
Computer Networks Lab Practicing with the
NS simulator

B. Stojcevska1, A. Misev2, M. Gusev3

Abstract – In this paper we overview lab practicing exercises for
generic computer networks course curricula. We will also
present statistical data that shows how the new way of teaching
affects the students’ skills and knowledge obtained, and also
their average grades and score.

I. INTRODUCTION

Upgrading of the teaching process does not only mean
introducing new curricula and new courses, but also
developing and applying new teaching and grading methods.
Advancing through the ECTS, we introduced the system to
assign the students various homework assignments and
projects, supported by tools that will provide them with the
necessary environment to realize the tasks.

The Computer Networks course consists of several major
topics: data communication standards, various protocol
models, data transmission, transmission media, coding,
communication interfaces, flow control, multiplexing, circuit
and packet switching, LAN and IP protocols. It represents a
theoretical introduction to the main concepts of the computer
networks. The realization of the curriculum was done through
lectures, exercises and laboratory exercises. It is hosted at:
http://twins.pmf.ukim.edu.mk/courses/mrezi/. This paper add-
resses lab practicing part of the course, where students could
score 8 - 10% of the total credit.

II. NS SIMULATOR PROJECTS

The ns (Network Simulator) is an object-oriented platform
aimed for research in the domain of computer networks. ns is
a tool for discreet simulation of events and supports
implementation and utilization of a set of network protocols
and topologies.

The simulator is a part of the VINT (Virtual InterNet
Testbed simulator) as a joint effort by people from UCB
(University of California Berkeley), LBNL (Lawrence
Berkeley National Laboratory), USC/ISI (University of
Southern California's Information Sciences Institute) and
Xerox PARC (Palo Alto Research Center).

1B. Stojcevska is with the University “Sts. Cyril and Methodius”,
Faculty of Natural Sciences and Mathematics, Arhimedova 5, 1000
Skopje, Macedonia, E-mail: biljanas@ii.edu.mk

2A. Misev is with the University “Sts. Cyril and Methodius”,
Faculty of Natural Sciences and Mathematics, Arhimedova 5, 1000
Skopje, Macedonia, E-mail: anastas@ii.edu.mk
 3M. Gusev is with the University “Sts. Cyril and Methodius”,
Faculty of Natural Sciences and Mathematics, Arhimedova 5, 1000
Skopje, Macedonia, E-mail: marjan@ii.edu.mk

ns supports simulation of variety of IP networks and
protocols, such as TCP and UDP, traffic sources with FTP,
Telnet, Web, CBR and VBR behavior, queuing management
mechanisms, routing protocols and MAC protocols for local
area networks. It has an open architecture and supports growth
and adding of new protocols. That is why it is widely used in
the Internet and computer networks research community. We
used the version ns-2 as a tool for examining TCP behavior in
different network scenarios.

A. Using ns

The simulator is an OTcl interpreter and is used by writing
OTcl scripts with simulation scenario specifications. These
scripts contain: basic network elements – nodes, links and
queues; the transport connections and the traffic that goes over
the transport connections at the application layer; event
handling procedures, and events.

The new network objects can be defined by using the
objects from the ns library. The data path between the objects
is defined in the OTcl scripts by object plumbing and
specifying the behavior of the data sources. The simplicity of
object combining makes ns a powerful tool for developing and
testing new network protocols, especially during their
development.

There are a variety of possibilities to display data, which
are the result of a running of a script. They can be sent to
standard output, but a more often way is to put the output data
in trace files. The contents of a trace file do not include
overall simulation information, but only records about packet
events. Calculation of the performance parameters, such as
throughput or packet loss, based on the trace files usually
requires writing specific programs or importing the data into
spreadsheet application.

The ns platform includes the Network Animator (NAM)
tool, which can do a graphical simulation display. NAM has a
GUI interface with buttons that control the animation flow. It
can produce graphical information about the simulation
parameters, and give information about the objects in the
simulation, but it cannot be used for accurate simulation
analysis.

B. The simulator structure

The basic ns components are: event scheduler; library of
network components and plumbing modules; events and event
handlers.

An event in ns is a unique packet identifier, time of
execution and event handler that will perform an action. The
event scheduler schedules the events in an event queue. When
an event needs to take place, the scheduler activates the
network component that should handle the event. The network
component communicates by exchanging packets.

ns is implemented in C++ and it uses OTcl (Object Tool
Command Language) as a command and configuration
interface. There is a C++ class hierarchy and an OTcl class
hierarchy. Both hierarchies are closely related Figure 1. The
C++ classes contain the implementation of the objects that
handle the packets as a compiled library. Each C++ object
corresponds to an OTcl interpreted object. The OTcl classes
are used for object handling and simulation configuration.

C++ OTcl

Figure 1: C++ and OTcl duality

The choice of the programming language depends on the
application. The structure of the platform and the characte-
ristic of the languages imply the following recommendations:

≠ C++ for data – when a packet handler is implemented
or the required function is not implemented

≠ OTcl for management – for object manipulation,
defining simulation parameters and time scheduling.

C. Student projects

We used the ns educational scripts database available at
http://www.isi.edu/nsnam/repository/topics.html. The databa-
se contains the following simulation scripts divided in several
topics:

Application
≠ multipleappPa.tcl: multiple pareto sources on a link.

Defines three pareto traffic sources on a link.

TCP
≠ bwxd.tcl: Demonstrates and explains TCP's stop-and-wait

behavior. Stop-and-Wait protocols have some desirable
properties. They are ACK-clocked and automatically adjust
the transmission speed to both the speed of the network and
the rate the receiver sends new acknowledgements. They
respect the conservation principle of computer networks.

≠ A1-stop-n-wait.tcl: Another script showing TCP's stop-and-
wait behavior. Stop-n-wait" is the fundamental technique to
provide reliable transfer under unreliable packet delivery
system. After transmitting one packet, the sender waits for
an acknowledgment (ACK) from the receiver before
transmitting the next one. In this way, the sender can

recognize that the previous packet is transmitted
successfully and we could say "stop-n-wait" guarantees
reliable transfer between nodes.

≠ ack_clock.tcl: Demonstrates and explains TCP's sliding
window algorithm. Similar to A1-stop-n-wait.tcl.

≠ SlowStart.tcl: Shows TCP's slow-start algorithm. This
scenario shows TCP using slow-start and congestion
avoidance.

≠ NoSlowStart.tcl: Shows TCP without slow-start. This
simulation shows the behavior of TCP before Van Jacobson
added features like slow start, a revised RTT estimator, and
congestion avoidance.

≠ A4-slow-start.tcl: Another script demonstrating slow-start.
"slow start" is kind of "sliding window", the difference
between "sliding window" and "slow start" is that "slow
start" allows various window size while "sliding window"
has fixed window size. Using "slow start", the sender can
transmit as much packets as the network can deliver. The
basic idea behind "slow start" is to send packets as much as
the network can accept. It starts to transmit 1 packet and if
the that packet is transmitted successfully and receives an
ACK, it increases its window size to 2, and after receiving 2
ACKs it increases its window size to 4, and then 8, and so
on. "Slow start" increases its window size exponentially.

≠ NoSlowStart[1].tcl: Another script demonstrating TCP with
no slow-start.

≠ D1-m-decrease.tcl: Shows multiplicative decrease of TCP's
window size. When a network is getting congested and
packets are lost or when a network delay increases and
packets timed out, TCP adjusts its window size to fit the
congested environment. "Multiplicative Decrease" in TCP
exists for that. Whenever the sender recognizes that there is
a collision - by receiving duplicated ack or timeout -, it
decrease its window size by half of current window size
(while the value is greater than 2) and transmits data in
"slow-start" fashion, so that TCP can deliver its data
reliably and efficiently even in a congested environment.
This feature is necessary in the Internet.

≠ fast-retransmit.tcl: Shows fast-retransmit behavior of TCP's
congestion avoidance algorithm. Fast retransmit is a
modification to the congestion avoidance algorithm. As in
Jacobson's fast retransmit algorithm, when the sender
receives 3rd duplicate ACK, it assumes that the packet is
lost and retransmits it without waiting for a retransmission
timer to expire. After retransmission, the sender continues
normal data transmission. That means TCP does not wait
for the other end to acknowledge the retransmission.

≠ Fast-retransmit.tcl: Another script for fast-retransmit
≠ Fast-recovery.tcl: Shows fast-recovery behavior of TCP's

congestion avoidance algorithm. Fast Recovery is now the
last improvement of TCP. With using only Fast Retransmit,
the congestion window is dropped down to 1 each time
network congestion is detected. Thus, it takes an amount of
time to reach high link utilization as before. Fast Recovery,
however, alleviates this problem by removing the slow-start
phase. Fast Recovery algorithm has been implemented in
TCP since Reno release. It collaborates with Fast

Retransmit algorithm in an algorithm called "Fast
Retransmit/Fast Recovery Algorithm".

≠ fast-rxt-recovery.tcl: Another script showing fast
retransmit/fast recovery algorithm

≠ multiple-drops.tcl: Shows TCP's failure to do fast
retransmit/fast recovery incase of multiple drops in the same
window. This script demonstrates TCP failure to trigger fast
retransmit and fast recovery algorithms when there are
multiple drops in the same window. The cwnd drops to 1
due to a timeout and TCP enters slow start.

≠ delayed_acks.tcl: Shows delayed ack method used by TCP
for cumulative acknowledgements. TCP uses cumulative
acknowledgements, that is, it can acknowledge up to a
certain sequence number in the same ACK. Until the
moment we have seen the receiver acknowledge each
segment received individually, but it is possible to wait a
certain amount of time before sending the
acknowledgement in order to acknowledge several
segments in the same ACK

Other transport protocols
≠ chain.tar: Demonstrates SRM's (a reliable multicast

protocol) loss recovery for a chain topology. SRM is a
reliable multicast protocol, building the reliability on an
end-to-end basis. SRM members, who detect loss wait a
random time and then multicast their repair request. Any
node, which has the data, waits for a random time and sends
the repair data. A Chain network topology, where all nodes
in the chain are members of the multicast session. The loss
recovery is deterministic in this topology. The deterministic
suppression will ensure that there will be only one request
and one repair. The animation illustrates scenarios where
SRM handles losses in a chain topology and interaction of
SRM session messages and loss recovery.

≠ star.tar: Demonstrates SRM's (a reliable multicast protocol)
loss recovery for a star topology. SRM is a reliable
multicast protocol, building the reliability on an end-to-end
basis. SRM members, who detect loss wait a random time
and then multicast their repair request. Any node, which has
the data, waits for a random time and sends the repair data.
A Star network topology, where all nodes in the chain are
members of the multicast session.

≠ star-cmplx.tar: The animation illustrates scenarios where
SRM handles losses in a star topology. SRM is a reliable
multicast protocol, building the reliability on an end-to-end
basis. SRM members, who detect loss wait a random time
and then multicast their repair request. Any node, which has
the data, waits for a random time and sends the repair data.
A Star network topology, where all nodes in the chain are
members of the multicast session. The loss recovery is
purely probabilistic in this topology. The number of request
and repair messages in this topology is dependent on the
randomness of the backoff timer values picked by the
nodes. The nodes estimate the group size and timer using
the session messages. The animation illustrates scenarios
where SRM handles losses in a star topology and there are
duplicate requests for a single loss.

≠ star-repair.tar: The animation illustrates scenarios where
SRM handles losses in a star topology pgm.tar: Script
showing PGM, another reliable multicast protocol. SRM
members, who detect loss wait a random time and then
multicast their repair request. Any node, which has the data,
waits for a random time and sends the repair data. A Star
network topology, where all nodes in the chain are members
of the multicast session. The loss recovery is purely
probabilistic in this topology.

≠ pgm-disable.tar: Shows aspects of PGM behavior. PGM is
Pragmatic General Multicast, another reliable multicast
protocol that guarantees reliability by making the
intermediate nodes aware of the losses. Protocol is based on
sequenced packets. Node, which detects loss, sends a NAK
upstream back to the source hop-by-hop and each node
records the state and replies with a NCF or the NAK
confirmation. This provides the reliability of the NAK for
each hop.

≠ pgm-rptrtx.tar: Another script that shows aspects of PGM
behavior.

Routing
≠ test-mcast-PimDm.tcl: Shows PIM (Protocol independent

multicast) behavior for dense mode. Protocol Independent
Multicast (PIM) is a multicast protocol, which is not
dependent on any unicast routing protocols. This
independency makes PIM contrast to the traditional
multicast routing protocols such as DVMRP and MOSPF.
DVMRP is based on distance-vector unicast routing
protocol. MOSPF is based on link-state unicast routing
protocol. There are 2 implemented modes of PIM: PIM
dense mode (PIM-DM) and PIM sparse mode (PIM-SM or
PIM). PIM-DM is suitable for an area which members of a
multicast group are distributed densely. PIM-SM is
developed for a situation that members of a multicast group
are distributed sparsely in a network. This simulation is
about PIM-DM.

≠ dm.tar: Another script for PIM-DM
≠ st.tar: Shows PIM for sparse mode. PIM-SM is protocol

independent multicast for sparse multicast membership. The
PIM is independent of the underlying unicast routing
protocol. The animation here illustrates the PIM-SM for a
random network topology.

≠ dvinfty.tcl: Demonstrates the classic count-to-infinity
problem faced by distance-vector routing algorithm

Queue management
≠ red-queue.tcl: Shows RED (Random Early Detection)

mechanism used for congestion avoidance. RED (Random
Early Detection) is one of congestion avoidance
mechanisms. It is placed in gateways (routers). Each
gateway is programmed to monitor its own queue length.
When it detects that congestion is imminent, it notifies the
source, which is believed to be the cause of congestion, by
dropping one of its packets.

≠ droptail-queue.tcl: Shows simple drop-tail (first-in, first-
out) policy

Each student was given one of the scripts in the database.
The student’s task was to perform the simulations with the
script and then analyze the output. Based on the results, they
had to write a seminal paper including the following: analysis
of the simulation script; description of the protocols and
mechanisms that are performed in the script; graphical
representation of the relevant simulation parameters based on
the trace files; conclusions about the protocol performance.

Our main goal was to train the students to use ns for
understanding various computer network architectures and
network protocol behaviors. This is not a trivial task since ns
is research oriented platform and doesn’t include user-friendly
training tools adequate for beginners usage.

D. Implementation of the projects

During the course, we have spent 4 hours for training the
students to use ns for performing simulations and
interpretation of the trace files. The students required 6 hours
to implement their tasks.

In addition, we briefly present one of the projects that were
graded with highest points. The student performed the script
fast-rxt-recovery.tcl that shows the fast retransmit/fast
recovery algorithm in TCP. The network topology is a simple
topology with two nodes, source and destination nodes,
connected with a 10 Mbps link. There are two TCP agents at
each node. The simulation duration is 1 sec. At time t=0.1216
a packet is dropped on the line After running the script, the
student gave a detailed description about the packets behavior,
the values of the congestion window and the values of the
congestion threshold in a scenario where. The main accent
was set on explaining what happens when the packet is
dropped and how TCP fast retransmit and fast recovery are
triggered. Instead of going to slow start, TCP keeps sending
with congestion window with constant size.

Figure 2 gives a graphical representation of the packet
sending process on a time axis.

fast retransmit –fast recovery

0
10
20
30
40
50
60
70
80
90

100

0 0,02 0,04 0,06 0,08 0,1
time

s
e
q
u
e
n
c
e

no.

Figure 2 Fast retransmit/fast recovery

Our overall opinion is that the students managed to become
skilled in using ns at beginner level successfully. This
knowledge helped them to understand the inner working of
the TCP/IP architecture, be able to create computer networks
with various topologies and analyze the results of ns
simulations. The students’ response to the projects was

extremely high. Out of 51 students, 45 students completed the
ns project. The average score of the project was 17 out of 20.
The point distribution is given in TABLE I.

TABLE I
POINT DISTRIBUTION

Points Students

19-20 25

17-18 4

15-16 4

13-14 0

11-12 4

1-10 9

III. ACHIEVED RESULTS

Out of the 51 students that took the course “Computer
Networks”, 20 students finished the course by the end of the
semester, approaching the 40% with average grade of 71%.
Additional 10 students passed the course by exams instead of
colloquia. Their average grade is 86%. The overall average
grade was 76%. Our estimate is that the low average grade is
mostly due to the nature of the courses. An interesting fact is
that the average grade is higher for the students that took the
exam. This is due to the fact that most of these 10 students
took the first colloquia, but were not satisfied with the results
and decided to take the exams. Over 90% of the students
finished their ns homework with respect to the deadline. This
was also the case with the second, programming project.

The grade distribution of the students passing the course is
given in [5]. We evaluate the ns usage in the computer
networks course as very useful. Each student had the chance
to experiment on its own since each student was given
individual and different homework. Unfortunately, we cannot
compare the results with previous years, since this is the first
course in computer networks. We propose to continue the
usage of the simulator in the teaching process.

LITERATURE
1. Fall, K., Varadhan, K., “The ns Manual”, LBNL,

http://www.isi.edu/nsnam/ns/ns-documentation.html, Nov
2001

2. The Network Simulator - ns-2, the VINT project,
http://www.isi.edu/nsnam/ns/

3. NS Educational Module Repository,
http://www.isi.edu/nsnam/repository/index.html

4. Chung, J., Claypool, M., NS by Example -
http://nile.wpi.edu/NS/

5. M. Gusev, “New methodology and evaluation system”,
Proc. TEMPUS CD JEP 16160-2001 project workshop

