

Page 1255

The PC Game Adapter Chapter 24

One need look no farther than the internals of several popular games on the PC to discover than
many programmers do not fully understand one of the least complex devices attached to the PC today –
the analog game adapter. This device allows a user to connect up to four resistive potentiometers and four
digital switch connections to the PC. The design of the PC’s game adapter was obviously influenced by the
analog input capabilities of the Apple II computer

1

, the most popular computer available at the time the
PC was developed. Although IBM provided for twice the analog inputs of the Apple II, thinking that
would give them an edge, their decision to support only four switches and four potentiometers (or “pots”)
seems confining to game designers today – in much the same way that IBM’s decision to support 256K
RAM seems so limiting today. Nevertheless, game designers have managed to create some really marvel-
ous products, even living with the limitations of IBM’s 1981 design.

IBM’s analog input design, like Apple’s, was designed to be dirt cheap. Accuracy and performance
were not a concern at all. In fact, you can purchase the electronic parts to build your own version of the
game adapter, at retail, for under three dollars. Indeed, today you can purchase a game adapter card from
various discount merchants for under eight dollars. Unfortunately, IBM’s low-cost design in 1981 produces
some major performance problems for high-speed machines and high-performance game software in the
1990’s. However, there is no use crying over spilled milk – we’re stuck with the original game adapter
design, we need to make the most of it. The following sections will describe how to do exactly that.

24.1 Typical Game Devices

The game adapter is nothing more than a computer interface to various game input devices. The
game adapter card typically contains a DB15 connector into which you plug an external device. Typical
devices you can obtain for the game adapter include

paddles, joysticks, flight yokes, digital joysticks, rud-
der pedals, RC simulators,

and

steering wheels.

 Undoubtedly, this is but a short list of the types of devices
you can connect to the game adapter. Most of these devices are far more expensive that the game adapter
card itself. Indeed, certain high performance flight simulator consoles for the game adapter cost several
hundred dollars.

The digital joystick is probably the least complex device you can connect to the PC’s game port. This
device consists of four switches and a stick. Pushing the stick forward, left, right, or pulling it backward
closes one of the switches. The game adapter card provides four switch inputs, so you can sense which
direction (including the rest position) the user is pressing the digital joystick. Most digital joysticks also
allow you to sense the in-between positions by closing two contacts at once. for example, pushing the
control stick at a 45 degree angle between forward and right closes both the forward and right switches.
The application software can sense this and take appropriate action. The original allure of these devices is
that they were very cheap to manufacture (these were the original joysticks found on most home game
machines). However, as manufacturers increased production of analog joysticks, the price fell to the point
that digital joysticks failed to offer a substantial price difference. So today, you will rarely encounter such
devices in the hands of a typical user.

The game paddle is another device whose use has declined over the years. A game paddle is a single
pot in a case with a single knob (and, typically, a single push button). Apple used to ship a pair of game
paddles with every Apple II they sold. As a result, games that used game paddles were still quite popular
when IBM released the PC in 1981. Indeed, a couple manufacturers produced game paddles for the PC
when it was first introduced. However, once again the cost of manufacturing analog joysticks fell to the
point that paddles couldn’t compete. Although paddles are the appropriate input device for many games,
joysticks could do just about everything a game paddle could, and more. So the use of game paddles
quickly died out. There is one thing you can do with game paddles that you cannot do with joysticks – you

1. In fact, the PC’s game adapter design was obviously stolen directly from the Apple II.

Thi d t t d ith F M k 4 0 2

Chapter 24

Page 1256

can place four of them on a system and produce a four player game. However, this (obviously) isn’t
important to most game designers who generally design their games for only one player.

Rudder pedals are really nothing more than a specially designed game paddle designed so you can
activate them with your feet. Many flight simulator games take advantage of this input device to provide a
more realistic experience. Generally, you would use rudder pedals in addition to a joystick device.

A joystick contains two pots connected with a stick. Moving the joystick along the x-axis actuates one
of the pots, moving the joystick along the y-axis actuates the other pot. By reading both pots, you can
roughly determine the absolute position of the pot within its working range.

An RC simulator is really nothing more than a box containing two joysticks. The yoke and steering
wheel devices are essentially the same device, sold specifically for flight simulators or automotive games

2

.
The steering wheel is connected to a pot that corresponds to the x-axis on the joystick. Pulling back (or
pushing forward) on the wheel activates a second pot that corresponds to the y-axis on the joystick.

Certain joystick devices, generically known as

flight sticks

, contain three pots. Two pots are con-
nected in a standard joystick fashion, the third is connected to a knob which many games use for the throt-
tle control. Other joysticks, like the Thrustmaster

 or CH Products’ FlightStick Pro, include extra switches
including a special “cooley switch” that provide additional inputs to the game. The cooley switch is, essen-
tially, a digital pot mounted on the top of a joystick. Users can select one of four positions on the cooley
switch using their thumb. Most flight simulator programs compatible with such devices use the cooley
switch to select different views from the aircraft.

2. In fact, many such devices are switchable between the two.

0 Maximum
Reading

A game paddle or set of rudder pedals
generally provide a single number in the
range zero through some system dependent
maximum value.

Game Paddle or Rudder Pedal Game Input Device

Y

X

A joystick uses two independent pots
to provide an (X,Y) input value. Hori-
zontal movements on the joystick af-
fect the x-axis pot independently of
the y-axis pot. Likewise, vertical move-
ments affect the y-axis pot independ-
ent of the x-axis pot. By reading both
pots you can determine the position
of the joystick in the (X,Y) coordinate
system.

Joystick Game Input Device

The Game Adapter

Page 1257

24.2 The Game Adapter Hardware

The game adapter hardware is simplicity itself. There is a single input port and a single output port.
The input port bit layout is

The four switches come in on the H.O. four bits of I/O port 201h. If the user is currently pressing a
button, the corresponding bit position will contain a zero. If the button is up, the corresponding bit will
contain a one.

The pot inputs might seem strange at first glance. After all, how can we represent one of a large num-
ber of potential pot positions (say, at least 256) with a single bit? Obviously we can’t. However, the input
bit on this port does not return any type of numeric value specifying the pot position. Instead, each of the

The cooley switch (shown here on a device layout similar
to the CH Products' FlightStick Pro) is a thumb actuated
digitial joystick. You can move the switch up, down, left
or right, activating individual switches inside the game
input device.

Cooley Switch (found on CH Products and Thrustmaster Joysticks)

Pot #0 input
Pot #1 input
Pot #2 input
Pot #3 input
Switch #0 input
Switch #1 in put
Switch #2 input
Switch #3 input

Game Adapter Input Port

7 6 5 4 3 2 1 0
I/O Address 201h

Chapter 24

Page 1258

four pot bits is connected to an input of a resistive sensitive 558 quad timer chip. When you trigger the
timer chip, it produces an output pulse whose duration is proportional to the resistive input to the timer.
The output of this timer chip appears as the input bit for a given pot. The schematic for this circuit is

Normally, the pot input bits contain zero. When you trigger the timer chip, the pot input lines go high
for some period of time determined by the current resistance of the potentiometer. By measuring how
long this bit stays set, you can get a rough estimate of the resistance. To trigger the pots, simply write any
value to I/O port 201h. The actual value you write is unimportant. The following timing diagram shows
how the signal varies on each pot’s input bit:

558
Timer

Trigger (Write to I/O Address 201h)

D0
D1
D2
D3

External Potentiometers

Joystick Schematic

L.O. Four Bits
on Input Port 201h

Trigger
Occurs
Here

Input on D0..D3 goes high for some
period of time depending on the pot
setting.

0

1

Analog Input Timing Signal

The Game Adapter

Page 1259

The only remaining question is “how do we determine the length of the pulse?” The following short loop
demonstrates one way to determine the width of this timing pulse:

mov cx, -1 ;We’re going to count backwards
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
test al, 1 ;Check pot #0 input.
loopne CntLp ;Repeat while high.
neg cx ;Convert CX to a positive value.

When this loop finish execution, the

cx

 register will contain the number of passes made through this loop
while the timer output signal was a logic one. The larger the value in

cx

, the longer the pulse and, there-
fore, the greater the resistance of pot #0.

There are several minor problems with this code. First of all, the code will obviously produce differ-
ent results on different machines running at different clock rates. For example, a 150 MHz Pentium system
will execute this code much faster than a 5 MHz 8088 system

3

. The second problem is that different joy-
sticks and different game adapter cards produce radically different timing results. Even on the same system
with the same adapter card and joystick, you may not always get consistent readings on different days. It
turns out that the 558 is somewhat temperature sensitive and will produce slightly different readings as the
temperature changes.

Unfortunately, there is no way to design a loop like the above so that it returns consistent readings
across a wide variety of machines, potentiometers, and game adapter cards. Therefore, you have to write
your application software so that it is insensitive to wide variances in the input values from the analog
inputs. Fortunately, this is very easy to do, but more on that later.

24.3 Using BIOS’ Game I/O Functions

The BIOS provides two functions for reading game adapter inputs. Both are subfunctions of the
int 15h handler.

To read the switches, load ah with 84h and dx with zero then execute an int 15h instruction. On
return, al will contain the switch readings in the H.O. four bits (see the diagram in the previous section).
This function is roughly equivalent to reading port 201h directly.

To read the analog inputs, load ah with 84h and dx with one then execute an int 15h instruction. On
return, AX, BX, CX, and DX will contain the values for pots zero, one, two, and three, respectively. In prac-
tice, this call should return values in the range 0-400h, though you cannot count on this for reasons
described in the previous section.

Very few programs use the BIOS joystick support. It’s easier to read the switches directly and reading
the pots is not that much more work that calling the BIOS routine. The BIOS code is

very

 slow. Most BIO-
Ses read the four pots sequentially, taking up to four times longer than a program that reads all four pots
concurrently (see the next section). Because reading the pots can take several hundred microseconds up
to several milliseconds, most programmers writing high performance games do not use the BIOS calls,
they write their own high performance routines instead.

This is a real shame. By writing drivers specific to the PC’s original game adapter design, these devel-
opers force the user to purchase and use a standard game adapter card and game input device. Were the
game to make the BIOS call, third party developers could create different and unique game controllers and
then simply supply a driver that replaces the int 15h routine and provides the same programming inter-
face. For example, Genovation made a device that lets you plug a joystick into the parallel port of a PC.

3. Actually, the speed difference is not as great as you would first think. Joystick adapter cards almost always interface to the computer system via
the ISA bus. The ISA bus runs at only 8 Mhz and requires four clock cycles per data transfer (i.e., 500 ns to read the joystick input port). This is equiv-
alent to a small number of wait states on a slow machine and a gigantic number of wait states on a fast machine. Tests run on a 5 MHz 8088 system
vs. a 50 MHz 486DX system produces only a 2:1 to 3:1 speed difference between the two machines even though the 486 machine was over 50 times
faster for most other computations.

Chapter 24

Page 1260

Colorado Spectrum created a similar device that lets you plug a joystick into the serial port. Both devices
would let you use a joystick on machines that do not (and, perhaps, cannot) have a game adapter
installed. However, games that access the joystick hardware directly will not be compatible with such
devices. However, had the game designer made the int 15h call, their software would have been compati-
ble since both Colorado Spectrum and Genovation supply int 15h TSRs to reroute joystick calls to use their
devices.

To help overcome game designer’s aversion to using the int 15h calls, this text will present a high per-
formance version of the BIOS’ joystick code a little later in this chapter. Developers who adopt this

Stan-
dard Game Device Interface

 will create software that will be compatible with any other device that
supports the SGDI standard. For more details, see “The Standard Game Device Interface (SGDI)” on
page 1262.

24.4 Writing Your Own Game I/O Routines

Consider again the code that returns some value for a given pot setting:

mov cx, -1 ;We’re going to count backwards
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
test al, 1 ;Check pot #0 input.
loopne CntLp ;Repeat while high.
neg cx ;Convert CX to a positive value.

As mentioned earlier, the big problem with this code is that you are going to get wildly different ranges of
values from different game adapter cards, input devices, and computer systems. Clearly you cannot count
on the code above always producing a value in the range 0..180h under these conditions. Your software
will need to dynamically adjust the values it uses depending on the system parameters.

You’ve probably played a game on the PC where the software asks you to

calibrate

 the joystick
before use. Calibration generally consists of moving the joystick handle to one corner (e.g., the upper-left
corner), pressing a button or key and them moving the handle to the opposite corner (e.g., lower-right)
and pressing a button again. Some systems even want you to move the joystick to the center position and
press a button as well.

Software that does this is reading the

minimum, maximum,

 and

centered

 values from the joystick.
Given at least the minimum and maximum values, you can easily scale any reading to any range you want.
By reading the centered value as well, you can get slightly better results, especially on really inexpensive
(cheap) joysticks. This process of scaling a reading to a certain range is known as

normalization

. By read-
ing the minimum and maximum values from the user and normalizing every reading thereafter, you can
write your programs assuming that the values always fall within a certain range, for example, 0..255. To
normalize a reading is very easy, you simply use the following formula:

The

MaximumReading

 and

MinimumReading

 values are the minimum and maximum values
read from the user at the beginning of your application.

CurrentReading

 is the value just read from the
game adapter.

NormalValue

 is the upper bounds on the range to which you want to normalize the
reading (e.g., 255), the lower bound is always zero

4

.

4. If you want a different lower bound, just add whatever value you want fro the lowest value to the result. You will also need to subtract this lower
bound from the NormalValue variable in the above equation.

CurrentReading MinimumReading–()
MaximumReading MinimumReading–()

--- NormalValue×

The Game Adapter

Page 1261

To get better results, especially when using a joystick, you should obtain three readings during the
calibration phase for each pot – a minimum value, a maximum value, and a centered value. To normalize
a reading when you’ve got these three values, you would use one of the following formulae:

If the current reading is in the range minimum..center, use this formula:

If the current reading is in the range center..maximum, use this formula:

A large number of games on the market today jump through all kinds of hoops trying to coerce joy-
stick readings into a reasonable range. It is surprising how few of them use that simple formula above.
Some game designers might argue that the formulae above are overly complex and they are writing high
performance games. This is nonsense. It takes two orders of magnitude more time to wait for the joystick
to time out than it does to compute the above equations. So use them and make your programs easier to
write.

Although normalizing your pot readings takes so little time it is always worthwhile, reading the ana-
log inputs is a very expensive operation in terms of CPU cycles. Since the timer circuit produces relatively
fixed time delays for a given resistance, you will waste even more CPU cycles on a fast machine than you
do on a slow machine (although reading the pot takes about the same amount of

real

 time on any
machine). One sure fire way to waste a lot of time is to read several pots one at a time; for example, when
reading pots zero and one to get a joystick reading, read pot zero first and then read pot one afterwards. It
turns out that you can easily read both pots in parallel. By doing so, you can speed up reading the joystick
by a factor of two. Consider the following code:

mov cx, 1000h ;Max times through loop
mov si, 0 ;We’ll put readings in SI and
mov di, si ; di.
mov ax, si ;Set AH to zero.
mov dx, 201h ;Point at joystick port.
out dx, al ;Trigger the timer chip.

CntLp: in al, dx ;Read joystick port.
and al, 11b ;Strip unwanted bits.
jz Done
shr ax, 1 ;Put pot 0 value into carry.
adc si, 0 ;Bump pot 0 value if still active.
add di, ax ;Bump pot 1 value if pot 1 active.
loop CntLp ;Repeat while high.
and si, 0FFFh ;If time-out, force the register(s)
and di, 0FFFh ; containing 1000h to zero.

Done:

This code reads both pot zero and pot one at the same time. It works by looping while either pot is
active

5

. Each time through the loop, this code adds the pots’ bit values to separate register that accumula-
tor the result. When this loop terminates,

si

 and

di

 contain the readings for both pots zero and one.

Although this particular loop contains more instructions than the previous loop, it still takes the same
amount of time to execute. Remember, the output pulses on the 558 timer determine how long this code
takes to execute, the number of instructions in the loop contribute very little to the execution time. How-
ever, the time this loop takes to execute one iteration of the loop does effect the

resolution

 of this joystick
read routine. The faster the loop executes, the more iterations the loop will run during the same timing
period and the finer will be the measurement. Generally, though, the resolution of the above code is much
greater than the accuracy of the electronics and game input device, so this isn’t much of a concern.

5. This code provides a time-out feature in the event there is no game adapter installed. In such an event this code forces the readings to zero.

Current Center–()
Center Minimum–() 2×

--- NormalValue×

Current Center–()
Maximum Center–() 2×

-- NormalValue
NormalValue

2
------------------------------------+×

Chapter 24

Page 1262

The code above demonstrates how to read two pots. It is very easy to extend this code to read three
or four pots. An example of such a routine appears in the section on the SGDI device driver for the stan-
dard game adapter card.

The other game device input, the switches, would seem to be simple in comparison to the potentiom-
eter inputs. As usual, things are not as easy as they would seem at first glance. The switch inputs have
some problems of their own.

The first issue is keybounce. The switches on a typical joystick are probably an order of magnitude
worse than the keys on the cheapest keyboard. Keybounce, and lots of it, is a fact you’re going to have to
deal with when reading joystick switches. In general, you shouldn’t read the joystick switches more often
than once every 10 msec. Many games read the switches on the 55 msec timer interrupt. For example, sup-
pose your timer interrupt reads the switches and stores the result in a memory variable. The main applica-
tion, when wanting to fire a weapon, checks the variable. If it’s set, the main program clears the variable
and fires the weapon. Fifty-five milliseconds later, the timer sets the button variable again and the main
program will fire again the next time it checks the variable. Such a scheme will totally eliminate the prob-
lems with keybounce.

The technique above solves another problem with the switches: keeping track of when the button
first goes down. Remember, when you read the switches, the bits that come back tell you that the switch is
currently down. It does not tell you that the button was just pressed. You have to keep track of this your-
self. One easy way to detect when a user first presses a button is to save the previous switch reading and
compare it against the current reading. If they are different and the current reading indicates a switch
depression, then this is a new switch down.

24.5 The Standard Game Device Interface (SGDI)

The Standard Game Device Interface (SGDI) is a specification for an int 15h service that lets you read
an arbitrary number of pots and joysticks. Writing SGDI compliant applications is easy and helps make
your software compatible with any game device which provides SGDI compliance. By writing your appli-
cations to use the SGDI API you can ensure that your applications will work with future devices that pro-
vide extended SGDI capability. To understand the power and extensibility of the SGDI, you need to take a
look at the

application programmer’s interface

 (API) for the SGDI.

24.5.1 Application Programmer’s Interface (API)

The SGDI interface extends the PC’s joystick BIOS int 15h API. You make SGDI calls by loading the
80x86

ah

 register with 84h and

dx

 with an appropriate SGDI function code and then executing an int 15h
instruction. The SGDI interface simply extends the functionality of the built-in BIOS routines. Note that
and program that calls the standard BIOS joystick routines will work with an SGDI driver. The following
table lists each of the SGDI functions:

Table 87: SGDI Functions and API (int 15h, ah=84h)

DH Inputs Outputs Description

00

dl

 = 0

al

- Switch
readings

Read4Sw. This is the standard BIOS subfunction zero call. This reads the
status of the first four switches and returns their values in the upper four
bits of the

al

 register.

00

dl

 = 1

ax

- pot 0

bx

- pot 1

cx

- pot 2

dx

- pot 3

Read4Pots. Standard BIOS subfunction one call. Reads all four pots (con-
currently) and returns their raw values in

ax

,

bx

,

cx

, and

dx

 as per BIOS
specifications.

The Game Adapter

Page 1263

24.5.2 Read4Sw

Inputs:

ah

= 84h,

dx

 = 0

This is the standard BIOS read switches call. It returns the status switches zero through three on the
joystick in the upper four bits of the

al

 register. Bit four corresponds to switch zero, bit five to switch one,
bit six to switch two, and bit seven to switch three. One zero in each bit position denotes a depressed
switch, a one bit corresponds to a switch in the up position. This call is provided for compatibility with the
existing BIOS joystick routines. To read the joystick switches you should use the

Read16Sw

call
described later in this document.

24.5.3 Read4Pots:

Inputs:

ah

= 84h,

dx

 = 1

This is the standard BIOS read pots call. It reads the four pots on the standard game adapter card and
returns their readings in the

ax

 (x axis/pot 0),

bx

 (y axis/pot 1),

cx

 (pot 2), and

dx

 (pot 3) registers.
These are

raw, uncalibrated

, pot readings whose values will differ from machine to machine and vary
depending upon the game I/O card in use. This call is provided for compatibility with the existing BIOS

01

dl

 = pot #

al

= pot reading ReadPot. This function reads a pot and returns a

normalized

 reading in
the range 0..255.

02

dl

 = 0

al

 = pot mask

al

 = pot 0

ah

 = pot 1

dl

 = pot 2

dh

 = pot 3

Read4. This routine reads the four pots on the standard game adapter card
just like the Read4Pots function above. However, this routine normalizes
the four values to the range 0..255 and returns those values in

al

,

ah

,

dl

,
and

dh

. On entry, the al register contains a “pot mask” that you can use to
select which of the four pots this routine actually reads.

03 dl = pot #
al = minimum
bx= maximum
cx= centered

Calibrate. This function calibrates the pots for those calls that return nor-
malized values. You must calibrate the pots before calling any such pot
functions (ReadPot and Read4 above). The input values must be

raw

 pot
readings obtained by Read4Pots or other function that returns raw values.

04

dl

 = pot #

al

 = 0 if not cal-
ibrated, 1 if cali-
brated.

TestPotCalibrate. Checks to see if the specified pot has already been cali-
brated. Returns an appropriate value in al denoting the calibration status
for the specified pot. See the note above about the need for calibration.

05

dl

 = pot #

ax

 = raw value ReadRaw. Reads a raw value from the specified pot. You can use this call
to get the raw values required by the calibrate routine, above.

08

dl

= switch #

ax

 = switch
value

ReadSw. Read the specified switch and returns zero (switch up) or one
(switch down) in the

ax

 register.

09

ax

 = switch val-
ues

Read16Sw. This call lets an application read up to 16 switches on a game
device at a time. Bit zero of

ax

 corresponds to switch zero, bit 15 of ax
corresponds to switch fifteen.

80h Remove. This function removes the driver from memory. Application pro-
grams generally won’t make this call.

81h TestPresence. This routine returns zero in the ax register if an SGDI driver
is present in memory. It returns ax’s value unchanged otherwise (in par-
ticular, ah will still contain 84h).

Table 87: SGDI Functions and API (int 15h, ah=84h)

DH Inputs Outputs Description

Chapter 24

Page 1264

joystick routines. To read the pots you should use the ReadPot, Read4, or ReadRaw routines described
in the next several sections.

24.5.4 ReadPot

Inputs: ah=84h, dh=1, dl=Pot number.

This reads the specified pot and returns a normalized pot value in the range 0..255 in the al register.
This routine also sets ah to zero. Although the SGDI standard provides for up to 255 different pots, most
adapters only support pots zero, one, two, and three. If you attempt to read any nonsupported pot this
function returns zero in ax. Since the values are normalized, this call returns comparable values for a
given game control setting regardless of machine, clock frequency, or game I/O card in use. For example,
a reading of 128 corresponds (roughly) to the center setting on almost any machine. To properly produce
normalized results, you must calibrate a given pot before making this call. See the CalibratePot routine
for more details.

24.5.5 Read4:

Inputs: ah = 84h, al = pot mask, dx=0200h

This routine reads the four pots on the game adapter card, just like the BIOS call (Read4Pots).
However, it returns normalized values in al (x axis/pot 0), ah (y axis/pot 1), dl (pot 2), and dh (pot 3).
Since this routine returns normalized values between zero and 255, you must calibrate the pots before call-
ing this code. The al register contains a “pot mask” value. The L.O. four bits of al determine if this routine
will actually read each pot. If bit zero, one, two, or three is one, then this function will read the corre-
sponding pot; if the bits are zero, this routine will not read the corresponding pot and will return zero in
the corresponding register.

24.5.6 CalibratePot

Inputs: ah=84h, dh=3, dl=pot #, al=minimum value, bx=maximum value, cx=centered value.

Before you attempt to read a pot with the ReadPot or Read4 routines, you need to calibrate that
pot. If you read a pot without first calibrating it, the SGDI driver will return only zero for that pot reading.
To calibrate a pot you will need to read raw values for the pot in a minimum position, maximum position,
and a centered position6. These must be raw pot readings. Use readings obtained by the Read4Pots rou-
tine. In theory, you need only calibrate a pot once after loading the SGDI driver. However, temperature
fluctuations and analog circuitry drift may decalibrate a pot after considerable use. Therefore, you should
recalibrate the pots you intend to read each time the user runs your application. Furthermore, you should
give the user the option of recalibrating the pots at any time within your program.

24.5.7 TestPotCalibration

Inputs: ah= 84h, dh=4 , dl = pot #.

This routine returns zero or one in ax denoting not calibrated or calibrated, respectively. You can
use the call to see if the pots you intend to use have already been calibrated and you can skip the calibra-
tion phase. Please, however, note the comments about drift in the previous paragraph.

6. Many programmers compute the centered value as the arithmetic mean of the minimum and maximum values.

The Game Adapter

Page 1265

24.5.8 ReadRaw

Inputs: ah = 84h, dh = 5, dl = pot #

Reads the specified pot and returns a raw (not calibrated) value in ax. You can use this routine to
obtain minimum, centered, and maximum values for use when calling the calibrate routine.

24.5.9 ReadSwitch

Inputs: ah= 84h, dh = 8, dl = switch #

This routine reads the specified switch and returns zero in ax if the switch is not depressed. It returns
one if the switch is depressed. Note that this value is opposite the bit settings the Read4Sw function
returns.

If you attempt to read a switch number for an input that is not available on the current device, the
SGDI driver will return zero (switch up). Standard game devices only support switches zero through three
and most joysticks only provide two switches. Therefore, unless you are willing to tie your application to a
specific device, you shouldn’t use any switches other than zero or one.

24.5.10 Read16Sw

Inputs: ah = 84h, dh = 9

This SGDI routine reads up to sixteen switches with a single call. It returns a bit vector in the ax reg-
ister with bit 0 corresponding to switch zero, bit one corresponding to switch one, etc. Ones denote switch
depressed and zeros denote switches not depressed. Since the standard game adapter only supports four
switches, only bits zero through three of al contain meaningful data (for those devices). All other bits will
always contain zero. SGDI drivers for the CH Product’s Flightstick Pro and Thrustmaster joysticks will
return bits for the entire set of switches available on those devices.

24.5.11 Remove

Inputs: ah= 84h, dh= 80h

This call will attempt to remove the SGDI driver from memory. Generally, only the SGDI.EXE code
itself would invoke this routine. You should use the TestPresence routine (described next) to see if the
driver was actually removed from memory by this call.

24.5.12 TestPresence

Inputs: ah=84h, dh=81h

If an SGDI driver is present in memory, this routine return ax=0 and a pointer to an identification
string in es:bx. If an SGDI driver is not present, this call will return ax unchanged.

24.5.13 An SGDI Driver for the Standard Game Adapter Card

If you write your program to make SGDI calls, you will discover that the TestPresence call will
probably return “not present” when your program searches for a resident SGDI driver in memory. This is
because few manufacturers provide SGDI drivers at this point and even fewer standard game adapter

Chapter 24

Page 1266

companies ship any software at all with their products, much less an SGDI driver. Gee, what kind of stan-
dard is this if no one uses it? Well, the purpose of this section is to rectify that problem.

The assembly code that appears at the end of this section provides a fully functional, public domain,
SGDI driver for the standard game adapter card (the next section present an SGDI driver for the CH Prod-
ucts’ Flightstick Pro). This allows you to write your application making only SGDI calls. By supplying the
SGDI TSR with your product, your customers can use your software with all standard joysticks. Later, if
they purchase a specialized device with its own SGDI driver, your software will automatically work with
that driver with no changes to your software7.

If you do not like the idea of having a user run a TSR before your application, you can always include
the following code within your program’s code space and activate it if the SGDI TestPresence call
determines that no other SGDI driver is present in memory when you start your program.

Here’s the complete code for the standard game adapter SGDI driver:

.286
page 58, 132
name SGDI
title SGDI Driver for Standard Game Adapter Card
subttl This Program is Public Domain Material.

; SGDI.EXE
;
; Usage:
; SDGI
;
; This program loads a TSR which patches INT 15 so arbitrary game programs
; can read the joystick in a portable fashion.
;
;
; We need to load cseg in memory before any other segments!

cseg segment para public ‘code’
cseg ends

; Initialization code, which we do not need except upon initial load,
; goes in the following segment:

Initialize segment para public ‘INIT’
Initialize ends

; UCR Standard Library routines which get dumped later on.

.xlist
include stdlib.a
includelib stdlib.lib
.list

sseg segment para stack ‘stack’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

wp equ <word ptr>
byp equ <byte ptr>

Int15Vect dword 0

PSP word ?

7. Of course, your software may not take advantage of extra features, like additional switches and pots, but at least your software will support the
standard set of features on that device.

The Game Adapter

Page 1267

; Port addresses for a typical joystick card:

JoyPort equ 201h
JoyTrigger equ 201h

; Data structure to hold information about each pot.
; (mainly for calibration and normalization purposes).

Pot struc
PotMask byte 0 ;Pot mask for hardware.
DidCal byte 0 ;Is this pot calibrated?
min word 5000 ;Minimum pot value
max word 0 ;Max pot value
center word 0 ;Pot value in the middle
Pot ends

; Variables for each of the pots. Must initialize the masks so they
; mask out all the bits except the incomming bit for each pot.

Pot0 Pot <1>
Pot1 Pot <2>
Pot2 Pot <4>
Pot3 Pot <8>

; The IDstring address gets passed back to the caller on a testpresence
; call. The four bytes before the IDstring must contain the serial number
; and current driver number.

SerialNumber byte 0,0,0
IDNumber byte 0
IDString byte “Standard SGDI Driver”,0

byte “Public Domain Driver Written by Randall L. Hyde”,0

;==
;
; ReadPots- AH contains a bit mask to determine which pots we should read.
; Bit 0 is one if we should read pot 0, bit 1 is one if we should
; read pot 1, bit 2 is one if we should read pot 2, bit 3 is one
; if we should read pot 3. All other bits will be zero.
;
; This code returns the pot values in SI, BX, BP, and DI for Pot 0, 1,
; 2, & 3.
;

ReadPots proc near
sub bp, bp
mov si, bp
mov di, bp
mov bx, bp

; Wait for any previous signals to finish up before trying to read this
; guy. It is possible that the last pot we read was very short. However,
; the trigger signal starts timers running for all four pots. This code
; terminates as soon as the current pot times out. If the user immediately
; reads another pot, it is quite possible that the new pot’s timer has
; not yet expired from the previous read. The following loop makes sure we
; aren’t measuring the time from the previous read.

mov dx, JoyPort
mov cx, 400h

Wait4Clean: in al, dx
and al, 0Fh
loopnz Wait4Clean

; Okay, read the pots. The following code triggers the 558 timer chip
; and then sits in a loop until all four pot bits (masked with the pot mask
; in AL) become zero. Each time through this loop that one or more of these
; bits contain zero, this loop increments the corresponding register(s).

mov dx, JoyTrigger

Chapter 24

Page 1268

out dx, al ;Trigger pots
mov dx, JoyPort
mov cx, 1000h ;Don’t let this go on forever.

PotReadLoop: in al, dx
and al, ah
jz PotReadDone
shr al, 1
adc si, 0 ;Increment SI if pot 0 still active.
shr al, 1
adc bx, 0 ;Increment BX if pot 1 still active.
shr al, 1
adc bp, 0 ;Increment BP if pot 2 still active.
shr al, 1
adc di, 0 ;Increment DI if pot 3 still active.
loop PotReadLoop ;Stop, eventually, if funny hardware.

and si, 0FFFh ;If we drop through to this point,
and bx, 0FFFh ; one or more pots timed out (usually
and bp, 0FFFh ; because they are not connected).
and di, 0FFFh ; The reg contains 4000h, set it to 0.

PotReadDone: ret
ReadPots endp

;--
;
; Normalize- BX contains a pointer to a pot structure, AX contains
; a pot value. Normalize that value according to the
; calibrated pot.
;
; Note: DS must point at cseg before calling this routine.

assume ds:cseg
Normalize proc near

push cx

; Sanity check to make sure the calibration process went okay.

cmp [bx].Pot.DidCal, 0 ;Is this pot calibrated?
je BadNorm ;If not, quit.

mov dx, [bx].Pot.Center ;Do a sanity check on the
cmp dx, [bx].Pot.Min ; min, center, and max
jbe BadNorm ; values to make sure
cmp dx, [bx].Pot.Max ; min < center < max.
jae BadNorm

; Clip the value if it is out of range.

cmp ax, [bx].Pot.Min ;If the value is less than
ja MinOkay ; the minimum value, set it
mov ax, [bx].Pot.Min ; to the minimum value.

MinOkay:

cmp ax, [bx].Pot.Max ;If the value is greater than
jb MaxOkay ; the maximum value, set it
mov ax, [bx].Pot.Max ; to the maximum value.

MaxOkay:

; Scale this guy around the center:

cmp ax, [bx].Pot.Center ;See if less than or greater
jb Lower128 ; than centered value.

; Okay, current reading is greater than the centered value, scale the reading
; into the range 128..255 here:

sub ax, [bx].Pot.Center
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh

The Game Adapter

Page 1269

shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Max
sub cx, [bx].Pot.Center
jz BadNorm ;Prevent division by zero.
div cx ;Compute normalized value.
add ax, 128 ;Scale to range 128..255.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

; If the reading is below the centered value, scale it into the range
; 0..127 here:

Lower128: sub ax, [bx].Pot.Min
mov dl, ah
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Center
sub cx, [bx].Pot.Min
jz BadNorm
div cx
cmp ah, 0
je NormDone
mov ax, 0ffh
jmp NormDone

; If something went wrong, return zero as the normalized value.

BadNorm: sub ax, ax

NormDone: pop cx
ret

Normalize endp
assume ds:nothing

;==
; INT 15h handler functions.
;==
;
; Although these are defined as near procs, they are not really procedures.
; The MyInt15 code jumps to each of these with BX, a far return address, and
; the flags sitting on the stack. Each of these routines must handle the
; stack appropriately.
;
;--
; BIOS- Handles the two BIOS calls, DL=0 to read the switches, DL=1 to
; read the pots. For the BIOS routines, we’ll ignore the cooley
; switch (the hat) and simply read the other four switches.

BIOS proc near
cmp dl, 1 ;See if switch or pot routine.
jb Read4Sw
je ReadBIOSPots

; If not a valid BIOS call, jump to the original INT 15 handler and
; let it take care of this call.

pop bx
jmp cs:Int15Vect ;Let someone else handle it!

; BIOS read switches function.

Read4Sw: push dx
mov dx, JoyPort
in al, dx
and al, 0F0h ;Return only switch values.
pop dx
pop bx
iret

Chapter 24

Page 1270

; BIOS read pots function.

ReadBIOSPots: pop bx ;Return a value in BX!
push si
push di
push bp
mov ah, 0Fh ;Read all four pots.
call ReadPots
mov ax, si
mov cx, bp ;BX already contains pot 1 reading.
mov dx, di
pop bp
pop di
pop si
iret

BIOS endp

;--
;
; ReadPot- On entry, DL contains a pot number to read.
; Read and normalize that pot and return the result in AL.

assume ds:cseg
ReadPot proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

; If dl = 0, read and normalize the value for pot 0, if not, try some
; other pot.

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask ;Get bit for this pot.
call ReadPots ;Read pot 0.
lea bx, Pot0 ;Pointer to pot data.
mov ax, si ;Get pot 0 reading.
call Normalize ;Normalize to 0..FFh.
jmp GotPot ;Return to caller.

; Test for DL=1 here (read and normalize pot 1).

Try1: cmp dl, 1
jne Try2
mov ah, Pot1.PotMask
call ReadPots
mov ax, bx
lea bx, Pot1
call Normalize
jmp GotPot

; Test for DL=2 here (read and normalize pot 2).

Try2: cmp dl, 2
jne Try3
mov ah, Pot2.PotMask
call ReadPots
lea bx, Pot2
mov ax, bp
call Normalize
jmp GotPot

; Test for DL=3 here (read and normalize pot 3).

Try3: cmp dl, 3
jne BadPot

The Game Adapter

Page 1271

mov ah, Pot3.PotMask
call ReadPots
lea bx, Pot3
mov ax, di
call Normalize
jmp GotPot

; Bad value in DL if we drop to this point. The standard game card
; only supports four pots.

BadPot: sub ax, ax ;Pot not available, return zero.
GotPot: pop bp

pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadPot endp
assume ds:nothing

;--
;
; ReadRaw- On entry, DL contains a pot number to read.
; Read that pot and return the unnormalized result in AX.

assume ds:cseg
ReadRaw proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

; This code is almost identical to the ReadPot code. The only difference
; is that we don’t bother normalizing the result and (of course) we return
; the value in AX rather than AL.

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
mov ax, si
jmp GotPot

Try1: cmp dl, 1
jne Try2
mov ah, Pot1.PotMask
call ReadPots
mov ax, bx
jmp GotPot

Try2: cmp dl, 2
jne Try3
mov ah, Pot2.PotMask
call ReadPots
mov ax, bp
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
mov ax, di
jmp GotPot

BadPot: sub ax, ax ;Pot not available, return zero.

Chapter 24

Page 1272

GotPot: pop bp
pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadRaw endp
assume ds:nothing

;--
; Read4Pots- Reads pots zero, one, two, and three returning their
; values in AL, AH, DL, and DH.
;
; On entry, AL contains the pot mask to select which pots
; we should read (bit 0=1 for pot 0, bit 1=1 for pot 1, etc).

Read4Pots proc near
;;;;;;;;;;; push bx ;Already on stack

push ds
push cx
push si
push di
push bp

mov dx, cseg
mov ds, dx

mov ah, al
call ReadPots

push bx ;Save pot 1 reading.
mov ax, si ;Get pot 0 reading.
lea bx, Pot0 ;Point bx at pot0 vars.
call Normalize ;Normalize.
mov cl, al ;Save for later.

pop ax ;Retreive pot 1 reading.
lea bx, Pot1
call Normalize
mov ch, al ;Save normalized value.

mov ax, bp
lea bx, Pot2
call Normalize
mov dl, al ;Pot 2 value.

mov ax, di
lea bx, Pot3
call Normalize
mov dh, al ;Pot 3 value.
mov ax, cx ;Pots 0 and 1.

pop bp
pop di
pop si
pop cx
pop ds
pop bx
iret

Read4Pots endp

;--
; CalPot- Calibrate the pot specified by DL. On entry, AL contains
; the minimum pot value (it better be less than 256!), BX
; contains the maximum pot value, and CX contains the centered
; pot value.

assume ds:cseg

The Game Adapter

Page 1273

CalPot proc near
pop bx ;Retrieve maximum value
push ds
push si
mov si, cseg
mov ds, si

; Sanity check on parameters, sort them in ascending order:

mov ah, 0
cmp bx, cx ;Make sure center < max
ja GoodMax
xchg bx, cx

GoodMax: cmp ax, cx ;Make sure min < center.
jb GoodMin ; (note: may make center<max).
xchg ax, cx

GoodMin: cmp cx, bx ;Again, be sure center < max.
jb GoodCenter
xchg cx, bx

GoodCenter:

; Okay, figure out who were supposed to calibrate:

lea si, Pot0
cmp dl, 1
jb DoCal ;Branch if this is pot 0
lea si, Pot1
je DoCal ;Branch if this is pot 1
lea si, Pot2
cmp dl, 3
jb DoCal ;Branch if this is pot 2
jne CalDone ;Branch if not pot 3
lea si, Pot3

DoCal: mov [si].Pot.min, ax ;Store away the minimum,
mov [si].Pot.max, bx ; maximum, and
mov [si].Pot.center, cx ; centered values.
mov [si].Pot.DidCal, 1 ;Note we’ve cal’d this pot.

CalDone: pop si
pop ds
iret

CalPot endp
assume ds:nothing

;--
; TestCal- Just checks to see if the pot specified by DL has already
; been calibrated.

assume ds:cseg
TestCal proc near
;;;;;;;; push bx ;Already on stack

push ds
mov bx, cseg
mov ds, bx

sub ax, ax ;Assume no calibration (also zeros AH)
lea bx, Pot0 ;Get the address of the specified
cmp dl, 1 ; pot’s data structure into the
jb GetCal ; BX register.
lea bx, Pot1
je GetCal
lea bx, Pot2
cmp dl, 3
jb GetCal
jne BadCal
lea bx, Pot3

GetCal: mov al, [bx].Pot.DidCal
BadCal: pop ds

pop bx
iret

TestCal endp

Chapter 24

Page 1274

assume ds:nothing

;--
;
; ReadSw- Reads the switch whose switch number appears in DL.

ReadSw proc near
;;;;;;; push bx ;Already on stack

push cx

sub ax, ax ;Assume no such switch.
cmp dl, 3 ;Return if the switch number is
ja NotDown ; greater than three.

mov cl, dl ;Save switch to read.
add cl, 4 ;Move from position four down to zero.
mov dx, JoyPort
in al, dx ;Read the switches.
shr al, cl ;Move desired switch bit into bit 0.
xor al, 1 ;Invert so sw down=1.
and ax, 1 ;Remove other junk bits.

NotDown: pop cx
pop bx
iret

ReadSw endp

;--
;
; Read16Sw- Reads all four switches and returns their values in AX.

Read16Sw proc near
;;;;;;;; push bx ;Already on stack

mov dx, JoyPort
in al, dx
shr al, 4
xor al, 0Fh ;Invert all switches.
and ax, 0Fh ;Set other bits to zero.
pop bx
iret

Read16Sw endp

;**
;
; MyInt15- Patch for the BIOS INT 15 routine to control reading the
; joystick.

MyInt15 proc far
push bx
cmp ah, 84h ;Joystick code?
je DoJoystick

OtherInt15: pop bx
jmp cs:Int15Vect

DoJoystick: mov bh, 0
mov bl, dh
cmp bl, 80h
jae VendorCalls
cmp bx, JmpSize
jae OtherInt15
shl bx, 1
jmp wp cs:jmptable[bx]

jmptable word BIOS
word ReadPot, Read4Pots, CalPot, TestCal
word ReadRaw, OtherInt15, OtherInt15
word ReadSw, Read16Sw

JmpSize = ($-jmptable)/2

; Handle vendor specific calls here.

The Game Adapter

Page 1275

VendorCalls: je RemoveDriver
cmp bl, 81h
je TestPresence
pop bx
jmp cs:Int15Vect

; TestPresence- Returns zero in AX and a pointer to the ID string in ES:BX

TestPresence: pop bx ;Get old value off stack.
sub ax, ax
mov bx, cseg
mov es, bx
lea bx, IDString
iret

; RemoveDriver-If there are no other drivers loaded after this one in
; memory, disconnect it and remove it from memory.

RemoveDriver:
push ds
push es
push ax
push dx

mov dx, cseg
mov ds, dx

; See if we’re the last routine patched into INT 15h

mov ax, 3515h
int 21h
cmp bx, offset MyInt15
jne CantRemove
mov bx, es
cmp bx, wp seg MyInt15
jne CantRemove

mov ax, PSP ;Free the memory we’re in
mov es, ax
push es
mov ax, es:[2ch] ;First, free env block.
mov es, ax
mov ah, 49h
int 21h

pop es ;Now free program space.
mov ah, 49h
int 21h

lds dx, Int15Vect ;Restore previous int vect.
mov ax, 2515h
int 21h

CantRemove: pop dx
pop ax
pop es
pop ds
pop bx
iret

MyInt15 endp
cseg ends

Initialize segment para public ‘INIT’
assume cs:Initialize, ds:cseg

Main proc
mov ax, cseg ;Get ptr to vars segment
mov es, ax
mov es:PSP, ds ;Save PSP value away
mov ds, ax

mov ax, zzzzzzseg

Chapter 24

Page 1276

mov es, ax
mov cx, 100h
meminit2

print
byte “ Standard Game Device Interface driver”,cr,lf
byte “ PC Compatible Game Adapter Cards”,cr,lf
byte “ Written by Randall Hyde”,cr,lf
byte cr,lf
byte cr,lf
byte “‘SGDI REMOVE’ removes the driver from memory”,cr,lf
byte lf
byte 0

mov ax, 1
argv ;If no parameters, empty str.
stricmpl
byte “REMOVE”,0
jne NoRmv

mov dh, 81h ;Remove opcode.
mov ax, 84ffh
int 15h ;See if we’re already loaded.
test ax, ax ;Get a zero back?
jz Installed
print
byte “SGDI driver is not present in memory, REMOVE “
byte “command ignored.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

Installed: mov ax, 8400h
mov dh, 80h ;Remove call
int 15h
mov ax, 8400h
mov dh, 81h ;TestPresence call
int 15h
cmp ax, 0
je NotRemoved
print
byte “Successfully removed SGDI driver from memory.”
byte cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

NotRemoved: print
byte “SGDI driver is still present in memory.”,cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

; Okay, Patch INT 15 and go TSR at this point.

NoRmv:
mov ax, 3515h
int 21h
mov wp Int15Vect, bx
mov wp Int15Vect+2, es

mov dx, cseg
mov ds, dx
mov dx, offset MyInt15
mov ax, 2515h
int 21h

mov dx, cseg
mov ds, dx
mov dx, seg Initialize
sub dx, ds:psp
add dx, 2
mov ax, 3100h ;Do TSR

The Game Adapter

Page 1277

int 21h
Main endp

Initialize ends

sseg segment para stack ‘stack’
word 128 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
byte 16 dup (0)

zzzzzzseg ends
end Main

The following program makes several different types of calls to an SGDI driver. You can use this code
to test out an SGDI TSR:

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

MinVal0 word ?
MinVal1 word ?
MaxVal0 word ?
MaxVal1 word ?

; Wait4Button-Waits until the user presses and releases a button.

Wait4Button proc near
push ax
push dx
push cx

W4BLp: mov ah, 84h
mov dx, 900h ;Read the L.O. 16 buttons.
int 15h
cmp ax, 0 ;Any button down? If not,
je W4BLp ; loop until this is so.

xor cx, cx ;Debouncing delay loop.
Delay: loop Delay

W4nBLp: mov ah, 84h ;Now wait until the user releases
mov dx, 900h ; all buttons
int 15h
cmp ax, 0
jne W4nBLp

Delay2: loop Delay2

pop cx
pop dx
pop ax
ret

Wait4Button endp

Main proc

print
byte “SGDI Test Program.”,cr,lf

Chapter 24

Page 1278

byte “Written by Randall Hyde”,cr,lf,lf
byte “Press any key to continue”,cr,lf,0

getc

mov ah, 84h
mov dh, 4 ;Test presence call.
int 15h
cmp ax, 0 ;See if there
je MainLoop0
print
byte “No SGDI driver present in memory.”,cr,lf,0
jmp Quit

MainLoop0:print
byte “BIOS: “,0

; Okay, read the switches and raw pot values using the BIOS compatible calls.

mov ah, 84h
mov dx, 0 ;BIOS compat. read switches.
int 15h
puth ;Output switch values.
mov al, ‘ ‘
putc

mov ah, 84h ;BIOS compat. read pots.
mov dx, 1
int 15h
putw
mov al, ‘ ‘
putc
mov ax, bx
putw
mov al, ‘ ‘
putc
mov ax, cx
putw
mov al, ‘ ‘
putc
mov ax, dx
putw

putcr
mov ah, 1 ;Repeat until key press.
int 16h
je MainLoop0
getc

; Read the minimum and maximum values for each pot from the user so we
; can calibrate the pots.

print
byte cr,lf,lf,lf
byte “Move joystick to upper left corner and press “
byte “any button.”,cr,lf,0

call Wait4Button
mov ah, 84h
mov dx, 1 ;Read Raw Values
int 15h
mov MinVal0, ax
mov MinVal1, bx

print
byte cr,lf
byte “Move the joystick to the lower right corner “
byte “and press any button”,cr,lf,0

call Wait4Button
mov ah, 84h
mov dx, 1 ;Read Raw Values
int 15h

The Game Adapter

Page 1279

mov MaxVal0, ax
mov MaxVal1, bx

; Calibrate the pots.

mov ax, MinVal0;Will be eight bits or less.
mov bx, MaxVal0
mov cx, bx ;Compute centered value as the
add cx, ax ; average of these two (this is
shr cx, 1 ; dangerous, but usually works!)
mov ah, 84h
mov dx, 300h;Calibrate pot 0
int 15h

mov ax, MinVal1;Will be eight bits or less.
mov bx, MaxVal1
mov cx, bx ;Compute centered value as the
add cx, ax ; average of these two (this is
shr cx, 1 ; dangerous, but usually works!)
mov ah, 84h
mov dx, 301h ;Calibrate pot 1
int 15h

MainLoop1: print
byte “ReadSw: “,0

; Okay, read the switches and raw pot values using the BIOS compatible calls.

mov ah, 84h
mov dx, 800h ;Read switch zero.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 801h ;Read switch one.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 802h ;Read switch two.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 803h ;Read switch three.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 804h ;Read switch four
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 805h ;Read switch five.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 806h ;Read switch six.
int 15h
or al, ‘0’
putc

mov ah, 84h
mov dx, 807h ;Read switch seven.
int 15h ;We won’t bother with
or al, ‘0’ ; any more switches.

Chapter 24

Page 1280

putc
mov al, ‘ ‘
putc

mov ah, 84h
mov dh, 9 ;Read all 16 switches.
int 15h
putw

print
byte “ Pots: “,0
mov ax, 8403h ;Read joystick pots.
mov dx, 200h ;Read four pots.
int 15h
puth
mov al, ‘ ‘
putc
mov al, ah
puth
mov al, ‘ ‘
putc

mov ah, 84h
mov dx, 503h ;Raw read, pot 3.
int 15h
putw

putcr
mov ah, 1 ;Repeat until key press.
int 16h
je MainLoop1
getc

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

24.6 An SGDI Driver for the CH Products’ Flight Stick Pro

The CH Product’s FlightStick Pro joystick is a good example of a specialized product for which the
SGDI driver is a perfect solution. The FlightStick Pro provides three pots and five switches, the fifth switch
being a special five-position cooley switch. Although the pots on the FlightStick Pro map to three of the
analog inputs on the standard game adapter card (pots zero, one, and three), there are insufficient digital
inputs to handle the eight inputs necessary for the FlightStick Pro’s four buttons and cooley switch.

The FlightStick Pro (FSP) uses some electronic circuitry to map these eight switch positions to four
input bits. To do so, they place one restriction on the use of the FSP switches – you can only press one of
them at a time. If you hold down two or more switches at the same time, the FSP hardware selects one of
the switches and reports that value; it ignores the other switches until you release the button. Since only
one switch can be read at a time, the FSP hardware generates a four bit value that determines the current
state of the switches. It returns these four bits as the switch values on the standard game adapter card. The
following table lists the values for each of the switches:

The Game Adapter

Page 1281

Note that the buttons look just like a single button press. The cooley switch positions contain a position
value in bits six and seven; bits four and five always contain zero when the cooley switch is active.

The SGDI driver for the FlightStick Pro is very similar to the standard game adapter card SGDI driver.
Since the FlightStick Pro only provides three pots, this code doesn’t bother trying to read pot 2 (which is
non-existent). Of course, the switches on the FlightStick Pro are quite a bit different than those on standard
joysticks, so the FSP SGDI driver maps the FPS switches to eight of the SGDI logical switches. By reading
switches zero through seven, you can test the following conditions on the FSP:

The FSP SGDI driver contains one other novel feature, it will allow the user to swap the functions of
the left and right switches on the joystick. Many games often assign important functions to the trigger and
left button since they are easiest to press (right handed players can easily press the left button with their
thumb). By typing “LEFT” on the command line, the FSP SGDI driver will swap the functions of the left
and right buttons so left handed players can easily activate this function with their thumb as well.

The following code provides the complete listing for the FSPSGDI driver. Note that you can use the
same test program from the previous section to test this driver.

.286
page 58, 132
name FSPSGDI
title FSPSGDI (CH Products Standard Game Device Interface).

; FSPSGDI.EXE

Table 88: FlightStick Pro Switch Return Values

Value (binary) Priority Switch Position

0000 Highest Up position on the cooley switch.

0100 7 Right position on the cooley switch.

1000 6 Down position on the cooley switch.

1100 5 Left position on the cooley switch.

1110 4 Trigger on the joystick.

1101 3 Leftmost button on the joystick.

1011 2 Rightmost button on the joystick.

0111 Lowest Middle button on the joystick.

1111 No buttons currently down.

Table 89: Flight Stick Pro SGDI Switch Mapping

This SGDI Switch number: Maps to this FSP Switch:

0 Trigger on joystick.

1 Left button on joystick.

2 Middle button on joystick.

3 Right button on joystick.

4 Cooley up position.

5 Cooley left position.

6 Cooley right position.

7 Cooley down position.

Chapter 24

Page 1282

;
; Usage:
; FSPSDGI {LEFT}
;
; This program loads a TSR which patches INT 15 so arbitrary game programs
; can read the CH Products FlightStick Pro joystick in a portable fashion.

wp equ <word ptr>
byp equ <byte ptr>

; We need to load cseg in memory before any other segments!

cseg segment para public ‘code’
cseg ends

; Initialization code, which we do not need except upon initial load,
; goes in the following segment:

Initialize segment para public ‘INIT’
Initialize ends

; UCR Standard Library routines which get dumped later on.

.xlist
include stdlib.a
includelib stdlib.lib
.list

sseg segment para stack ‘stack’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

Int15Vect dword 0

PSP word ?

; Port addresses for a typical joystick card:

JoyPort equ 201h
JoyTrigger equ 201h

CurrentReading word 0

Pot struc
PotMask byte 0 ;Pot mask for hardware.
DidCal byte 0 ;Is this pot calibrated?
min word 5000 ;Minimum pot value
max word 0 ;Max pot value
center word 0 ;Pot value in the middle
Pot ends

Pot0 Pot <1>
Pot1 Pot <2>
Pot3 Pot <8>

; SwapButtons-0 if we should use normal flightstick pro buttons,
; 1 if we should swap the left and right buttons.

SwapButtons byte 0

; SwBits- the four bit input value from the Flightstick Pro selects one

The Game Adapter

Page 1283

; of the following bit patterns for a given switch position.

SwBits byte 10h ;Sw4
byte 0 ;NA
byte 0 ;NA
byte 0 ;NA
byte 40h ;Sw6
byte 0 ;NA
byte 0 ;NA
byte 4 ;Sw 2

byte 80h ;Sw 7
byte 0 ;NA
byte 0 ;NA
byte 8 ;Sw 3
byte 20h ;Sw 5
byte 2 ;Sw 1
byte 1 ;Sw 0
byte 0 ;NA

SwBitsL byte 10h ;Sw4
byte 0 ;NA
byte 0 ;NA
byte 0 ;NA
byte 40h ;Sw6
byte 0 ;NA
byte 0 ;NA
byte 4 ;Sw 2

byte 80h ;Sw 7
byte 0 ;NA
byte 0 ;NA
byte 2 ;Sw 3
byte 20h ;Sw 5
byte 8 ;Sw 1
byte 1 ;Sw 0
byte 0 ;NA

; The IDstring address gets passed back to the caller on a testpresence
; call. The four bytes before the IDstring must contain the serial number
; and current driver number.

SerialNumber byte 0,0,0
IDNumber byte 0
IDString byte “CH Products:Flightstick Pro”,0

byte “Written by Randall Hyde”,0

;==
;
; ReadPots- AH contains a bit mask to determine which pots we should read.
; Bit 0 is one if we should read pot 0, bit 1 is one if we should
; read pot 1, bit 3 is one if we should read pot 3. All other bits
; will be zero.
;
; This code returns the pot values in SI, BX, BP, and DI for Pot 0, 1,
; 2, & 3.
;

ReadPots proc near
sub bp, bp
mov si, bp
mov di, bp
mov bx, bp

; Wait for pots to finish any past junk:

mov dx, JoyPort
out dx, al ;Trigger pots
mov cx, 400h

Wait4Pots: in al, dx
and al, 0Fh

Chapter 24

Page 1284

loopnz Wait4Pots

; Okay, read the pots:

mov dx, JoyTrigger
out dx, al ;Trigger pots
mov dx, JoyPort
mov cx, 8000h ;Don’t let this go on forever.

PotReadLoop: in al, dx
and al, ah
jz PotReadDone
shr al, 1
adc si, 0
shr al, 1
adc bp, 0
shr al, 2
adc di, 0
loop PotReadLoop

PotReadDone:
ret

ReadPots endp

;--
;
; Normalize- BX contains a pointer to a pot structure, AX contains
; a pot value. Normalize that value according to the
; calibrated pot.
;
; Note: DS must point at cseg before calling this routine.

assume ds:cseg
Normalize proc near

push cx

; Sanity check to make sure the calibration process went okay.

cmp [bx].Pot.DidCal, 0
je BadNorm
mov dx, [bx].Pot.Center
cmp dx, [bx].Pot.Min
jbe BadNorm
cmp dx, [bx].Pot.Max
jae BadNorm

; Clip the value if it is out of range.

cmp ax, [bx].Pot.Min
ja MinOkay
mov ax, [bx].Pot.Min

MinOkay:

cmp ax, [bx].Pot.Max
jb MaxOkay
mov ax, [bx].Pot.Max

MaxOkay:

; Scale this guy around the center:

cmp ax, [bx].Pot.Center
jb Lower128

; Scale in the range 128..255 here:

sub ax, [bx].Pot.Center
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Max
sub cx, [bx].Pot.Center
jz BadNorm ;Prevent division by zero.

The Game Adapter

Page 1285

div cx ;Compute normalized value.
add ax, 128 ;Scale to range 128..255.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

; Scale in the range 0..127 here:

Lower128: sub ax, [bx].Pot.Min
mov dl, ah ;Multiply by 128
mov ah, al
mov dh, 0
mov al, dh
shr dl, 1
rcr ax, 1
mov cx, [bx].Pot.Center
sub cx, [bx].Pot.Min
jz BadNorm
div cx ;Compute normalized value.
cmp ah, 0
je NormDone
mov ax, 0ffh ;Result must fit in 8 bits!
jmp NormDone

BadNorm: sub ax, ax
NormDone: pop cx

ret
Normalize endp

assume ds:nothing

;==
; INT 15h handler functions.
;==
;
; Although these are defined as near procs, they are not really procedures.
; The MyInt15 code jumps to each of these with BX, a far return address, and
; the flags sitting on the stack. Each of these routines must handle the
; stack appropriately.
;
;--
; BIOS- Handles the two BIOS calls, DL=0 to read the switches, DL=1 to
; read the pots. For the BIOS routines, we’ll ignore the cooley
; switch (the hat) and simply read the other four switches.

BIOS proc near
cmp dl, 1 ;See if switch or pot routine.
jb Read4Sw
je ReadBIOSPots
pop bx
jmp cs:Int15Vect ;Let someone else handle it!

Read4Sw: push dx
mov dx, JoyPort
in al, dx
shr al, 4
mov bl, al
mov bh, 0
cmp cs:SwapButtons, 0
je DoLeft2
mov al, cs:SwBitsL[bx]
jmp SBDone

DoLeft2: mov al, cs:SwBits[bx]
SBDone: rol al, 4 ;Put Sw0..3 in upper bits and make

not al ; 0=switch down, just like game card.
pop dx
pop bx
iret

ReadBIOSPots: pop bx ;Return a value in BX!
push si
push di
push bp

Chapter 24

Page 1286

mov ah, 0bh
call ReadPots
mov ax, si
mov bx, bp
mov dx, di
sub cx, cx
pop bp
pop di
pop si
iret

BIOS endp

;--
;
; ReadPot- On entry, DL contains a pot number to read.
; Read and normalize that pot and return the result in AL.

assume ds:cseg
ReadPot proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
lea bx, Pot0
mov ax, si
call Normalize
jmp GotPot

Try1: cmp dl, 1
jne Try3
mov ah, Pot1.PotMask
call ReadPots
lea bx, Pot1
mov ax, bp
call Normalize
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
lea bx, Pot3
mov ax, di
call Normalize
jmp GotPot

BadPot: sub ax, ax ;Question: Should we pass this on
; or just return zero?

GotPot: pop bp
pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadPot endp
assume ds:nothing

;--
;

The Game Adapter

Page 1287

; ReadRaw- On entry, DL contains a pot number to read.
; Read that pot and return the unnormalized result in AL.

assume ds:cseg
ReadRaw proc near
;;;;;;;;;; push bx ;Already on stack.

push ds
push cx
push dx
push si
push di
push bp

mov bx, cseg
mov ds, bx

cmp dl, 0
jne Try1
mov ah, Pot0.PotMask
call ReadPots
mov ax, si
jmp GotPot

Try1: cmp dl, 1
jne Try3
mov ah, Pot1.PotMask
call ReadPots
mov ax, bp
jmp GotPot

Try3: cmp dl, 3
jne BadPot
mov ah, Pot3.PotMask
call ReadPots
mov ax, di
jmp GotPot

BadPot: sub ax, ax ;Just return zero.
GotPot: pop bp

pop di
pop si
pop dx
pop cx
pop ds
pop bx
iret

ReadRaw endp
assume ds:nothing

;--
; Read4Pots-Reads pots zero, one, two, and three returning their
; values in AL, AH, DL, and DH. Since the flightstick
; Pro doesn’t have a pot 2 installed, return zero for
; that guy.

Read4Pots proc near
;;;;;;;;;;; push bx ;Already on stack

push ds
push cx
push si
push di
push bp

mov dx, cseg
mov ds, dx

mov ah, 0bh ;Read pots 0, 1, and 3.
call ReadPots

mov ax, si
lea bx, Pot0
call Normalize
mov cl, al

Chapter 24

Page 1288

mov ax, bp
lea bx, Pot1
call Normalize
mov ch, al

mov ax, di
lea bx, Pot3
call Normalize
mov dh, al ;Pot 3 value.
mov ax, cx ;Pots 0 and 1.
mov dl, 0 ;Pot 2 is non-existant.

pop bp
pop di
pop si
pop cx
pop ds
pop bx
iret

Read4Pots endp

;--
; CalPot- Calibrate the pot specified by DL. On entry, AL contains
; the minimum pot value (it better be less than 256!), BX
; contains the maximum pot value, and CX contains the centered
; pot value.

assume ds:cseg
CalPot proc near

pop bx ;Retrieve maximum value
push ds
push si
mov si, cseg
mov ds, si

; Sanity check on parameters, sort them in ascending order:

mov ah, 0
cmp bx, cx
ja GoodMax
xchg bx, cx

GoodMax: cmp ax, cx
jb GoodMin
xchg ax, cx

GoodMin: cmp cx, bx
jb GoodCenter
xchg cx, bx

GoodCenter:

; Okay, figure out who were supposed to calibrate:

lea si, Pot0
cmp dl, 1
jb DoCal
lea si, Pot1
je DoCal
cmp dl, 3
jne CalDone
lea si, Pot3

DoCal: mov [si].Pot.min, ax
mov [si].Pot.max, bx
mov [si].Pot.center, cx
mov [si].Pot.DidCal, 1

CalDone: pop si
pop ds
iret

CalPot endp
assume ds:nothing

The Game Adapter

Page 1289

;--
; TestCal- Just checks to see if the pot specified by DL has already
; been calibrated.

assume ds:cseg
TestCal proc near
;;;;;;;; push bx ;Already on stack

push ds
mov bx, cseg
mov ds, bx

sub ax, ax ;Assume no calibration
lea bx, Pot0
cmp dl, 1
jb GetCal
lea bx, Pot1
je GetCal
cmp dl, 3
jne BadCal
lea bx, Pot3

GetCal: mov al, [bx].Pot.DidCal
mov ah, 0

BadCal: pop ds
pop bx
iret

TestCal endp
assume ds:nothing

;--
;
; ReadSw- Reads the switch whose switch number appears in DL.

SwTable byte 11100000b, 11010000b, 01110000b, 10110000b
byte 00000000b, 11000000b, 01000000b, 10000000b

SwTableL byte 11100000b, 10110000b, 01110000b, 11010000b
byte 00000000b, 11000000b, 01000000b, 10000000b

ReadSw proc near
;;;;;;; push bx ;Already on stack

mov bl, dl ;Save switch to read.
mov bh, 0
mov dx, JoyPort
in al, dx
and al, 0f0h
cmp cs:SwapButtons, 0
je DoLeft0
cmp al, cs:SwTableL[bx]
jne NotDown
jmp IsDown

DoLeft0: cmp al, cs:SwTable[bx]
jne NotDown

IsDown: mov ax, 1
pop bx
iret

NotDown: sub ax, ax
pop bx
iret

ReadSw endp

;--
;
; Read16Sw- Reads all eight switches and returns their values in AX.

Read16Sw proc near
;;;;;;;; push bx ;Already on stack

Chapter 24

Page 1290

mov ah, 0 ;Switches 8-15 are non-existant.
mov dx, JoyPort
in al, dx
shr al, 4
mov bl, al
mov bh, 0
cmp cs:SwapButtons, 0
je DoLeft1
mov al, cs:SwBitsL[bx]
jmp R8Done

DoLeft1: mov al, cs:SwBits[bx]
R8Done: pop bx

iret
Read16Sw endp

;**
;
; MyInt15- Patch for the BIOS INT 15 routine to control reading the
; joystick.

MyInt15 proc far
push bx
cmp ah, 84h ;Joystick code?
je DoJoystick

OtherInt15: pop bx
jmp cs:Int15Vect

DoJoystick: mov bh, 0
mov bl, dh
cmp bl, 80h
jae VendorCalls
cmp bx, JmpSize
jae OtherInt15
shl bx, 1
jmp wp cs:jmptable[bx]

jmptable word BIOS
word ReadPot, Read4Pots, CalPot, TestCal
word ReadRaw, OtherInt15, OtherInt15
word ReadSw, Read16Sw

JmpSize = ($-jmptable)/2

; Handle vendor specific calls here.

VendorCalls: je RemoveDriver
cmp bl, 81h
je TestPresence
pop bx
jmp cs:Int15Vect

; TestPresence- Returns zero in AX and a pointer to the ID string in ES:BX

TestPresence: pop bx ;Get old value off stack.
sub ax, ax
mov bx, cseg
mov es, bx
lea bx, IDString
iret

; RemoveDriver-If there are no other drivers loaded after this one in
; memory, disconnect it and remove it from memory.

RemoveDriver:
push ds
push es
push ax
push dx

mov dx, cseg
mov ds, dx

The Game Adapter

Page 1291

; See if we’re the last routine patched into INT 15h

mov ax, 3515h
int 21h
cmp bx, offset MyInt15
jne CantRemove
mov bx, es
cmp bx, wp seg MyInt15
jne CantRemove

mov ax, PSP ;Free the memory we’re in
mov es, ax
push es
mov ax, es:[2ch] ;First, free env block.
mov es, ax
mov ah, 49h
int 21h

;
pop es ;Now free program space.
mov ah, 49h
int 21h

lds dx, Int15Vect ;Restore previous int vect.
mov ax, 2515h
int 21h

CantRemove: pop dx
pop ax
pop es
pop ds
pop bx
iret

MyInt15 endp
cseg ends

; The following segment is tossed when this code goes resident.

Initialize segment para public ‘INIT’
assume cs:Initialize, ds:cseg

Main proc
mov ax, cseg ;Get ptr to vars segment
mov es, ax
mov es:PSP, ds ;Save PSP value away
mov ds, ax

mov ax, zzzzzzseg
mov es, ax
mov cx, 100h
meminit2

print
byte “Standard Game Device Interface driver”,cr,lf
byte “CH Products Flightstick Pro”,cr,lf
byte “Written by Randall Hyde”,cr,lf
byte cr,lf
byte “‘FSPSGDI LEFT’ swaps the left and right buttons for “
byte “left handed players”,cr,lf
byte “‘FSPSGDI REMOVE’ removes the driver from memory”
byte cr, lf, lf
byte 0

mov ax, 1
argv ;If no parameters, empty str.
stricmpl
byte “LEFT”,0
jne NoLEFT
mov SwapButtons, 1
print
byte “Left and right buttons swapped”,cr,lf,0
jmp SwappedLeft

NoLEFT: stricmpl

Chapter 24

Page 1292

byte “REMOVE”,0
jne NoRmv
mov dh, 81h
mov ax, 84ffh
int 15h ;See if we’re already loaded.
test ax, ax ;Get a zero back?
jz Installed
print
byte “SGDI driver is not present in memory, REMOVE “
byte “command ignored.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

Installed: mov ax, 8400h
mov dh, 80h ;Remove call
int 15h
mov ax, 8400h
mov dh, 81h ;TestPresence call
int 15h
cmp ax, 0
je NotRemoved
print
byte “Successfully removed SGDI driver from memory.”
byte cr,lf,0
mov ax, 4c01h ;Exit to DOS.
int 21h

NotRemoved: print
byte “SGDI driver is still present in memory.”,cr,lf,0
mov ax, 4c01h;Exit to DOS.
int 21h

NoRmv:

; Okay, Patch INT 15 and go TSR at this point.

SwappedLeft: mov ax, 3515h
int 21h
mov wp Int15Vect, bx
mov wp Int15Vect+2, es

mov dx, cseg
mov ds, dx
mov dx, offset MyInt15
mov ax, 2515h
int 21h

mov dx, cseg
mov ds, dx
mov dx, seg Initialize
sub dx, ds:psp
add dx, 2
mov ax, 3100h ;Do TSR
int 21h

Main endp

Initialize ends

sseg segment para stack ‘stack’
word 128 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
byte 16 dup (0)

zzzzzzseg ends
end Main

The Game Adapter

Page 1293

24.7 Patching Existing Games

Maybe you’re not quite ready to write the next million dollar game. Perhaps you’d like to get a little
more enjoyment out of the games you already own. Well, this section will provide a practical application
of a semiresident program that patches the Lucas Arts’ XWing (Star Wars simulation) game. This program
patches the XWing game to take advantage of the special features found on the CH Products’ FlightStick
Pro. In particular, it lets you use the throttle pot on the FSP to control the speed of the spacecraft. It also
lets you program each of the buttons with up to four strings of eight characters each.

To describe how you can patch an existing game, a short description of how this patch was devel-
oped is in order. The FSPXW patch was developed by using the Soft-ICE debugging tool. This program
lets you set a breakpoint whenever an 80386 or later processor accesses a specific I/O port8. Setting a
breakpoint at I/O address 201h while running the xwing.exe file stopped the XWing program when it
decided to read the analog and switch inputs. Disassembly of the surrounding code produced complete
joystick and button read routines. After locating these routines, it was easy enough to write a program to
search through memory for the code and patch in jumps to code in the FSPXW patch program.

Note that the original joystick code inside XWing works perfectly fine with the FPS. The only reason
for patching into the joystick code is so our code can read the throttle every how and then and take appro-
priate action.

The button routines were another story altogether. The FSPXW patch needs to take control of
XWing’s button routines because the user of FSPXW might want to redefine a button recognized by XWing
for some other purpose. Therefore, whenever XWing calls its button routine, control transfers to the but-
ton routine inside FSPXW that decides whether to pass real button information back to XWing or to fake
buttons in the up position because those buttons are redefined to other functions. By default (unless you
change the source code, the buttons have the following programming:

The programming of the cooley switch demonstrates an interesting feature of the FSPXW patch: you
can program up to four different strings on each button. The first time you press a button, FSPXW emits
the first string, the second time you press a button it emits the second string, then the third, and finally the
fourth. If the string is empty, the FSPXW string skips it. The FSPXW patch uses the cooley switch to select
the cockpit views. Pressing the cooley switch forward displays the forward view. Pulling the cooley switch
backwards presents the rear view. However, the XWing game provides three left and right views. Pushing
the cooley switch to the left or right once displays the 45 degree view. Pressing it a second time presents

8. This feature is not specific to Soft-ICE, many 80386 debuggers will let you do this.

Rotate Ship

Weapons
Select

Hide/Show Cockpit

Chapter 24

Page 1294

the 90 degree view. Pressing it to the left or right a third time provides the 135 degree view. The following
diagram shows the default programming on the cooley switch:

One word of caution concerning this patch: it only works with the basic XWing game. It does not
support the add-on modules (Imperial Pursuit, B-Wing, Tie Fighter, etc.). Furthermore, this patch assumes
that the basic XWing code has not changed over the years. It could be that a recent release of the XWing
game uses new joystick routines and the code associated with this application will not be able to locate or
patch those new routines. This patch will detect such a situation and will not patch XWing if this is the
case. You must have sufficient free RAM for this patch, XWing, and anything else you have loaded into
memory at the same time (the exact amount of RAM XWing needs depends upon the features you’ve
installed, a fully installed system requires slightly more than 610K free).

Without further ado, here’s the FSPXW code:

.286
page 58, 132
name FSPXW
title FSPXW (Flightstick Pro driver for XWING).
subttl Copyright (C) 1994 Randall Hyde.

; FSPXW.EXE
;
; Usage:
; FSPXW
;
; This program executes the XWING.EXE program and patches it to use the
; Flightstick Pro.

byp textequ <byte ptr>
wp textequ <word ptr>

cseg segment para public ‘CODE’
cseg ends

sseg segment para stack ‘STACK’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

315°

270°

225°

45°

90°

135°

Left
Views

Right
Views

Forward
View

Back
View

The Game Adapter

Page 1295

include stdlib.a
includelib stdlib.lib
matchfuncs

ifndef debug
Installation segment para public ‘Install’
Installation ends

endif

CSEG segment para public ‘CODE’
assume cs:cseg, ds:nothing

; Timer interrupt vector

Int1CVect dword ?

; PSP- Program Segment Prefix. Needed to free up memory before running
; the real application program.

PSP word 0

; Program Loading data structures (for DOS).

ExecStruct word 0 ;Use parent’s Environment blk.
dword CmdLine ;For the cmd ln parms.
dword DfltFCB
dword DfltFCB

LoadSSSP dword ?
LoadCSIP dword ?
PgmName dword Pgm

; Variables for the throttle pot.
; LastThrottle contains the character last sent (so we only send one copy).
; ThrtlCntDn counts the number of times the throttle routine gets called.

LastThrottle byte 0
ThrtlCntDn byte 10

; Button Mask- Used to mask out the programmed buttons when the game
; reads the real buttons.

ButtonMask byte 0f0h

; The following variables allow the user to reprogram the buttons.

KeyRdf struct
Ptrs word ? ;The PTRx fields point at the
ptr2 word ? ; four possible strings of 8 chars
ptr3 word ? ; each. Each button press cycles
ptr4 word ? ; through these strings.
Index word ? ;Index to next string to output.
Cnt word ?
Pgmd word ? ;Flag = 0 if not redefined.
KeyRdf ends

; Left codes are output if the cooley switch is pressed to the left.
; Note that the strings ares actually zero terminated strings of words.

Left KeyRdf <Left1, Left2, Left3, Left4, 0, 6, 1>
Left1 word ‘7’, 0
Left2 word ‘4’, 0
Left3 word ‘1’, 0
Left4 word 0

; Right codes are output if the cooley switch is pressed to the Right.

Chapter 24

Page 1296

Right KeyRdf <Right1, Right2, Right3, Right4, 0, 6, 1>
Right1 word ‘9’, 0
Right2 word ‘6’, 0
Right3 word ‘3’, 0
Right4 word 0

; Up codes are output if the cooley switch is pressed Up.

Up KeyRdf <Up1, Up2, Up3, Up4, 0, 2, 1>
Up1 word ‘8’, 0
Up2 word 0
Up3 word 0
Up4 word 0

; DownKey codes are output if the cooley switch is pressed Down.

Down KeyRdf <Down1, Down2, Down3, Down4, 0, 2, 1>
Down1 word ‘2’, 0
Down2 word 0
Down3 word 0
Down4 word 0

; Sw0 codes are output if the user pulls the trigger.(This switch is not
; redefined.)

Sw0 KeyRdf <Sw01, Sw02, Sw03, Sw04, 0, 0, 0>
Sw01 word 0
Sw02 word 0
Sw03 word 0
Sw04 word 0

; Sw1 codes are output if the user presses Sw1 (the left button
; if the user hasn’t swapped the left and right buttons). Not Redefined.

Sw1 KeyRdf <Sw11, Sw12, Sw13, Sw14, 0, 0, 0>
Sw11 word 0
Sw12 word 0
Sw13 word 0
Sw14 word 0

; Sw2 codes are output if the user presses Sw2 (the middle button).

Sw2 KeyRdf <Sw21, Sw22, Sw23, Sw24, 0, 2, 1>
Sw21 word ‘w’, 0
Sw22 word 0
Sw23 word 0
Sw24 word 0

; Sw3 codes are output if the user presses Sw3 (the right button
; if the user hasn’t swapped the left and right buttons).

Sw3 KeyRdf <Sw31, Sw32, Sw33, Sw34, 0, 0, 0>
Sw31 word 0
Sw32 word 0
Sw33 word 0
Sw34 word 0

; Switch status buttons:

CurSw byte 0
LastSw byte 0

;**
; FSPXW patch begins here. This is the memory resident part. Only put code
; which which has to be present at run-time or needs to be resident after
; freeing up memory.
;**

Main proc
mov cs:PSP, ds
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

The Game Adapter

Page 1297

; Get the current INT 1Ch interrupt vector:

mov ax, 351ch
int 21h
mov wp Int1CVect, bx
mov wp Int1CVect+2, es

; The following call to MEMINIT assumes no error occurs. If it does,
; we’re hosed anyway.

mov ax, zzzzzzseg
mov es, ax
mov cx, 1024/16
meminit2

; Do some initialization before running the game. These are calls to the
; initialization code which gets dumped before actually running XWING.

call far ptr ChkBIOS15
call far ptr Identify
call far ptr Calibrate

; If any switches were programmed, remove those switches from the
; ButtonMask:

mov al, 0f0h ;Assume all buttons are okay.
cmp sw0.pgmd, 0
je Sw0NotPgmd
and al, 0e0h ;Remove sw0 from contention.

Sw0NotPgmd:

cmp sw1.pgmd, 0
je Sw1NotPgmd
and al, 0d0h ;Remove Sw1 from contention.

Sw1NotPgmd:

cmp sw2.pgmd, 0
je Sw2NotPgmd
and al, 0b0h ;Remove Sw2 from contention.

Sw2NotPgmd:

cmp sw3.pgmd, 0
je Sw3NotPgmd
and al, 070h ;Remove Sw3 from contention.

Sw3NotPgmd:
mov ButtonMask, al ;Save result as button mask

; Now, free up memory from ZZZZZZSEG on to make room for XWING.
; Note: Absolutely no calls to UCR Standard Library routines from
; this point forward! (ExitPgm is okay, it’s just a macro which calls DOS.)
; Note that after the execution of this code, none of the code & data
; from zzzzzzseg on is valid.

mov bx, zzzzzzseg
sub bx, PSP
inc bx
mov es, PSP
mov ah, 4ah
int 21h
jnc GoodRealloc
print
byte “Memory allocation error.”
byte cr,lf,0
jmp Quit

GoodRealloc:

; Now load the XWING program into memory:

mov bx, seg ExecStruct
mov es, bx

Chapter 24

Page 1298

mov bx, offset ExecStruc ;Ptr to program record.
lds dx, PgmName
mov ax, 4b01h ;Load, do not exec, pgm
int 21h
jc Quit ;If error loading file.

; Search for the joystick code in memory:

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset JoyStickCode
mov cx, JoyLength
call FindCode
jc Quit ;If didn’t find joystick code.

; Patch the XWING joystick code here

mov byp ds:[si], 09ah ;Far call
mov wp ds:[si+1], offset ReadGame
mov wp ds:[si+3], cs

; Find the Button code here.

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset ReadSwCode
mov cx, ButtonLength
call FindCode
jc Quit

; Patch the button code here.

mov byp ds:[si], 9ah
mov wp ds:[si+1], offset ReadButtons
mov wp ds:[si+3], cs
mov byp ds:[si+5], 90h ;NOP.

; Patch in our timer interrupt handler:

mov ax, 251ch
mov dx, seg MyInt1C
mov ds, dx
mov dx, offset MyInt1C
int 21h

; Okay, start the XWING.EXE program running

mov ah, 62h ;Get PSP
int 21h
mov ds, bx
mov es, bx
mov wp ds:[10], offset Quit
mov wp ds:[12], cs
mov ss, wp cseg:LoadSSSP+2
mov sp, wp cseg:LoadSSSP
jmp dword ptr cseg:LoadCSIP

Quit: lds dx, cs:Int1CVect ;Restore timer vector.
mov ax, 251ch
int 21h
ExitPgm

The Game Adapter

Page 1299

Main endp

;**
;
; ReadGame- This routine gets called whenever XWing reads the joystick.
; On every 10th call it will read the throttle pot and send
; appropriate characters to the type ahead buffer, if
; necessary.

assume ds:nothing
ReadGame proc far

dec cs:ThrtlCntDn ;Only do this each 10th time
jne SkipThrottle ; XWING calls the joystick
mov cs:ThrtlCntDn, 10 ; routine.

push ax
push bx ;No need to save bp, dx, or cx as
push di ; XWING preserves these.

mov ah, 84h
mov dx, 103h ;Read the throttle pot
int 15h

; Convert the value returned by the pot routine into the four characters
; 0..63:”\”, 64..127:”[“, 128..191:”]”, 192..255:<bs>, to denote zero, 1/3,
; 2/3, and full power, respectively.

mov dl, al
mov ax, “\” ;Zero power
cmp dl, 192
jae SetPower
mov ax, “[“ ;1/3 power.
cmp dl, 128
jae SetPower
mov ax, “]” ;2/3 power.
cmp dl, 64
jae SetPower
mov ax, 8 ;BS, full power.

SetPower: cmp al, cs:LastThrottle
je SkipPIB
mov cs:LastThrottle, al
call PutInBuffer

SkipPIB: pop di
pop bx
pop ax

SkipThrottle: neg bx ;XWING returns data in these registers.
neg di ;We patched the NEG and STI instrs
sti ; so do that here.
ret

ReadGame endp

assume ds:nothing
ReadButtons proc far

mov ah, 84h
mov dx, 0
int 15h
not al
and al, ButtonMask ;Turn off pgmd buttons.
ret

ReadButtons endp

; MyInt1C- Called every 1/18th second. Reads switches and decides if it
; should shove some characters into the type ahead buffer.

assume ds:cseg
MyInt1c proc far

push ds
push ax
push bx
push dx
mov ax, cseg

Chapter 24

Page 1300

mov ds, ax

mov al, CurSw
mov LastSw, al

mov dx, 900h ;Read the 8 switches.
mov ah, 84h
int 15h

mov CurSw, al
xor al, LastSw ;See if any changes
jz NoChanges
and al, CurSw ;See if sw just went down.
jz NoChanges

; If a switch has just gone down, output an appropriate set of scan codes
; for it, if that key is active. Note that pressing *any* key will reset
; all the other key indexes.

test al, 1 ;See if Sw0 (trigger) was pulled.
jz NoSw0
cmp Sw0.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except SW0.
mov Up.Index, ax
mov Down.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Sw0.Index
mov ax, Sw0.Index
mov bx, Sw0.Ptrs[bx]
add ax, 2
cmp ax, Sw0.Cnt
jb SetSw0
mov ax, 0

SetSw0: mov Sw0.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw0: test al, 2 ;See if Sw1 (left sw) was pressed.
jz NoSw1
cmp Sw1.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw1.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Sw1.Index
mov ax, Sw1.Index
mov bx, Sw1.Ptrs[bx]
add ax, 2
cmp ax, Sw1.Cnt
jb SetSw1
mov ax, 0

SetSw1: mov Sw1.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw1: test al, 4 ;See if Sw2 (middle sw) was pressed.
jz NoSw2
cmp Sw2.Pgmd, 0
je NoChanges
mov ax, 0

The Game Adapter

Page 1301

mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw2.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw3.Index, ax
mov bx, Sw2.Index
mov ax, Sw2.Index
mov bx, Sw2.Ptrs[bx]
add ax, 2
cmp ax, Sw2.Cnt
jb SetSw2
mov ax, 0

SetSw2: mov Sw2.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw2: test al, 8 ;See if Sw3 (right sw) was pressed.
jz NoSw3
cmp Sw3.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset the key indexes for all keys
mov Right.Index, ax ; except Sw3.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov bx, Sw3.Index
mov ax, Sw3.Index
mov bx, Sw3.Ptrs[bx]
add ax, 2
cmp ax, Sw3.Cnt
jb SetSw3
mov ax, 0

SetSw3: mov Sw3.Index, ax
call PutStrInBuf
jmp NoChanges

NoSw3: test al, 10h ;See if Cooly was pressed upwards.
jz NoUp
cmp Up.Pgmd, 0
je NoChanges
mov ax, 0
mov Right.Index, ax ;Reset all but Up.
mov Left.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Up.Index
mov ax, Up.Index
mov bx, Up.Ptrs[bx]
add ax, 2
cmp ax, Up.Cnt
jb SetUp
mov ax, 0

SetUp: mov Up.Index, ax
call PutStrInBuf
jmp NoChanges

NoUp: test al, 20h ;See if Cooley was pressed left.
jz NoLeft
cmp Left.Pgmd, 0
je NoChanges
mov ax, 0
mov Right.Index, ax ;Reset all but Left.
mov Up.Index, ax

Chapter 24

Page 1302

mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Left.Index
mov ax, Left.Index
mov bx, Left.Ptrs[bx]
add ax, 2
cmp ax, Left.Cnt
jb SetLeft
mov ax, 0

SetLeft: mov Left.Index, ax
call PutStrInBuf
jmp NoChanges

NoLeft: test al, 40h ;See if Cooley was pressed Right
jz NoRight
cmp Right.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset all but Right.
mov Up.Index, ax
mov Down.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Right.Index
mov ax, Right.Index
mov bx, Right.Ptrs[bx]
add ax, 2
cmp ax, Right.Cnt
jb SetRight
mov ax, 0

SetRight: mov Right.Index, ax
call PutStrInBuf
jmp NoChanges

NoRight: test al, 80h ;See if Cooly was pressed Downward.
jz NoChanges
cmp Down.Pgmd, 0
je NoChanges
mov ax, 0
mov Left.Index, ax ;Reset all but Down.
mov Up.Index, ax
mov Right.Index, ax
mov Sw0.Index, ax
mov Sw1.Index, ax
mov Sw2.Index, ax
mov Sw3.Index, ax
mov bx, Down.Index
mov ax, Down.Index
mov bx, Down.Ptrs[bx]
add ax, 2
cmp ax, Down.Cnt
jb SetDown
mov ax, 0

SetDown: mov Down.Index, ax
call PutStrInBuf

NoChanges: pop dx
pop bx
pop ax
pop ds
jmp cs:Int1CVect

MyInt1c endp
assume ds:nothing

; PutStrInBuf- BX points at a zero terminated string of words.
; Output each word by calling PutInBuffer.

The Game Adapter

Page 1303

PutStrInBuf proc near
push ax
push bx

PutLoop: mov ax, [bx]
test ax, ax
jz PutDone
call PutInBuffer
add bx, 2
jmp PutLoop

PutDone: pop bx
pop ax
ret

PutStrInBuf endp

; PutInBuffer- Outputs character and scan code in AX to the type ahead
; buffer.

assume ds:nothing
KbdHead equ word ptr ds:[1ah]
KbdTail equ word ptr ds:[1ch]
KbdBuffer equ word ptr ds:[1eh]
EndKbd equ 3eh
Buffer equ 1eh

PutInBuffer proc near
push ds
push bx
mov bx, 40h
mov ds, bx
pushf
cli ;This is a critical region!
mov bx, KbdTail ;Get ptr to end of type
inc bx ; ahead buffer and make room
inc bx ; for this character.
cmp bx, buffer+32 ;At physical end of buffer?
jb NoWrap
mov bx, buffer ;Wrap back to 1eH if at end.

;
NoWrap: cmp bx, KbdHead ;Buffer overrun?

je PIBDone
xchg KbdTail, bx ;Set new, get old, ptrs.
mov ds:[bx], ax ;Output AX to old location.

PIBDone: popf ;Restore interrupts
pop bx
pop ds
ret

PutInBuffer endp

;**
;
; FindCode: On entry, ES:DI points at some code in *this* program which
; appears in the ATP game. DS:SI points at a block of memory
; in the XWing game. FindCode searches through memory to find the
; suspect piece of code and returns DS:SI pointing at the start of
; that code. This code assumes that it *will* find the code!
; It returns the carry clear if it finds it, set if it doesn’t.

FindCode proc near
push ax
push bx
push dx

DoCmp: mov dx, 1000h
CmpLoop: push di ;Save ptr to compare code.

push si ;Save ptr to start of string.
push cx ;Save count.

repe cmpsb
pop cx
pop si
pop di
je FoundCode

Chapter 24

Page 1304

inc si
dec dx
jne CmpLoop
sub si, 1000h
mov ax, ds
inc ah
mov ds, ax
cmp ax, 9000h
jb DoCmp

pop dx
pop bx
pop ax
stc
ret

FoundCode: pop dx
pop bx
pop ax
clc
ret

FindCode endp

;**
;
; Joystick and button routines which appear in XWing game. This code is
; really data as the INT 21h patch code searches through memory for this code
; after loading a file from disk.

JoyStickCode proc near
sti
neg bx
neg di
pop bp
pop dx
pop cx
ret
mov bp, bx
in al, dx
mov bl, al
not al
and al, ah
jnz $+11h
in al, dx

JoyStickCode endp
EndJSC:

JoyLength = EndJSC-JoyStickCode

ReadSwCode proc
mov dx, 201h
in al, dx
xor al, 0ffh
and ax, 0f0h

ReadSwCode endp
EndRSC:

ButtonLength = EndRSC-ReadSwCode

cseg ends

Installation segment

; Move these things here so they do not consume too much space in the
; resident part of the patch.

DfltFCB byte 3,” “,0,0,0,0,0
CmdLine byte 2, “ “, 0dh, 126 dup (“ “) ;Cmd line for program
Pgm byte “XWING.EXE”,0

byte 128 dup (?) ;For user’s name

The Game Adapter

Page 1305

; ChkBIOS15- Checks to see if the INT 15 driver for FSPro is present in memory.

ChkBIOS15 proc far
mov ah, 84h
mov dx, 8100h
int 15h
mov di, bx
strcmpl
byte “CH Products:Flightstick Pro”,0
jne NoDriverLoaded
ret

NoDriverLoaded:
print
byte “CH Products SGDI driver for Flightstick Pro is not “
byte “loaded into memory.”,cr,lf
byte “Please run FSPSGDI before running this program.”
byte cr,lf,0
exitpgm

ChkBIOS15 endp

;**
;
; Identify- Prints a sign-on message.

assume ds:nothing
Identify proc far

; Print a welcome string. Note that the string “VersionStr” will be
; modified by the “version.exe” program each time you assemble this code.

print
byte cr,lf,lf
byte “X W I N G P A T C H”,cr,lf
byte “CH Products Flightstick Pro”,cr,lf
byte “Copyright 1994, Randall Hyde”,cr,lf
byte lf
byte 0

ret
Identify endp

;**
;
; Calibrate the throttle down here:

assume ds:nothing
Calibrate proc far

print
byte cr,lf,lf
byte “Calibration:”,cr,lf,lf
byte “Move the throttle to one extreme and press any “
byte “button:”,0

call Wait4Button
mov ah, 84h
mov dx, 1h
int 15h
push dx ;Save pot 3 reading.

print
byte cr,lf
byte “Move the throttle to the other extreme and press “
byte “any button:”,0

call Wait4Button
mov ah, 84h
mov dx, 1
int 15h
pop bx

Chapter 24

Page 1306

mov ax, dx
cmp ax, bx
jb RangeOkay
xchg ax, bx

RangeOkay: mov cx, bx ;Compute a centered value.
sub cx, ax
shr cx, 1
add cx, ax
mov ah, 84h
mov dx, 303h ;Calibrate pot three.
int 15h
ret

Calibrate endp

Wait4Button proc near
mov ah, 84h ;First, wait for all buttons
mov dx, 0 ; to be released.
int 15h
and al, 0F0h
cmp al, 0F0h
jne Wait4Button

mov cx, 0
Delay: loop Delay

Wait4Press: mov ah, 1 ;Eat any characters from the
int 16h ; keyboard which come along, and
je NoKbd ; handle ctrl-C as appropriate.
getc

NoKbd: mov ah, 84h ;Now wait for any button to be
mov dx, 0 ; pressed.
int 15h
and al, 0F0h
cmp al, 0F0h
je Wait4Press

ret
Wait4Button endp
Installation ends

sseg segment para stack ‘STACK’
word 256 dup (0)

endstk word ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap byte 1024 dup (0)
zzzzzzseg ends

end Main

24.8 Summary

The PC’s game adapter card lets you connect a wide variety of game related input devices to your PC.
Such devices include digital joysticks, paddles, analog joysticks, steering wheels, yokes, and more. Paddle
input devices provide one degree of freedom, joysticks provide two degrees of freedom along an (X,Y)
axis pair. Steering wheels and yokes also provide two degrees of freedom, though they are designed for
different types of games. For more information on these input devices, see

• “Typical Game Devices” on page 1255

Most game input devices connect to the PC through the game adapter card. This device provides for
up to four digital (switch) inputs and four analog (resistive) inputs. This device appears as a single I/O
location in the PC’s I/O address space. Four of the bits at this port correspond to the four switches, four of
the inputs provide the status of the timer pulses from the 558 chip for the analog inputs. The switches you

The Game Adapter

Page 1307

can read directly from the port; to read the analog inputs, you must create a timing loop to count how long
it takes for the pulse associated with a particular device to go from high to low. For more information on
the game adapter hardware, see:

• “The Game Adapter Hardware” on page 1257

Programming the game adapter would be a simple task except that you will get different readings for
the same relative pot position with different game adapter cards, game input devices, computer systems,
and software. The real trick to programming the game adapter is to produce consistent results, regardless
of the actual hardware in use. If you can live with raw input values, the BIOS provides two functions to
read the switches and the analog inputs. However, if you need normalized values, you will probably have
to write your own code. Still, writing such code is very easy if you remember some basic high school alge-
bra. So see how this is done, check out

• “Using BIOS’ Game I/O Functions” on page 1259
• “Writing Your Own Game I/O Routines” on page 1260

As with the other devices on the PC, there is a problem with accessing the game adapter hardware
directly, such code will not work with game input hardware that doesn’t adhere strictly to the original PC’s
design criteria. Fancy game input devices like the Thrustmaster joystick and the CH Product’s FlightStick
Pro will require you to write special software drivers. Furthermore, your basic joystick code may not even
work with future devices, even if they provide a minimal set of features compatible with standard game
input devices. Unfortunately, the BIOS services are very slow and not very good, so few programmers
make BIOS calls, allowing third party developers to provide replacement device drivers for their game
devices. To help alleviate this problem, this chapter presents the Standard Game Device Input application
programmer’s interface – a set of functions specifically designed to provide an extensible, portable, system
for game input device programmers. The current specification provides for up to 256 digital and 256 ana-
log input devices and is easily extended to handle output devices and other input devices as well. For the
details, see

• “The Standard Game Device Interface (SGDI)” on page 1262
• “Application Programmer’s Interface (API)” on page 1262

Since this chapter introduces the SGDI driver, there aren’t many SGDI drivers provided by game
adapter manufacturers at this point. So if you write software that makes SGDI driver calls, you will find that
there are few machines that will have an SGDI TSR in memory. Therefore, this chapter provides SGDI driv-
ers for the standard game adapter card and the standard input devices. It also provides an SGDI driver for
the CH Products’ FlightStick Pro joystick. To obtain these freely distributable drivers, see

• “An SGDI Driver for the Standard Game Adapter Card” on page 1265
• “An SGDI Driver for the CH Products’ Flight Stick Pro” on page 1280

This chapter concludes with an example of a semiresident program that makes SGDI calls. This pro-
gram, that patches the popular XWing game, provides full support for the CH Product’s FlightStick Pro in
XWing. This program demonstrates many of the features of an SGDI driver as well as providing and exam-
ple of how to patch a commercially available game. For the explanation and the source code, see

• “Patching Existing Games” on page 1293

Chapter 24

Page 1308

