
RTS/CTS-Induced Congestion
in Ad Hoc Wireless LANs
Saikat Ray, Jeffrey B. Carruthers and David Starobinski

Abstract— The RTS/CTS mechanism is widely used in wireless
networks in order to avoid packet collisions and, thus, achieve
high throughput. In ad hoc networks, however, the current
implementation of the RTS/CTS mechanism may lead to inter-
dependencies so that nodes become unable to transmit any
packets during long periods of time. This effect manifests itself in
the form of congestion where, after a certain point, the network
throughput decreases with increasing load instead of maintaining
its peak value. In this paper, we describe and analyze this problem
in detail and provide a backward-compatible solution, called
RTS Validation. Our simulations show that this solution leads
to a 60% gain in the peak throughput in addition to stabilizing
the throughput at high load.

I. INTRODUCTION

The performance of a wireless network critically depends
upon the medium access control (MAC) protocol used. Carrier
Sense Multiple Access (CSMA) protocol is often chosen be-
cause of its simplicity and scalability. However, simple CSMA
is susceptible to the hidden node problem [1], especially in
so called ad hoc networks where a node may communicate
directly with every other node in range or using interme-
diate nodes as relays otherwise [2, 3]. Hidden nodes cause
costly packet collisions and thus significantly affect network
performance. In order to combat the hidden node problem,
a mechanism known as RTS/CTS handshake is often used.
For example, the RTS/CTS mechanism is supported in the
IEEE 802.11 family of standards. The RTS/CTS mechanism
was initially proposed in [4] in a protocol called Multiple-
Access with Collision Avoidance (MACA). In [5], the authors
proposed a modified version of MACA, MACA for Wireless
(MACAW), which includes a MAC level acknowledgment
(ACK). IEEE 802.11 standard uses a variant of MACAW along
with CSMA.

From a network point of view, one of the primary reasons
for using the RTS/CTS mechanism is to avoid network conges-
tion resulting from frequent packet collisions. Figure 1 depicts
a conceptual “throughput versus load” curve for a network.
In the presence of congestion, the throughput goes to zero
as the load is increased beyond a certain value. A properly
designed network, on the other hand, maintains the maximum
throughput as the load goes to infinity.

The RTS/CTS mechanism generally works well in
infrastructure-based networks, even though it may lead to

The authors are with the Department of Electrical and Computer Engineer-
ing, Boston University.

This work was supported in part by the National Science Foundation under
NSF CAREER grant ANI-0132802 and by a SPRInG award from Boston
University.

Load

T
hr

ou
gh

pu
t

Ideal 

Desired 

Congested 

Fig. 1. Typical network throughput.

unfairness in some situations [6]. However, in the general
setting of ad hoc networks, the current way of implementing
the RTS/CTS mechanism gives rise to situations where a large
number of nodes are unable to transmit any packet. These situ-
ations can lead to network-level congestion. Consequently, the
throughput of the network goes to zero as the load increases,
i.e. it follows the “Congested” curve in Figure 1 instead
of following the “Desired” curve. Therefore, the RTS/CTS
mechanism fails to achieve its goal from a network point of
view.

We note that RTS/CTS-induced congestion is different from
the congestion that arises in the familiar TCP context. The
latter occurs due to buffer overflow while the former is related
to medium access control, i.e. RTS/CTS-induced congestion
can take place even if an infinite buffer is used in every node.

In this paper, we examine the phenomenon of RTS/CTS-
induced congestion in ad hoc wireless LANs. We first explain
the cause of RTS/CTS-induced congestion, the blocking prob-
lem, which occurs due to the fact that any node that receives
an RTS or a CTS packet defers its transmissions without using
any further information. The blocking problem may force a
large number of nodes not to transmit, sometimes creating
situations akin to a deadlock, which we describe in Section II.
By observing that it is possible for the nodes to use additional
information to decide whether to defer or not, we present
a backward compatible solution to the blocking problem in
Section III, which is called RTS Validation. We compare our
approach against the standard implementation of RTS/CTS
mechanism in Section IV. Simulation results show that with
the standard RTS/CTS implementation, the network behaves
as a congested network and that the RTS Validation solves



RTS

CTS

ACK

DATA

C A B D

C is
blocked

D is

blocked

Time

Fig. 2. IEEE 802.11 MAC. The lower half depicts the time-line. The dark
bars below node C and D indicates their NAV.

the congestion problem. Finally, we summarize the work in
Section V.

II. RTS/CTS-INDUCED CONGESTION

A. RTS/CTS Mechanism in IEEE 802.11

In this section, as a typical example of the implementation
of the RTS/CTS mechanism, we briefly describe the DCF mode
of the IEEE 802.11 Wireless LAN protocol. The protocol is
described in detail in [7].

In the DCF mode, a node may transmit a packet using one
of the following two methods: the basic access method or the
RTS/CTS method. In the basic access method, a node transmits
a DATA packet if it senses the channel to be idle. The receiver,
upon receiving an error-free packet, returns an ACK. If the
transmitting node does not get an ACK back, it enters into
back-off and retransmits after the back-off period.

The basic access method suffers from the well-known
hidden node problem [1]. In order to address the issue,
IEEE 802.11 supports the RTS/CTS access control mode. The
RTS/CTS access mode is a combination of carrier sensing and
a modified version of the MACAW protocol proposed in [5].
Figure 2 illustrates the scheme. When a node A wants to
send a packet to node B, it initially sends a small packet
called Request-to-Send (RTS). Upon correctly receiving the
RTS, node B responds with another small packet called Clear-
to-Send (CTS). After receiving the CTS, node A sends the
DATA packet to node B. If node B receives the DATA packet
correctly, it sends an Acknowledgment (ACK) back to node A.
Any node that hears an RTS or a CTS is prohibited from
transmitting any signal for a period that is encoded in the
duration field of the received RTS or CTS. The duration fields
in RTS and CTS are set such that nodes A and B will be able
to complete their communication within the prohibited period.
The deferral periods are managed by a data structure called
the Network Allocation Vector (NAV). Finally, if a node does
not get a response to an RTS or a DATA packet, it enters into
an exponential backoff mode.

A B

C
RTSBlocked

D

Fig. 3. Blocking Problem. Node C is blocked due to the communication
between node A and node B. Therefore, node D does not get any response
to the RTS packets it sends and enters backoff.

B. The Blocking Problem

We define a node to be blocked if it is prohibited from
transmitting at a given instant. Since only one node is allowed
to transmit at any time within the range of a receiver, many
nodes in a wireless network may be blocked. Moreover,
neighbors of a blocked node are unaware of the fact that this
node is blocked. Therefore, a node may wish to initiate a
communication with a node that is presently blocked. In that
case, when the sender sends an RTS packet, the destination
does not respond because it is blocked. The sender, however,
interprets this to be a channel contention and enters backoff.
We refer to this problem as the blocking problem.

Figure 3 describes the blocking problem. In this figure,
node B transmits a packet to node A. Node C receives both
RTS and CTS packets and therefore remains prohibited from
transmitting. While the communication between node B and
node A goes on, node D sends an RTS to node C. Since
node C is blocked, it cannot respond with a CTS. Therefore,
node D does not get any response and enters into backoff
mode.

In [8], the author briefly describes this problem where it
is termed as hidden receiver and exposed receiver problem.
However, the blocked node need not be a hidden or an exposed
node. For example, in Figure 3, node C receives both RTS and
CTS and is therefore neither a hidden nor an exposed node.
Therefore, we prefer to call this problem the blocking problem.

Due to exponential backoff of IEEE 802.11 MAC, the
RTS sender (node D in the example above) quickly enters
into a long inhibition period. This under-utilizes the network
capacity. However, the current implementation of the RTS/CTS
mechanism suffers from an even more severe problem, as
described next.

C. The False Blocking Problem and its Propagation

In IEEE 802.11 MAC, any node that receives an RTS packet
is required to inhibit transmission. This rule is designed to



BA

C

D

E

FG

Blocked

RTS

Blocked

Blocked
RTS

Fig. 4. False blocking problem. Node E is unnecessarily blocked because
of node D’s RTS. Therefore, node F does not get any response to its RTS,
which in turn blocks node G and so on.

ensure that the ACK packets can be received by the sender
without any collision. However, due to this rule, a nearby node
may get falsely blocked, i.e. it may become prohibited from
transmitting even if no other node is actually transmitting.
Specifically, an RTS packet destined to a blocked node forces
every other node that receives the RTS to inhibit even though
the blocked destination does not respond and thus no DATA
packet transmission takes place. We call this problem the false-
blocking problem.

Figure 4 explains the problem. In this figure, node B is
sending a packet to node A and therefore node C is blocked.
While node C is blocked, node D sends RTS packets to
node C, but node C does not respond. However, node E
receives the RTS packets and prohibits itself from transmitting.
Node E is therefore false blocked.

The simple blocking problem is localized to the neighbors of
the blocked node and thus has a limited impact on the network
performance. False blocking, however, may propagate through
the network, i.e. one node may become false blocked due to
a node that itself is false blocked. Therefore, false blocking
may affect network performance severely.

Figure 4 shows a scenario of the propagation of false
blocking. As in the previous example, node E is false blocked.
Now, node F sends an RTS packet to node E and does not get
any response. Therefore, node F goes into backoff. However,
the RTS packet sent by node F blocks node G and so on.
Note that a blocked node remains blocked for longer than a
DATA packet transmission time (see Figure 2). Therefore, the
likelihood that some other node wishes to communicate to a
blocked node is non-negligible, especially at higher network
load.

blocked

blocked

blocked

RTS

RTS
RTS

B

A

CD

E

F

G

DATA

(a) Topology.

RTS

RTS RTS

DATA

Blocked Blocked

A

B

C

D

E

F

Blocked

RTS

ACK

RTS

Blocked

(b) Timing.

Fig. 5. Pseudo-Deadlock. Initially node A receives a packet from node G.
This transmission creates the sequence of blocked and deferring nodes
{F, E, D, C}. After G’s transmission is over, node A transmits an RTS packet
to node B. However, node C’s RTS sent to node D blocks node B while
node A receives packet from node G, therefore, node A does not get response
to its RTS. Now, every node tries to transmit to a blocked node and a deadlock
occurs.

D. Pseudo-Deadlock

The false blocking problem may not only propagate
throughout a network, but it might also give rise to dead-
lock situations, at least for temporary periods. Once such a
deadlock takes place, the throughput of the nodes involved in
the deadlock goes down to zero. However, this deadlock is
expected to be broken eventually as packets are dropped after
a certain number of back-off attempts. Therefore, we refer to
this situation as a pseudo-deadlock.

The basic cause of a pseudo-deadlock is that the propa-
gation of false blocking takes place along a “circular” path.
Figure 5(a) depicts such a situation. In this figure, node A
initially receives a packet from node G. Node F is blocked
during this time because node A is receiving. So, node E does
not get any response to the RTS packets it sends to node F .
Node E’s RTS packets, however, force node D into false



blocking. Subsequently, node C does not get any response
to the RTS packets sent to node D and, therefore, goes into
backoff. Node B, however, receives node C’s RTS packets and
therefore gets blocked.

Now, node A, after receiving the packet from node G,
wishes to communicate to node B. But, when node A sends
an RTS to node B, node B is already blocked and so node A
does not get any response. Node A’s RTS blocks node F ,
though. So, when node E sends its next RTS, it again receives
no reply. At this moment, in the cycle {A,B,C,D,E, F,A},
every second node {A,C,E} is sending RTS to the next node
{B,D,F}, which is already blocked and due to this RTS, the
previous node gets blocked. As long as the blocking period for
a node that receives an RTS is greater than the maximum time
gap between two RTS packets during retries, the nodes cannot
come out of this situation and therefore, this is a deadlock.
Figure 5(b) shows the timings of each packet.

In the usual situation, one of the nodes will drop its packet
after a certain number of retries and the deadlock will be
broken. However, if each node needs to send several packets to
the same destination (that may originate from a higher layer
protocol such as TCP), then the deadlock may persist for a
long period of time.

False blocking and consequent deadlocks significantly af-
fect the network performance by drastically reducing the
throughput. At the network level, this effect manifests itself
as congestion where the throughput goes to zero as the load
increases. We will present our simulation results in Section IV
that corroborate the congestion phenomenon, but first we
present a backward-compatible solution to the problem of false
blocking in the next section.

III. SOLUTION TO FALSE BLOCKING: RTS VALIDATION

False blocking is a consequence of the fact that every node
that receives an RTS inhibits itself from transmitting. However,
if a node is false blocked, then the corresponding DATA
packet transmission does not take place while the node defers.
Therefore, it follows that if a node assesses the channel to
be idle during the expected DATA packet transmission period
following an RTS, then the node must be false blocked.

Our proposed solution, called RTS Validation, is based on
this observation. A node that uses RTS Validation, upon over-
hearing an RTS packet, defers until the corresponding DATA
packet transmission is expected to begin and then assesses
the state of the channel. If the channel is found idle, then it
defers no longer, otherwise it continues deferral. Specifically,
when a node receives an RTS that is not destined for itself,
it defers for next RTS Defer Time. The RTS Defer Time is set
as small as possible so that the DATA packet transmission is
expected to begin at the end of this period, with allowances
for various propagation delays. After this deferral period, the
node assesses the channel for next Clear-Channel Assessment
Time (CCA Time) while continuing deferring (The CCA Time
is the time required to assess the state of the channel [7]).
If the channel is assessed to be busy, the node defers for
an additional period so that the total deferral time equals to

�����������������
�����������������
�����������������
�����������������

��������
��������
��������
��������

DEFER
DEFER

SIFSSIFS

DATACTS
RTS

Carrier Sense

(a) The node senses busy channel following RTS Defer Time
and therefore continues deferral.

�����������������
�����������������
�����������������
�����������������

RTS CTS

DEFER

SIFS SIFS
Carrier Sense

(b) The node assesses idle channel following RTS Defer Time
and therefore defers no longer.

Fig. 6. RTS Validation mechanism.

Requested Defer Time, the duration of deferral requested by
the RTS; otherwise it defers no longer. Figure 6 explains the
proposed rule.

With RTS Validation, the nodes that receive an RTS destined
to a blocked node ignore the RTS when the channel is assessed
idle. Since RTS Defer Time and CCA Time are generally
much smaller than the Requested Defer Time, the likelihood of
propagation of false blocking greatly reduces when RTS Vali-
dation is used. Note, however, that the RTS Validation mech-
anism may decide to defer even if the corresponding DATA
packet transmission did not begin if it assesses the channel to
be busy because of other transmissions.

RTS Validation is a backward-compatible approach in the
sense that a node that uses RTS Validation (an “intelligent”
node) may communicate with a node that does not use
RTS Validation (standard node), since RTS Validation does not
require any change in the packet format or the packet exchange
protocol. However, in a network mixed with intelligent and
standard nodes, the intelligent nodes may be able to transmit
more packets since they defer for a much smaller time in the
case of false blocking.

Note that there are other ways to combat the false blocking
problem. For example, in the MACAW [5] protocol, another
packet, called DATA Send (DS), is sent when a node receives
CTS in response to an RTS. Another approach is to use
Negative CTS (NCTS) as suggested in [8]. These approaches
would perform similarly to RTS Validation. The RTS Valida-
tion approach, however, has the important advantage of being
backward compatible.



0 5 10 15 20 25 30

5

10

15

20

25

x−axis

y−
ax

is

Fig. 7. The network used for the simulation. The circle represents the
footprint of the node at the center of the circle. There are 10 nodes per
footprint on average.

IV. SIMULATION

A. Simulation Models

Our MATLAB based simulator [9] simulates a static two-
dimensional network with wrap-around topology. Every node
transmits omni-directionally with the same power, all trans-
missions experience the same path loss versus distance profile,
and each node has the same antenna gain and receiver sensi-
tivity. Around each node, a circular region exists, called the
footprint, which defines the transmission range of the node.
Nodes within transmission range of each other communicate
without any error in the absence of packet collisions; nodes
outside transmission range do not interfere. Figure 7 shows
the network used and the range of a node. Propagation delay
is assumed to be negligible. The 2300 byte size packets are
transmitted at a 1-Mbps rate according to Poisson arrival
processes independently generated at each node. The common
average rate of packet generation per footprint defines the
load of the network. DSSS parameters values of the IEEE
802.11 standard are used. The destination of each packet is
one hop away, chosen at random. In addition, we assume
that a successful RTS/CTS exchange guarantees a collision-
free DATA packet transmission so that the effect of packet
loss does not obscure the simulation results [10].

B. Results

In this section we compare the performance of the network
when every node uses RTS Validation against the standard
scenario where no node uses RTS Validation.

Figure 8 shows the fraction of times a node cannot send CTS
due to blocking after receiving an RTS packet. We observe that
the use of RTS Validation reduces this fraction considerably.
For example, at a load of 30, the fraction is about 0.8 when
RTS Validation is not used, but reduces to about 0.4 when
RTS Validation is used. The significant blocking of standard
RTS/CTS manifests itself as congestion when we consider
network throughput, as shown next.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Load

F
ra

ct
io

n 
of

 u
nr

ep
lie

d 
R

T
S

Without RTS_Validation 

With RTS_Validation 

Fig. 8. Blocking: Comparison between the standard and the RTS Validation
approach. Only successfully received RTS packets are counted in this figure.

0 20 40 60 80
0

10

20

30

40

50

60

Load

T
hr

ou
gh

pu
t

Point−to−Point Capacity 

With RTS_Validation 

Without RTS_Validation 

Fig. 9. Throughput: Comparison between the standard and the RTS Validation
approach.

We define throughput to be the number of packets suc-
cessfully transmitted per second per footprint on average.
Figure 9 shows the throughput of the network as the load of
the network increases. Clearly, the throughput of the network
with standard RTS/CTS mechanism goes to zero as the load
is increased, which implies that the network behaves like a
congested network. When we introduce RTS Validation, we
observe that the network performance is improved in two
aspects. First, it stabilizes the network throughput with the
load, i.e. the throughput does not fall after it achieves the peak.
Secondly, it increases the peak throughput from approximately
22 packets per second to 35 packets per second per footprint.
The point-to-point capacity in this figure, shown as a reference,
refers to the number of packets a node can send back-to-back
when no other node contends for the channel.

Another important aspect of network performance, the
packet delivery time (or simply delay), is also improved.
Figure 10 shows the average packet delay as the load increases.
We observe that the difference in the two approaches is not



0 10 20 30 40 50
0

50

100

150

200

250

Load

A
ve

ra
ge

 D
el

ay
 (

m
s)

Without RTS_Validation

With RTS_Validation 

Fig. 10. Delay: Comparison between the standard and the RTS Validation
approach.

significant up to a load of about 15. After that, however, the
network saturates quickly if RTS Validation is not used. Specif-
ically, without RTS Validation, the network saturates at a load
of about 30 packets per second, while with RTS Validation,
it takes a load of about 40 packets per second to saturate the
network. Also, at any load, use of RTS Validation yields a
lower average delay.

V. SUMMARY

The RTS/CTS mechanism is widely used in ad hoc networks
to avoid collisions caused by hidden nodes. In the current
implementation, any node that receives an RTS or a CTS packet
inhibits itself from transmitting without using any further
information. In this paper, we have shown that this approach of
implementing the RTS/CTS mechanism leads to false blocking,
where a node remains prohibited from transmitting even if
no nearby node transmits. Moreover, false blocking may
propagate through the network; as a result, a large number
of nodes may get false blocked. We have also shown that
propagation of false blocking can lead to pseudo-deadlocks.
Due to false blocking, the throughput of the network goes
to zero as the load of the network is increased beyond a
certain value. Therefore, the RTS/CTS mechanism may congest
a network instead of stabilizing it.

We have proposed a simple solution to the false-blocking
problem, called RTS Validation. A node that uses RTS Valida-
tion defers for an entire packet transmission period if DATA
packet transfer begins, but defers only for a short time if no
transmission takes place when DATA packet transmission is
expected. By means of simulation, we have shown that the use
of RTS Validation improves the network performance in three
aspects: it eliminates congestion by stabilizing the network
throughput at high load, it increases the peak throughput
by 60%, and it significantly reduces the average delay. RTS
Validation is a backward compatible solution and thus can be
implemented incrementally.

REFERENCES

[1] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels:
Part 2 - the hidden node problem in carrier sense multiple access modes
and the busy tone solution,” IEEE Transactions on Communications,
vol. COM-23, no. 12, pp. 1417–1433, 1975.

[2] C K Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems,
Prentice Hall, December 2001.

[3] Zygmunt J. Haas, Jing Deng, Panagiotis Papadimitratos, and S Sajama,
“Wireless ad hoc networks,” in Wiley Encyclopedia of Telecommunica-
tions, John G. Proakis, Ed. Wiley, December 2002.

[4] Phil Karn, “MACA - a new channel access method for packet radio,”
in ARRL/CRRL Amature Radio 9th Computer Networking Conference,
September 22 1990, pp. 134–140.

[5] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang,
“MACAW: A media access protocol for wireless LANs,” in Proceedings
of ACM SIGCOMM ’94. 1994, pp. 212–225, ACM.

[6] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly, “Ordered
packet scheduling in wireless ad hoc networks: Mechanism and perfor-
mance analysis,” in Proceedings of MOBIHOC’02, EPFL Lausanne,
Switzerland, 2002, ACM.

[7] “ANSI/IEEE Std 802.11-1999 Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” 1999.

[8] Vaduvur Bharghavan, “Performance evaluation of algorithms for
wireless medium access,” in IEEE Performance and Dependability
Symposium ’98, Raleigh, NC., 1998, IEEE.

[9] “SimEleven: An IEEE 802.11 MATLAB-based simulator.,” Available at:
http://netlab1.bu.edu/∼saikat.

[10] Saikat Ray, Jeffrey B. Carruthers, and David Starobinski, “The masked
node problem in ad hoc wireless LANs,” Preprint.


