|
|
|
|
R = (A, B, C, D, E, F, G, H)
℉ = { ABC → DEG
E → BCG
F → AH }
|
|
R1 = ( A, B, C, D, E ) // Key: (A,B,C) R2 = ( E, B, C, G ) // Key: (E) R3 = ( F, A, H ) // Key: (F)) |
|
|
|
R1 = (A, B, C, D, E)
R2 = (E, B, C, G)
R3 = (F, A, H)
R4 = (E, F)
R5 = (B, C, F)
℉ = { ABC → DEG
E → BCG
F → AH }
|
BTW: it's is also in 3NF....
R = (A, B, C, D, E, F, G, H)
℉ = { ABC → DEG
E → BCG
F → AH }
|
|
|
R = (A, B, C, D, E, F, G, H)
Keys: FE and FBC
℉ = { ABC → DEG
E → BCG
F → AH }
==> F is not a superkey and AH are not key attributes
|
Decomposition:
R( A, B, C, D, E, F, G, H )
/ \
/ \ (F+ = FAH)
/ \
R1(F, A, H) R2(B, C, D, E, F, G)
|
Notice that:
|
|
No proof... - See Chapter 11 of text book