|
|
|
NOTE:
|
|
|
E[ Y ]
B = --------
E[ A ]
|
The throughput depends on the number of transmission rounds inside one TD period
|
we find:
  E[A] = (E[X] + 1) × RTT . . . . . . . . . . . . . . . . (3a) |
where:
|
b
E[X] = --- E[W]
2
|
b = number of delayed ACKs
Prob[ α = k] = Prob[ the first packet lost is packet #k ]
= Prob[ first k-1 packets not lost and the next packet is lost ]
= (1 - p)k-1 × p
|
|
|
|
|
|
Notes:
E[M] = E[Yi1] + E[Yi2] + ... + E[Yi,ni] + 1 + 1 + ... + 1
| | | |
+------------------------------+ +---------------+
sent in the TD periods sent in TO periods
= E[Yi1] + E[Yi2] + ... + E[Yi,ni] + E[R]
|
|
Notes:
E[S] = E[Ai1] + E[Ai2] + ... + E[Ai,ni] + E[ ZiTO]
| | | |
+------------------------------+ +--------+
lengths of the TD periods length of the TO period
|
E[n] * E[Y] + E[R]
TCP Throughput = -----------------------
E[n] * E[A] + E[Z]
|
|
E[n] = average number of TD periods in one Reno cycle
= 1 * P[ 1st TD period ends in Timeout recovery ]
+ 2 * P[ 2nd TD period ends in Timeout recovery ]
+ 3 * P[ 3rd TD period ends in Timeout recovery ]
+ 4 * P[ 4th TD period ends in Timeout recovery ]
+ ...
= 1 * Q
+ 2 * (1-Q) * Q
+ 3 * (1-Q)2 * Q
+ 4 * (1-Q)3 * Q
+ ...
= Q * ( 1 + 2 * (1-Q) + 3 * (1-Q)2 + 4 * (1-Q)3 + ... )
1
= ---
Q
|
where:
|
|
Q = Q(1) * Prob[ W = 1 ]
+ Q(2) * Prob[ W = 2 ]
+ Q(3) * Prob[ W = 3 ]
+ Q(4) * Prob[ W = 4 ]
+ .... (upto infinity) . . . . . . . . . . . (6)
|
Where:
|
|
Approximation:
Q = E[Q(W)] ≅ Q( E[W] ) . . . . . . . . . . . (7) |
In other words:
2 W W 2 3
p (3 - 3 p + p ) ((1 - p) - (1 - p) p - 2 + 3 p - 3 p + p )
Q(W) = -------------------------------------------------------------- ....... (5)
W
-1 + (1 - p)
|
Replace W in the above equation with E[W] below:
--------------------------
/
2+b / 8(1-p) 2+b 2
E[W] = ----- + \ / -------- + ( ----- )
3b \/ 3bp 3b
|
E[R] = 1 * Prob[R=1] + 2 * 1 * Prob[R=2] + 3 * 1 * Prob[R=3] + ...
= 1 * Prob[R=1] + 2 * Prob[R=2] + 3 * Prob[R=3] + ...
|
Prob[ R = k ] = probability that there are k retransmission rounds
= Prob[ ((k - 1) rounds unsuccessful)
AND last round successful ]
= pk-1 * (1 - p)1
|
E[R] = 1*Prob[R=1] + 2*Prob[R=2] + 3*Prob[R=3] + ...
= 1 * (1-p) + 2 * p*(1-p) + 3 * p2*(1-p) + ....
1
= -------
1 - p
|
E[Z] = L1 * Prob[R=1] + L2 * Prob[R=2] + L3 * Prob[R=3] + ...
Using Maple: 2 3 4 5 6 1 + p +2 p + 4 p + 8 p + 16 p - 31 p E[Z] = TO ------------------------------------------ 1 - p |
|