date word ? ;Packed data goes in here.

dseg ends

cseg segment para public 'code'
assume cs:cseg, ds:dseg

; GETI-Reads an integer variable from the user and returns its
; its value in the AX register.

geti textequ <call _geti>
_geti proc

push es
push di

getsm
atoi
free

pop di
pop es
ret

_geti endp
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Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

print
byte "Date Conversion Program",cr,lf
byte "-----------------------",cr,lf
byte lf,0

; Get the month value from the user.
; Do a simple check to make sure this value is in the range
; 1-12.  Make the user reenter the month if it is not.

GetMonth: print
byte "Enter the month (1-12): ",0

geti
mov Month, al
cmp ax, 0
je BadMonth
cmp ax, 12
jbe GoodMonth

BadMonth: print
byte "Illegal month value, please re-enter",cr,lf,0
jmp GetMonth

GoodMonth:

; Okay, read the day from the user.  Again, do a simple
; check to see if the date is valid.  Note that this code
; only checks to see if the day value is in the range 1-31.
; It does not check those months that have 28, 29, or 30
; day months.

GetDay: print
byte "Enter the day (1-31): ",0
geti
mov Day, al
cmp ax, 0
je BadDay
cmp ax, 31
jbe GoodDay

BadDay: print
byte "Illegal day value, please re-enter",cr,lf,0
jmp GetDay

GoodDay:

; Okay, get the year from the user.
; This check is slightly more sophisticated.  If the user
; enters a year in the range 1980-1999, it will automatically
; convert it to 80-99.  All other dates outside the range
; 80-99 are illegal.

GetYear: print
byte "Enter the year (80-99): ",0
geti
cmp ax, 1980
jb TestYear
cmp ax, 1999
ja BadYear

sub dx, dx ;Zero extend year to 32 bits.
mov bx, 100
div bx ;Compute year mod 100.
mov ax, dx
jmp GoodYear
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TestYear: cmp ax, 80
jb BadYear
cmp ax, 99
jbe GoodYear

BadYear: print
byte "Illegal year value.  Please re-enter",cr,lf,0
jmp GetYear

GoodYear: mov Year, al

; Okay, take these input values and pack them into the following
; 16-bit format:
;
;      bit 15     8 7      0
;          |      | |      |
;    MMMMDDDD DYYYYYYY

mov ah, 0
mov bh, ah
mov al, Month ;Put Month into bit positions
mov cl, 4 ; 12..15
ror ax, cl

mov bl, Day ;Put Day into bit positions
mov cl, 7 ; 7..11.
shl bx, cl

or ax, bx ;Create MMMMDDDD D0000000
or al, Year ;Create MMMMDDDD DYYYYYYY
mov Date, ax ;Save away packed date.

; Print out the packed date (in hex):

print
byte "Packed date = ",0
putw
putcr

; Okay, the following code demonstrates how to unpack this date
; and put it in a form the standard library's LDTOAM routine can
; use.

mov ax, Date ;First, extract Month
mov cl, 4
shr ah, cl
mov dh, ah ;LDTOAM needs month in DH.

mov ax, Date ;Next get the day.
shl ax, 1
and ah, 11111b
mov dl, ah ;Day needs to be in DL.

mov cx, Date ;Now process the year.
and cx, 7fh ;Strip all but year bits.

print
byte "Date: ",0
LDTOAM ;Convert to a string
puts
free
putcr

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack 'stack'
stk byte 1024 dup ("stack   ")
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sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

9.10 Laboratory Exercises

In this laboratory you will perform the following activities:

• Use CodeView to set breakpoints within a program and locate some errors.
• Use CodeView to trace through sections of a program to discover problems with that program.
• Use CodeView to trace through some code you write to verify correctness and observe the calculation one

step at a time.

9.10.1 Debugging Programs with CodeView

In past chapters of this lab manual you’ve had the opportunity to use CodeView to
view the machine state (register and memory values), enter simple assembly language
programs, and perform other minor tasks. In this section we will explore one of Code-
View’s most important capabilities - helping you locate problems within your code. This
section discusses three features of CodeView we have ignored up to this point - Break-
points, Watch operations, and code tracing. These features provide some very important
tools for figuring out what is wrong with your assembly language programs.

Code tracing is a feature CodeView provides that lets you execute assembly language
statements one at a time and observe the results. Many programmers refer to this opera-
tion as single stepping because it lets you step through the program one statement per
operation. Ultimately, though, the real purpose of single stepping is to let you observe the
results of a sequence of instructions, noting all side effects, so you can see why that
sequence is not producing desired results.

CodeView provides two easy to use trace/single step commands. Pressing F8 traces
through one instruction. CodeView will update all affected registers and memory loca-
tions and halt on the very next instruction. In the event the current instruction is a call,
int, or other transfer of control instruction, CodeView transfers control to the target loca-
tion and displays the instruction at that location.

The second CodeView command for single stepping is the step command. You can
execute the step command by pressing F10. The step command executes the current state-
ment and stops upon executing the statement immediately following it in the program.
For most instructions the step and trace commands do the same thing. However, for
instructions that transfer control, the trace command follows the flow of control while the
step command allows the CPU to run at full speed until returning back to the next instruc-
tion. This, for example, lets you quickly execute a subroutine without having to step
through all the instructions in that subroutine. You should attempt to using the program
trace command (F8) for most debugging purposes and only use the step command (F10)
on call and int instructions. The step instruction may have some unintended effects on
other transfer of control instructions like loop, and the conditional branches.

The CodeView command window also provides two commands to trace or single step
through an instruction. The “T” command traces through an instruction, the “P” com-
mand steps over an instruction.

One major problem with tracing through your program is that it is very slow. Even if
you hold the F8 key down and let it autorepeat, you’d only be executing 10-20 instructions
per second. This is a million (or more) times slower than a typical high-end PC. If the pro-
gram executes several thousand instructions before even getting to the point where you
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suspect the bug will be, you would have to execute far too many trace operations to get to
that point. 

A breakpoint is a point in your program where control returns to the debugger. This is
the facility that lets you run a program a full speed up to a specific point (the break point)
in your program. Breakpoints are, perhaps, the most important tool for locating errors in a
machine language program. Since they are so useful, it is not surprising to find that Code-
View provides a very rich set of breakpoint manipulation commands.

There are three keystroke commands that let you run your program at full speed and
set breakpoints. The F5 command (run) begins full speed execution of your program at
CS:IP. If you do not have any breakpoints set, your program will run to completion. If you
are interested in stopping your program at some point you should set a breakpoint before
executing this command. 

Pressing F5 produces the same result as the “G” (go) command in the command win-
dow. The Go command is a little more powerful, however, because it lets you specify a
non-sticky breakpoint at the same time. The command window Go commands take the fol-
lowing forms:

G

G breakpoint_address 

The F7 keystroke executes at full speed up to the instruction the cursor is on. This sets
a non-sticky breakpoint. To use this command you must first place the cursor on an
instruction in the source window and then press the F7 key. CodeView will set a break-
point at the specified instruction and start the program running at full speed until it hits a
breakpoint.

A non-sticky breakpoint is one that deactivates whenever control returns back to Code-
View. Once CodeView regains control it clears all non-sticky breakpoints. You will have to
reset those breakpoints if you still need to stop at that point in your program. Note that
CodeView clears the non-sticky breakpoints even if the program stops for some reason
other than execution of those non-sticky breakpoints. 

One very important thing to keep in mind, especially when using the F7 command to
set non-sticky breakpoints, is that you must execute the statement on which the break-
point was set for the breakpoint to have any effect. If your program skips over the instruc-
tion on which you’ve set the breakpoint, you might not return to CodeView except via
program termination. When choosing a point for a breakpoint, you should always pick a
sequence point. A sequence point is some spot in your program to which all execution paths
converge. If you cannot set a breakpoint at a sequence point, you should set several break-
points in your program if you are not sure the code will execute the statement with the
single breakpoint.

The easiest way to set a sticky breakpoint is to move the cursor to the desired state-
ment in the CodeView source window and press F9. This will brighten that statement to
show that there is a breakpoint set on that instruction. Note that the F9 key only works on
80x86 machine instructions. You cannot use it on blank lines, comments, assembler direc-
tives, or pseudo-opcodes. 

CodeView’s command window also provides several commands to manipulate
breakpoints including BC (Breakpoint Clear), BD (Breakpoint Disable), BE (Breakpoint
Enable), BL (Breakpoint List), and BP (BreakPoint set). These commands are very power-
ful and let you set breakpoints on memory modification, expression evaluation, apply
counters to breakpoints, and more. See the MASM “Environment and Tools” manual or
the CodeView on-line help for more information about these commands.

Another useful debugging tool in CodeView is the Watch Window. The watch window
displays the values of some specified expressions during program execution. One impor-
tant use of the watch window is to display the contents of selected variables while your
program executes. Upon encountering a breakpoint, CodeView automatically updates all
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watch expressions. You can add a watch expression to the watch window using the
DATA:Add Watch menu item. This opens up a dialog box that looks like the following:

By typing a variable name (like Counter above) you can add a watch item to the
watch window. By opening the watch windows (from the Windows menu item) you can
view the values of any watch expressions you’ve created.

Watch expressions are quite useful because they let you observe how your program
affects the values of variables throughout your code. If you place several variable names
in the watch list you can execute a section of code up to a break point and observe how
that code affected certain variables.

9.10.2 Debugging Strategies

Learning how to effectively use a debugger to locate problems in your machine lan-
guage programs is not something you can learn from a book. Alas, there is a bit of a learn-
ing curve to using a debugger like CodeView and learning the necessary techniques to
quickly locate the source of an error within a program. For this reason all too many stu-
dents fall back to debugging techniques they learned in their first or second quarter of
programming, namely sticking a bunch of print statements throughout their code. You
should not make this mistake. The time you spend learning how to properly use Code-
View will pay off very quickly.

9.10.2.1 Locating Infinite Loops

Infinite loops are a very common problem in many programs. You start a program
running and the whole machine locks up on you. How do you deal with this? Well, the
first thing to do is to load your program into CodeView. Once you start your program run-
ning and it appears to be in an infinite loop, you can manually break the program by
pressing the SysReq or Ctrl-Break key. This generally forces control back to CodeView. If
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you are currently executing in a small loop, you can use the trace command to step
through the loop and figure out why it does not terminate.

Another way to catch an infinite loop is to use a binary search. To use this technique,
place a breakpoint in the middle of your program (or in the middle of the code you wish
to test). Start the program running. If it hangs up, the infinite loop is before the breakpoint.
If you execute the breakpoint, then the infinite loop occurs after the breakpoint3 Once you
determine which half of your program contains the infinite loop, the next step is to place
another breakpoint half way into that part of the program. If the infinite loop occurred
before the breakpoint in the middle of the program, then you should set a new breakpoint
one quarter of the way into the program, that is, halfway between the beginning of the
program and the original breakpoint. If you got to the original breakpoint without
encountering the infinite loop, then set a new breakpoint at the three-quarters point in
your program, i.e., halfway between the original breakpoint and the end of your program.
Run the program from the beginning again (you can use the CodeView command win-
dow command “L” to restart the program from the beginning). If you do not hit any of the
three breakpoints you know that the infinite loop is in the first 25% of the program. Other-
wise, the current breakpoints at the 25%, 50%, and 75% points in the program will effec-
tively limit the source of the infinite loop to a smaller section of your program. You can
repeat this step over and over again until you pinpoint the section of your program con-
taining the infinite loop.

Of course, you should not place a breakpoint within a loop when searching for an infi-
nite loop. Otherwise CodeView will break on each iteration of the loop and it will take you
much longer to find the error. Of course, if the infinite loop occurs inside some other loop
you will eventually need to place breakpoints inside a loop, but hopefully you will find
the infinite loop on the first execution of the outside loop. If you do need to place a break-
point inside a loop that must execute several times before you really want the break to
occur, you can attach a counter to a breakpoint that counts down from some value before
actually breaking. See the MASM Environment and Tools manual, or use CodeView’s
on-line help facility, to get more details on breakpoint counters.

9.10.2.2 Incorrect Computations

Another common problem is that you get the wrong result after performing a
sequence of arithmetic and logical computations. You can look at a section of code all day
long and still not see the problem, but if you trace through the code, the incorrect code
because quite obvious.

If you think that a particular computation is not producing a correct result you should
set a breakpoint at the first instruction of the computation and run the program at full
speed up to that point. Be sure to check the values of all variables and registers used in the com-
putation. All too often a bad computation is the result of bad input values, that means the
incorrect computation is elsewhere in your program. 

Once you have verified that the input values are correct, you can being tracing the
instructions of the computation one at a time. After each instruction executes you should
compare the results you actually obtain against those you expected to obtain.

The main thing to keep in mind when trying to determine why your program is pro-
ducing incorrect results is that the source of the error could be somewhere else besides the
point where you first notice the error. This is why you should always check in input regis-
ter and variable values before tracing through a section of code. If you find that the input
values are no correct, then the problem lies elsewhere in your program and you will have
to search elsewhere.

3. Of course, you must make sure that the instruction on which you set the break point is a sequence point. If the code can jump over your break-
point into the second half of the program, you have proven nothing.
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9.10.2.3 Illegal Instructions/Infinite Loops Part II

Sometimes when your program hangs up it is not due to the execution of an infinite
loop, but rather you’ve executed an opcode that is not a valid machine instruction. Other
times you will press the SysReq key only to find you are executing code that is nowhere
near your program, perhaps out in the middle of RAM and executing some really weird
instructions. Most of the time this is due to a stack problem or executing some indirect
jump. The best strategy here is to open a memory window and dump some memory
around the stack pointer (SS:SP). Try and locate a reasonable return address on the top of
stack (or shortly thereafter if there are many values pushed on the stack) and disassemble
that code. Somewhere before the return address is probably a call. You should set a break-
point at that location and begin single stepping into the routine, watching what happens
on all indirect jumps and returns. Pay close attention to the stack during all this.

9.10.3 Debug Exercise I: Using CodeView to Find Bugs in a Calculation

Exercise 1: Running CodeView. The following program contains several bugs (noted
in the comments). Enter this program into the system (note, this code is available as the
file Ex9_1.asm on the companion CD-ROM):

dseg segment para public ‘data’

I word 0
J word 0
K word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; This program is useful for debugging purposes only!
; The intent is to execute this code from inside CodeView.
;
; This program is riddled with bugs. The bugs are very 
; obvious in this short code sequence, within a larger 
; program these bugs might not be quite so obvious.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax

; The following loop increments I until it reaches 10

ForILoop: inc I
cmp I, 10
jb ForILoop

; This loop is supposed to do the same thing as the loop 
; above, but we forgot to reinitialize I back to zero. 
; What happens?

ForILoop2: inc I
cmp I, 10
jb ForILoop2

; The following loop, once again, attempts to do the same 
; thing as the first for loop above. However, this time we 
; remembered to reinitialize I. Alas, there is another 
; problem with this code, a typo that the assembler cannot
; catch.

mov I, 0
ForILoop3: inc I

cmp I, 10
jb ForILoop ;<<<-- Whoops! Typo.
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; The following loop adds I to J until J reaches 100. 
; Unfortunately, the author of this code must have been 
; confused and thought that AX contained the sum 
; accumulating in J. It compares AX against 100 when
; it should really be comparing J against 100.

WhileJLoop: mov ax, I
add J, ax
cmp ax, 100 ;This is a bug!
jb WhileJLoop

mov ah, 4ch ;Quit to DOS.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

Assemble this program with the command:

ML /Zi Ex9_1.asm

The “/Zi” option instructions MASM to include debugging information for CodeView in
the .EXE file. Note that the “Z” must be uppercase and the “i” must be lower case.

Load this into CodeView using the command:

CV Ex9_1

Your display should now look something like the following:

Note that CodeView highlights the instruction it will execute next (mov ax, dseg in
the above code). Try out the trace command by pressing the F10 key three times.This
should leave the inc I instruction highlighted. Step through the loop and note all the major
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changes that take place on each iteration (note: remember jb=jc so be sure to note the value
of the carry flag on each iteration as well). 

For your lab report: Discuss the results in your lab manual. Also note the final value
of I after completing the loop.

Part Two: Locating a bug. The second loop in the program contains a major bug. The pro-
grammer forgot to reset I back to zero before executing the code starting at label ForILoop2.
Trace through this loop until it falls through to the statement at label ForILoop3. 

For your lab report: Describe what went wrong and how pressing the F8 key would help
you locate this problem.

Part 3: Locating another bug. The third loop contains a typo that causes it to restart at label
ForILoop. Trace through this code using the F8 key.

For your lab report: Describe the process of tracking this problem down and provide a
description of how you could use the trace command to catch this sort of problem.

Part 4: Verifying correctness. Program Ex9_2.asm is a corrected version of the above pro-
gram. Single step through that code and verify that it works correctly. 

For your lab report: Describe the differences between the two debugging sessions in your
lab manual.

Part 5: Using Ex9_2.asm, open a watch window and add the watch expression “I” to that
window. Set sticky breakpoints on the three jb instructions in the program. Run the pro-
gram using the Go command and comment on what happens in the Watch window at
each breakpoint.

For your lab report: Describe how you could use the watch window to help you locate a
problem in your programs.

9.10.4 Software Delay Loop Exercises

Software Delay Loops. The Ex9_3.asm file contains a short software-based delay loop.
Run this program and determine the value for the loop control variable that will cause a
delay of 11 seconds. Note: the current value was chosen for a 66 MHz 80486 system; if you
have a slower system you may want to reduce this value, if you have a faster system, you
will want to increase this value. Adjust the value to get the delay as close to 11 seconds as
you can on your PC.

For your lab report: Provide the constant for you particular system that produces a delay
of 11 seconds. Discuss how to create a delay of 1, 10, 20, 30, or 60 seconds using this code.

For additional credit: After getting the delay loop to run for 11 seconds on your PC, take
the executable around to different systems with different CPUs and different clock speeds.
Run the program and measure the delay. Describe the differences in your lab report.

Part 2: Hardware determined software delay loop. The Ex9_4.asm file contains a software
delay loop that automatically determines the number of loop iterations by observing the
BIOS real time clock variable. Run this software and observe the results.

For your lab report: Determine the loop iteration count and include this value in your lab
manual. If your PC has a turbo switch on it, set it to “non-turbo” mode when requested by
the program. Measure the actual delay as accurately as you can with the turbo switch in
turbo and in non-turbo mode. Include these timings in your lab report.

For additional credit: Take the executable file around to different systems with different
CPUs and different clock speeds. Run the program and measure the delays. Describe the
differences in your lab report.



Chapter 09

Page 516

9.11 Programming Projects

9.12 Summary

This chapter discussed arithmetic and logical operations on 80x86 CPUs. It presented
the instructions and techniques necessary to perform integer arithmetic in a fashion simi-
lar to high level languages. This chapter also discussed multiprecision operations, how to
perform arithmetic operations using non-arithmetic instructions, and how to use arith-
metic instructions to perform non-arithmetic operations.

Arithmetic expressions are much simpler in a high-level language than in assembly
language. Indeed, the original purpose of the FORTRAN programming language was to
provide a FORMula TRANslator for arithmetic expressions. Although it takes a little more
effort to convert an arithmetic formula to assembly language than it does to, say, Pascal, as
long as you follow some very simple rules the conversion is not hard. For a step-by-step
description, see

• “Arithmetic Expressions” on page 460
• “Simple Assignments” on page 460
• “Simple Expressions” on page 460
• “Complex Expressions” on page 462
• “Commutative Operators” on page 466
• “Logical (Boolean) Expressions” on page 467

One big advantage to assembly language is that it is easy to perform nearly unlimited
precision arithmetic and logical operations. This chapter describes how to do extended
precision operations for most of the common operations. For complete instructions, see

• “Multiprecision Operations” on page 470
• “Multiprecision Addition Operations” on page 470
• “Multiprecision Subtraction Operations” on page 472
• “Extended Precision Comparisons” on page 473
• “Extended Precision Multiplication” on page 475
• “Extended Precision Division” on page 477
• “Extended Precision NEG Operations” on page 480
• “Extended Precision AND Operations” on page 481
• “Extended Precision OR Operations” on page 482
• “Extended Precision NOT Operations” on page 482
• “Extended Precision Shift Operations” on page 482
• “Extended Precision Rotate Operations” on page 484

At certain times you may need to operate on two operands that are different types.
For example, you may need to add a byte value to a word value. The general idea is to
extend the smaller operand so that it is the same size as the larger operand and then com-
pute the result on these like-sized operands. For all the details, see

• “Operating on Different Sized Operands” on page 485

Although the 80x86 instruction set provides straight-forward ways to accomplish
many tasks, you can often take advantage of various idioms in the instruction set or with
respect to certain arithmetic operations to produce code that is faster or shorter than the
obvious way. This chapter introduces a few of these idioms. To see some examples, check
out

• “Machine and Arithmetic Idioms” on page 486
• “Multiplying Without MUL and IMUL” on page 487
• “Division Without DIV and IDIV” on page 488
• “Using AND to Compute Remainders” on page 488
• “Implementing Modulo-n Counters with AND” on page 489
• “Testing an Extended Precision Value for 0FFFF..FFh” on page 489
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• “TEST Operations” on page 489
• “Testing Signs with the XOR Instruction” on page 490

To manipulate packed data you need the ability to extract a field from a packed record
and insert a field into a packed record. You can use the logical and and or instructions to
mask the fields you want to manipulate; you can use the shl and shr instructions to posi-
tion the data to their appropriate positions before inserting or after extracting data. To
learn how to pack and unpack data, see

• “Masking Operations” on page 490
• “Masking Operations with the AND Instruction” on page 490
• “Masking Operations with the OR Instruction” on page 491
• “Packing and Unpacking Data Types” on page 491
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9.13 Questions

1) Describe how you might go about adding an unsigned word to an unsigned byte variable
producing a byte result. Explain any error conditions and how to check for them.

2) Answer question one for signed values. 

3) Assume that var1 is a word and var2 and var3 are double words. What is the 80x86 assem-
bly language code that will add var1 to var2 leaving the sum in var3 if:

a) var1, var2, and var3 are unsigned values.

 b) var1, var2, and var3 are signed values. 

4) “ADD BX, 4” is more efficient than “LEA BX, 4[BX]”. Give an example of an LEA instruc-
tion which is more efficient than the corresponding ADD instruction. 

5) Provide the single 80386 LEA instruction that will multiply EAX by five.

6) Assume that VAR1 and VAR2 are 32 bit variables declared with the DWORD
pseudo-opcode. Write code sequences that will test the following:

a) VAR1 = VAR2 

b) VAR1 <> VAR2 

c) VAR1 < VAR2 (Unsigned and signed versions

d) VAR1 <= VAR2  for each of these)

e) VAR1 > VAR2 

f) VAR1 >= VAR2 

7) Convert the following expressions into assembly language code employing shifts, addi-
tions, and subtractions in place of the multiplication:

a) AX*15 

b) AX*129 

c) AX*1024 

d) AX*20000 

8) What’s the best way to divide the AX register by the following constants?

a) 8 b) 255 c) 1024 d) 45 

9) Describe how you could multiply an eight bit value in AL by 256 (leaving the result in AX)
using nothing more than two MOV instructions. 

10) How could you logically AND the value in AX by 0FFh using nothing more than a MOV
instruction? 

11) Suppose that the AX register contains a pair of packed binary values with the L.O. four
bits containing a value in the range 0..15 and the H.O. 12 bits containing a value in the
range 0..4095. Now suppose you want to see if the 12 bit portion contains the value 295.
Explain how you could accomplish this with two instructions. 

12) How could you use the TEST instruction (or a sequence of TEST instructions) to see if bits
zero and four in the AL register are both set to one? How would the TEST instruction be
used to see if either bit is set? How could the TEST instruction be used to see if neither bit
is set? 

13) Why can’t the CL register be used as a count operand when shifting multi-precision oper-
ands. I.e., why won’t the following instructions shift the value in (DX,AX) three bits to the
left?

mov cl, 3 
shl ax, cl 
rcl dx, cl 
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14) Provide instruction sequences that perform an extended precision (32 bit) ROL and ROR
operation using only 8086 instructions. 

15) Provide an instruction sequence that implements a 64 bit ROR operation using the 80386
SHRD and BT instructions.

16) Provide the 80386 code to perform the following 64 bit computations. Assume you are
computing X := Y op Z with X, Y, and Z defined as follows:

X dword 0, 0
y dword 1, 2
z dword 3, 4

a) addition b) subtraction c) multiplication

c) Logical AND d) Logical OR e) Logical XOR

f) negate g) Logical NOT
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