
Translating SQL to Relational Algebra

Contents

1 Translating SQL to Relational Algebra

2 Union, Intersection, Difference

3 Select-From-Where No Subqueries

4 Normalization Step

5 Correlated Queries

5.1 EXISTS in the Where Clause (by example)

5.2 NOT EXISTS in the Where Clause (by example)

5.3 EXISTS Subqueries in WHERE Combined with Other

5.4 Union In Subqueries

6 Translating Joins

6.1 Joins

6.2 Group and Having

7 Exercises

7.1 Exercise 1

7.2 Exercise with the Count Bug

8 See also

9 Sources

Translating SQL to Relational Algebra

Translating SQL to RA expression is the second step in Query Processing Pipeline

Input: Logical Query Plan - expression in Extended Relational Algebra

Output: Optimized Logical Query Plan - also in Relational Algebra

Union, Intersection, Difference

Translation is straightforward

(SELECT * FROM R1) INTERSECT (SELECT * FROM R2)

Is

UNION

EXCEPT

Select-From-Where No Subqueries

Query

SELECT movieTitle

FROM StarsIn, MovieStarM

WHERE starName = M.name AND M.birthdate = 1960

in the from clause we have all relations we need

so we make a Cartesian Product for all relations there

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

1 of 7 11/12/2018, 4:46 PM

if there is an alias - we do Renaming

then we filter the Cartesian Product

then translate the where clause too

So we get:

(Maybe not the most efficient way, but it will be optimized further)

Normalization Step

Suppose we have subqueries in the "Where" clause

SELECT movieTitle FROM StarsIn

WHERE starName IN (

SELECT name

FROM MovieStar

WHERE birthdate=1960)

Here we may have different constraints:

, etc

whenever we have such constraints, we may replace them with quantifiers and

or with EXISTS and IN or NOT EXISTS

so we first translate a SQL query to the equivalent SQL with EXISTS or NOT EXISTS

Example 1: IN

SELECT movieTitle FROM StarsIn

WHERE starName IN (

SELECT name

FROM MovieStar

WHERE birthdate=1960)

to

SELECT movieTitle FROM StarsIn

WHERE EXISTS (

SELECT name

FROM MovieStar

WHERE birthdate=1960 AND name=starName)

Example 2:

SELECT name FROM MovieExec

WHERE netWorth >= (

SELECT E.netWorth

FROM MovieExec E)

to

SELECT name FROM MovieExec

WHERE NOT EXISTS (

SELECT E.netWorth

FROM MovieExec E

WHERE netWorth < E.netWorth)

Example 3: aggregated attributes

SELECT C FROM S

WHERE C IN (

SELECT SUM(B) FROM R

GROUP BY A)

to

SELECT C FROM S

WHERE EXISTS (

SELECT SUM(B) FROM R

GROUP BY A

HAVING SUM(B) = C)

(note that in this case we use "HAVING" and not "WHERE")

So the first step when processing these kinds of queries is normalization step:

translate a query into EXISTS/NOT EXISTS form

Hence we can assume that all queries are in this form

We then apply the next step: for correlated queries

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

2 of 7 11/12/2018, 4:46 PM

Correlated Queries

A subquery can refer to attributes of relations that are introduces in the outer query

def: we call such queries correlated subqueries

the outer relation is called the context relation - a correlated subquery uses its attributes

a parameter - is a set of attributes of all context relations of a subquery

Example:

here

the subquery refers to S.starName, so it's correlated

S is the context relation for the subquery

S.starName is a parameter to the correlated subquery

EXISTS in the Where Clause (by example)

SELECT S.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND EXISTS (

SELECT name

FROM MovieStar

WHERE birthdate = 1960 AND name = S.starName)

Algorithm

it's recursive: translate the subqueries first

problem: cannot find S.starName in the input relation

so it must be a correlated query

we therefore need to recognize that this is a context relation's parameter

so we need to add the context relations and parameters

next, we translate the "from" clause

now we need to synchronize the subresult by join

from the subquery we need to keep only the parameter attributes (the blue ones) - can remove

join: if something exists, we will join on it

note that we have on the both sides of the join

can just drop it (it won't affect the join)

finally we translate "WHERE" and "SELECT"

NOT EXISTS in the Where Clause (by example)

SELECTS.movieTitle, M.studioName

FROM StarsIn S, Movie M

WHERE S.movieYear >= 2000

AND S.movieTitle = M.title

AND NOT EXISTS (

 SELECT name

 FROM MovieStar

 WHERE birthdate = 1960 AND name = S.starName)

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

3 of 7 11/12/2018, 4:46 PM

Algorithm

Same as before: we translate the subquery

Then we add context relations and context parameters

And same for the FROM clause

Then we need to synchronize the results, but this time with Anti-Join ()

note that here the simplification is not possible: the semantics of Anti-Join is different from Join

so we cannot remove from both parts

the last step is the same: we translate "WHERE" and "SELECT"

EXISTS Subqueries in WHERE Combined with Other

So far we've considered only queries of the following form:

SELECT ... FROM ...

WHERE ... AND

EXISTS (...) AND

 ... AND

NOT EXISTS (...)

I.e. EXISTS and NOT EXISTS are in the "WHERE" clause joined by "AND"

What about the following query?

SELECT ... FROM ...

WHERE

 A = B AND NOT (EXISTS (...) AND C < 6)

First, we translate the condition into Disjunctive Normal Form

SELECT ... FROM ...

WHERE

 (A = B AND NOT (EXISTS (...))) OR

 (A = B AND C >= 6)

Then we distribute OR (to UNION)

(SELECT ... FROM ...

WHERE

 A = B AND NOT EXISTS (...))

UNION

(SELECT ... FROM ...

WHERE

 A = B AND C >= 6)

As we've seen, UNION is translated as

Union In Subqueries

We may have UNOIN in subqueries

SELECT S1.C, S2.C

FROM S S1, S S2

WHERE EXISTS (

 (SELECT R1.A, R1.B FROMR R1

WHERE A = S1.C AND B = S2.C) -- (1)

UNION

 (SELECT R2.A, R2.B FROMR R2

WHERE B = S1.C) -- (2)

)

Recall that to be able to UNION two relations, they must have the same schema

But in this case:

(1) has 2 context relations and

(2) has only 1 context relation

 When translating, need to add to (2) as well

and make sure that they have the same name

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

4 of 7 11/12/2018, 4:46 PM

Translating Joins

Joins

(SELECT * FROM R R1) JOIN (SELECT * FROM R R1) ON R1.A = R2.B

We translate as follows:

Group and Having

Suppose we have the following query:

SELECT name, SUM(length)

FROM MovieExec, Movie

WHERE cert = producer

GROUP BY name

HAVING MIN(year) < 1930

We translate it as

here the translate the HAVING clause as before the

also note that SUM(length) goes to

Exercises

Exercises from Database Systems Architecture (ULB)

the exercises: [1]

the proposed solutions [2]

Exercise 1

The given relations:

Student(snum, sname, major, level, age)

Class(name, meets_at, room, fid)

Enrolled(snum, cname)

Faculty(fid, fname, deptid)

SELECT C.name

FROM Class C

WHERE C.room = 'R128' OR

C.name IN (

SELECT E.cname

FROM Enrolled E

GROUP BY E.cname

HAVING COUNT(*) >= 5)

First we distribute OR

SELECT C.name

FROM Class C

WHERE C.room = 'R128'

UNION

SELECT C.name

FROM Class C

WHERE C.name IN (

SELECT E.cname

FROM Enrolled E

GROUP BY E.cname

HAVING COUNT(*) >= 5)

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

5 of 7 11/12/2018, 4:46 PM

for the subquery we replace IN to EXISTS

SELECT C.name

FROM Class C

WHERE EXISTS (

SELECT E.cname

FROM Enrolled E

WHERE E.cname = C.name

GROUP BY E.cname

HAVING COUNT(*) >= 5)

Now we translate the subquery

note that we use and not , because in the second case it will return only the two specified columns

Next, we need to synchronize (or "decorrelate") the subquery and the outer query

add because we need only these values - E.name was used for EXISTS part only

since we have on both sides of the Join - we can drop the first one (as well as the Join)

and we also can merge successive projections

so we get:

Now we do the union (easy)

Since both parts have the same schema, union is possible

The total results is:

Exercise with the Count Bug

SELECT F.fname

FROM Faculty F

WHERE 5 > (

SELECT COUNT(E.snum)

FROM Class C, Enrolled E

WHERE C.name = E.cname AND

C.fid = F.fid)

First translate to an equivalent EXISTS query

SELECT F.fname

FROM Faculty F

WHERE EXISTS (

SELECT COUNT(E.snum) as CNT

FROM Class C, Enrolled E

WHERE C.name = E.cname AND

C.fid = F.fid

HAVING CNT < 5)

Remarks

note the change in the sign from > to <

also we use HAVING instead of WHERE - because GROUP is assumed

not all databases will take this kind of query.

For instance, MySQL will not (however it's not fully SQL compliant)

Using the rules, we try to translate the query this way:

first we translate the subquery

then decorrelate it:

can remove and keep only needed projection attributes

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

6 of 7 11/12/2018, 4:46 PM

Note that this is not the query we want!!!

Faculty members who don't teach any class are not output by the expression, but they are output by the original SQL query

Count bug

this issue is known as the count bug

it occurs when we have subqueries use COUNT without GROUP BY

to solve it we need to use right outer join instead of

See also

Relational Algebra

Lecture Notes by S. Vansummeren [3]

Sources

Database Systems Architecture (ULB)

Retrieved from "http://mlwiki.org/index.php?title=Translating_SQL_to_Relational_Algebra&oldid=823"

Category: Relational Databases

This page was last modified on 14 August 2018, at 22:46.

2012 – 2018 by Alexey Grigorev

Powered by MediaWiki. TyrianMediawiki Skin, with Tyrian design by Gentoo.

Privacy policy About ML Wiki Disclaimers

Translating SQL to Relational Algebra - ML Wiki http://mlwiki.org/index.php/Translating_SQL_to_Relational_Algebra

7 of 7 11/12/2018, 4:46 PM

