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Abstract 

We investigate a novel multicast technique, called 
Skyscraper Broadcasting (SB), for video-on-demand 
applications. We discuss the data fragmentation tech- 
nique, the broadcasting strategy, and the client design. 
WC also show the correctness of our technique, and de- 
rive mathematical equations to analyze its storage re- 
quirement. To assess its performance, we compare it to 
the latest designs known as Pyramid Broadcasting (PB) 
and Permutation-Based Pyramid Broadcasting (PPB). 
Our study indicates that PB offers excellent access la- 
tency, However, it requires very large storage space and 
disk bandwidth at the receiving end. PPB is able to ad- 
dress these problems. However, this is accomplished at 
the expense of a larger access latency and more complex 
sgnchronization. With SB, we are able to achieve the 
low latency of PB while using only 20% of the buffer 
space required by PPB. 

1 Introduction 

Television is an integral part of the majority of the 
households throughout the world. We find ourselves 
turning to it daily to be entertained, educated, or simply 
kept informed of current events. Our desire to watch has 
fueled an industry eager to deliver a variety of video- 
on-demand services. With these services, a subscriber 
is able to start the playback of a video of his choice at 
a press of a button. 

Typically, a large number of video files are stored in 
a set of centralized video servers and played through 
high-speed communication networks by geographically 
distributed clients. Due to stringent response time re- 
quirements, continuous delivery of a video stream has 
to be guaranteed by reserving an I/O stream and an 
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isochronous channel needed for the delivery. In this pa- 
per, we will refer to the unit of server capacity needed 
to support the continuous playback of one server stream 
as a channel. To maximize the utilization of these chan- 
nels, efficient scheduling techniques have been proposed 
by Vin and Rangan [20], Ozden et al. [15, 161, Freed- 
man and Dewitt [9], Keeton and Katz [12], Oyang et 
al. [14], Rotem and Zhao [18], Dan et al. [6], and 
Hua et al. [lo], just to name a few. These techniques 
are sometimes referred to as user centered [2, 221 in the 
sense that the channels are allocated among the users. 
Although this approach simplifies the implementation, 
dedicating a stream for each viewer will quickly eshaust 
the network-I/O bandwidth at the server communica- 
tion ports. In fact, the network-I/O bottleneck has been 
observed in many systems, such as Time Warner Cable’s 
Full Service Network project in Orlando, Microsoft’s 
Tiger Video Fileserver [4], and so on. 

To address the network-I/O bottleneck faced by the 
user-centered approach, the multicast facility of modern 
communication networks [5, 13, 11, 171 can be used to 
allow users to share a server stream. For example, if two 
subscribers make a request for the same video separated 
by a small time interval, then by delaying the playback 
of the first request, the same server stream can be used 
to satisfy both requests [7, 31. In general, requests by 
multiple clients for the same video arriving within a 
short time duration can be batched together and served 
using a single stream. This is referred as batching in [7]. 
We can divide batching technique into two categories: 

l Scheduled Multicast: When a server channel be- 
comes available, the server selects a batch to mul- 
ticast according to some scheduling policy. For 
instance, the Maximum Queue Length (MQL) [7], 
proposed by Dan et al., selects the batch with the 
most number of pending requests to serve first. The 
objective of this approach is to maximize the server 
throughput. Other scheduled multicast schemes 
are presented in [7, 8, 1, 191. 

l Periodic Broadcast: The videos are broadcast 
periodically, i.e., a new stream is started every B 

89 



minutes (batching interval) for a given video. As 
a result, the worst service latency experienced by 
any subscriber is guaranteed to be less than B min- 
utes independent of the current number of pend- 
ing requests, Such a guarantee can generally in- 
fluence the reneging behavior of clients, and there- 
fore improve the server throughput. This technique 
is sometimes referred as data centered [2, 221 be- 
cause the server channels are dedicated to indi- 
vidual video objects rather than users. Some re- 
cent periodic broadcast techniques are presented in 

[7, 22, 11. 

It was shown in [7, 81 that a hybrid of the two tech- 
niques offered the best performance. In this approach, 
a fraction of the server channels is reserved and pre- 
allocated for periodic broadcast of the popular videos. 
The remaining channels are used to serve the rest of the 
videos using some scheduled multicast technique. Nev- 
ertheless, it was also shown in [7,8] that the popularities 
of movies follow the Zipf distribution with the skew fac- 
tor of 0.271, That is, most of the demand (80%) is for 
a few (10 to 20) very popular movies. This has moti- 
vated us to focus on the popular videos. In this paper, 
we introduce a novel technique for doing periodic broad- 
cast, We assume that some existing scheduled multicast 
scheme is used to handle the less popular videos. 

One of the earlier periodic broadcast schemes was 
proposed by Dan, Sitaram and Shahabuddin [7]. Since 
this approach broadcasts a given video every batching 
period, the service latency can only be improved lin- 
early with the increases in the server bandwidth. To 
significantly reduce the service latency, Pyramid Broad- 
casting (PB) technique was introduced by Viswanathan 
and Imielinski [22]. In this scheme, each video file is 
partitioned into Ii’ segments of geometrically increasing 
size; and the server capacity is evenly divided into K 
logical channels. The ith channel is used to broadcast 
the ith segments of all the videos in a sequential man- 
ner, Since the first segments are very small, they can be 
broadcast a lot more frequently through the first chan- 
nel, This ensures a smaller wait time for every video. 
A drawback of this scheme is that a buffer size which is 
usually more than 70% of the length of the video must 
be used at the receiving end. As a result, it is nec- 
essary to use disks to do the buffering. Furthermore, 
since a very high transmission rate is used to transmit 
each video segment, an extremely high disk bandwidth 
is required to write data to disk as quickly as it re- 
ceives the video. To address these issues, Aggarwal, 
Wolf and Yu proposed a technique called Permutation- 
Bused Pyramid Broudcusting (PPB) [l]. PPB is similar 
to PB except that each channel multiplexes among its 
own segments (instead of transmitting them serially), 
and a new stream is started every small period for each 

of these segments as in [7]. This strategy allows PPB 
to reduce both disk space and I/O bandwidth require- 
ments at the receiving ends. The disk size, however, 
is still quite significant due to the exponential nature 
of the data fragmentation scheme. The sizes of succes- 
sive segments increase exponentially causing the size of 
the last segment to be very large (typically more than 
50% of the video file). Since the buffer sizes are deter- 
mined by the size of the largest segment, using the same 
data fragmentation scheme proposed for PB limits the 
savings can be achieved by PPB. To substantially re- 
duce the disk costs, we introduce in this paper a new 
data fragmentation technique and propose a different 
broadcasting strategy. The proposed technique also ad- 
dresses the following implementation issue. In PPB, a 
client needs to tune into different logical subchannels to 
collect its data for a given data fragment if maximum 
saving in disk space is desirable. This synchronization 
mechanism is difficult to implement because the tunings 
must be done at the right moment during a broadcast. 
To avoid this complication, we only tune to the begin- 
ning of any broadcast as in the original PB. In other 
words, we are able to achieve better savings using a 
simpler technique. 

The remaining of this paper is organized as follows. 
We discuss PB and PPB in more detail in Section 2 to 
make the paper self-contained. The proposed technique, 
Skyscraper Broadcasting (SB), is introduced in Section 
3. The correctness of the proposed technique and its 
storage requirement are analyzed in Section 4. In Sec- 
tion 5, we present performance study to compare SB 
to both PB and PPB. Finally, we give our concluding 
remarks in Section 5. 

2 Pyramid-based broadcasting schemes 

To facilitate our discussion, we need to define the 
following notations: 

B: The server bandwidth in Mbits/set. 
M: The number of videos being broadcast. 
D: The length of each video in minutes. 
K: The number of data segments in each video file. 
b: The display rate of each video in Mbits/set. 

PB and PPB share the same data fragmentation 
technique. The idea is to partition each video into 
K sequential segments of geometrically increasing sizes 
[21, 22, 21. Let 5’: denote the i-th fragment of video ‘v. 
Its size in minutes, Di, is determined as follows: 

w i=la 
Dl . &-l otherwise , 

where a is a number greater than 1. We will discuss how 
cr is determined in PB and PPB shortly. For the mo- 
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mcnt, we note that Dl, Dz, es-, DK of each video form 
a geometric series with the factor a; and EE, Di = D. 

In PB scheme, the entire bandwidth is divided into 
I< logical channels with $ Mbits/set each. The i-th 
channel (or, Channel i) will periodically broadcast Si, 
sf, ,., ) Sp in turns, where 1 5 i 2 I(. No other 
segments a:e transmitted through this channel. On the 
client side, it begins downloading the first data fragment 
of the requested video at the first occurrence, and start 
playing it back concurrently. For the subsequent frag- 
ments, it downloads the next fragment at the earliest 
possible time after beginning to play back the current 
fragment. Thus, at any point, the client downloads from 
at most two consecutive channels and consumes the data 
segment from one of them in parallel. The parameter a 
must be chosen in such a way to ensure that the play- 
back duration of the current fragment must eclipse the 
worst latency in downloading the next fragment. Math- 
ematically, we must have the following: 

Substitute LY s Di for Di+l, we have: 

CYC 
B 

- b.M.K ’ 

To determine (Y, PB uses two methods as follows. The 
first method, denoted as PB:a for later references, first 
chooses K = [&I and then computes Q as cr = x bMK ’ 

where e is the Euler’s constant (e = 2.72.) The other 
method, denoted as PB:b, lets IC = L&J and then 
computes ff as cr = &. 

The access time of a video is equal to the access time 
of the first data fragment which is broadcast on Channel 
1. Thus the worst wait time can be computed as follows: 

Worst Wait Time = 
M+D1 -b 

a 

= DM”b(o - 1) minutes 

B(& - 1) 
. 

By Ietting IC increase as B does, the service latency 
will improve exponentially with B. Since pipelining is 
used at the client end, a disk bandwidth of b + 2 . g 
Mbits/set is required for each client. The first term 
“6” is the bandwidth required to support the playback. 
The number “2” in the second term is due to the fact 
that one channel is used to retrieve the current fragment 
while another channel is used to prefetch the next one. 
In terms of storage requirement, PB requires each client 
to have a disk space at least as large as 60 - b. (DK - 
w + DK-~) Mbits since playing back S&-r while 
receiving both Sk-, and Sg incurs the maximum space 
requirement. 

We note that since a is kept around e, under a large 
B, the disk bandwidth and storage requirements ap- 
proach b(2Me + 1) N 55.36b Mbits/set and bD(l - 

$)U - & + 4) N O.S4(60bD) Mbits if M = 10, respec- 
tively. Hence disk bandwidth requirement is very high. 
Furthermore, each client must have a disk space large 
enough to buffer more than 80% of the video file in or- 
der to use this technique. To reduce these requirements, 
PPB scheme further partitions each logical channel in 
PB scheme into P-M subchannels with & Mbits/set 
each. A replica of each video fragment in channel, say 
i, is now broadcast on P different logical subchannels 
with a phase delay of $& minutes. On each subchan- 
nel, one segment is broadcast periodically in its entirety. 
Since the subchannels are time-multiplexed on the log- 
ical channel, using smaller bandwidths to transmit the 
video segments reduces the disk space requirement at 
the receiving ends. To further reduce this requirement, 
PPB occasionally pauses the incoming stream to allow 
the playback to catch up. This is done by allowing a 
client to discontinue the current stream and tune to an- 
other subchannel, which broadcasts the same fragment, 
at a later time to collect the remaining data. This, how- 
ever, is difficult to implement since a client must be able 
to tune to a channel during, instead of at the beginning 
of, a broadcast. This is significantly more complex than 
in the original PB scheme. 

The storage requirement for PPB at each client can 
be computed as 

60.b.D.~~.K.(aK--aK-2) 

B . (c+ - 1) 

Mbits. The required rate of disk transfer is simply equal 
to the sum of display rate and the rate of receiving data, 
which is b + & Mbits/set. The service latency is 
simply the access time-of the first fragment, which is 
D1*TK’b = & minutes. We note that the methods to 
determine the design parameters K and cr are different 
from those of PB. K is determined as L&J, but is 
limited within the range 2 _< K 5 7. The first method, 
denoted as PPB:a, chooses P = I&& - 2J and then 

computes (Y = & - P. On the other hand, the 

second method, denoted as PPB:b, lets P = #&-J-Z], 
but limits it to be at least 2. a are then computed as 
&& - P. Since K is limited to 7, the access latency 
and storage requirement will eventually improve only 
linearly as B increases. As a comparison, the original 
PB scheme does not constrain the value of K. and is 
able to maintain the exponential latency improvement 
for the increases in the very large values of B. We shall 
show in Section 4 that PPB actually performs worse 
than PB. 

91 



3 Skyscraper Broadcasting Scheme 

3.1 Channel Design 

We divide the server bandwidth of B Mbits/s into 
[+J logical channels of b Mbits/s each. These chan- 
nels are allocated evenly among the M videos such that 
there are Ir’ (= l&J) channels for each video. To 
broadcast a video over its I< dedicated channels, each 
video file is partitioned into K fragments using the data 
fragmentation scheme described in the next subsection. 
Each of these fragments are repeatedly broadcast on its 
dedicated channel at its consumption rate (i.e., display 
rate), 

3.2 Data Fragmentation 

Instead of fragmenting the video files according to a 
geometric series [1, IY, 02, 03, . . .] as in the pyramid- 
based techniques, a series generated by the following 
recursive function is used in SB: 

f(n) = 

’ 1 7Z= 1, 
:fc a = 2, 3, 

n-1)+1 nmod4=0, 

57” 

n mod 4= 1, 
n-1)+2 nmod4=2, 

L fh- 1) n mod 4 = 3, 

01, 

1 12= 1, 
f(n) = f2 n = 2, 3, 

+ 2[$J 
- 

n)f(n 
- 

l)+ 

(1+ 2lfJ - n)(l+ 1”-t’“‘J) otherwise. 

For illustration, we show the materialized series in the 
following: 

[l, 2,2,5,5,12,12,25,25,52,52,. . .] . 

We will refer to such a series as a broadcast series in 
this paper. The first number in the above series signi- 
fies that the size of the first fragment is one unit, (i.e., 
01,) Similarly, the size of the second one is two units 
(i.e., 2 s DI); the third one is also two; the fourth one 
is five; and so forth. Additionally, we use W to restrict 
the segments from becoming too large. If some segment 
is larger than W times the size of the first segment, we 
force it to be W units. The rationale is that a bigger 
I’-th fragment will result in a larger requirement on 
the buffer space at the receiving end as we will discuss 
in more detail shortly. We call this scheme Skyscruper 
Broadcasting (SB) due to the fact that stacking up the 
data fragments in the order they appear in the respec- 
tive video file forms the shape of a very tall skyscraper 
(instead of a much shorter and very wide pyramid as in 
the case of PB and PPB.) We note that W is the width 

of the ‘skyscraper,” which can be controlled to achieve 
the desired access latency as follows. The number of 
videos determines the parameter K. Given K, we can 
control the size of the first fragment, DI, by adjusting 
W. A smaller W corresponds to a larger D1. Since the 
maximum access latency is DI, we can reduce the access 
latency by using a larger W. The relationship between 
W and access latency is given in the following formula: 

Access Latency = D1 = 
D 

CL min(f (i), W> ’ 

which can be used to determine W given the desired 
access latency. 

3.3 Transmitting and Receiving of Seg- 
ments 

The transmitting of data fragments at the server end 
is straightforward. The server multiplexes among the 
I(. M logical channels; each is used to repeatedly broad- 
cast one of the I< . M data fragments. At the client 
end, reception of segments is done in terms of trans- 
mission group, which is defined as consecutive segments 
having the same sizes. For example, in our broadcast 
series [l, 2,2,5,5,12,12,25,25,52,52,. . .], the first seg- 
ment forms the first group; the second and third seg- 
ments form the second group (i.e., “2,2”); the fourth 
and fifth form the third group (i.e., “5,5”); and so 
forth. A transmission group (A, A, . . ., A) is called an 
odd group if A is an odd number; otherwise, it is called 
an even group. We note that the odd groups and the 
even groups interleave in the broadcast series. To re- 
ceive and playback these data fragments, a client uses 
three service routines, an Odd Loader, an Even Loader, 
and a Video Player. The Odd Loader and the Even 
Loader are responsible for tuning to the appropriate 
logical channels to download the odd groups and even 
groups, respectively. Each loader downloads its groups 
one at a time in its entirety, and in the order they oc- 
cur in the video file. These three routines share a lo- 
cal buffer. As the Odd Loader and Even Loader fill 
the buffer with downloaded data, the Video Player con- 
sumes the data at the rate of a broadcast channel. In 
the next section, we mill discuss the space requirement 
for this buffer, and show that SB is able to support 
jitter-free playback. 

4 Correctness and Storage Analyses 

We recall that the video fragments are received by a 
client in terms of transmission groups. To investigate 
the correctness and analyze the storage requirement for 
SB, we need to examine three possible types of group 
transition as follows: 
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1, 

2. 

3. 

Client arrives 

Segment 1 I I llfl I I I I I I, 
Segment2 I I I: I I: 
Segment3 I 1 I m I- 

Start time 

Video playback 1 x > 
I I I v I I I I I I I, 

T-2 T T+2 T+4 T+6 T-2 T T+2. T&I T+6 
odd even 

Segment 1 
T6O*b*Dl 

Segment 2 

Segment 3 

Overall / 

(a) No disk required (b) Disk is necessary 

Figure 1: First transition type: (1) + (2,2). 

Client arrives 

Il/~lIIllII, Channel1 

(1) j (2,2): Th’ t IS ransition is a special case and 
only happens in the beginning of playing back a 
video, 

(A, A) =j (2A + 1,2A + 1): This kind of transi- 
tions occurs when A is even. Transitions (2,2) + 
(5,5) and (12,12) j (25,25) are examples of this 

type. 

(A, A) 3 (2A + 2,2A + 2): This kind of transi- 
tions occurs when A is odd. Transitions (5,5) + 
(12,12) and (25,25) 3 (52,52) are examples of this 

type* 

For the first type, since the 1.c.m. (least common 
multiple) of 1 and 2 is 2, there can only be two possi- 
ble scenarios as shown in Figure 1. Although channels 
1, 2 and 3 repeatedly broadcast segments 1, 2 and 3, 
respectively, we show only the broadcast tuned in by 
some client. Without loss of generality, we use DI as 
one time unit, Let T be the start time of the video re- 
quested by the client. If T is odd, the client does not 
need to buffer the incoming data. In this case, the client 
can play back the video data as soon as they arrive. This 
is illustrated in Figure l(a). Let us now focus on the 
other scenario shown in Figure l(b). Since T is even, the 
client must start to prefetch the second group as soon as 
it begins to play back the first group at time T. At time 
T + 2, it must start to preload the second half of group 
2, while playing back the first half of the same group. 
This pipelining then continues to play back the second 
half of group 2 while preloading the first half of group 
three, and so on, Obviously, the playback is jitter-free 

since the Video Player always finds prefeteched data in 
the buffer. In terms of storage requirement, the client in 
the second scenario has to prefetch DI minutes of data 
during every time unit. Hence the buffer size required 
is 60. be 01 Mbits as illustrated in Figure l(b). 

Possible cases of the second type, (A, A) 3 (2A + 
1,2A+ l), are illustrated in Figure 2. The group (A, A) 
is composed of segments i and i+l, which are broadcast 
on channels i and i + 1, respectively. For convenience, 
only the first segment, segment i+2, of the group (2A+ 
1,2A + 1) is shown in the figure. Let t be the required 
playback time of group (A, A) or Segment i. We show 
in Figure 2 the various possible times for the client to 
start receiving group (A, A). Possible broadcast times 
for group (2A + 1,2A + 1) are also illustrated therein. 
We note that since A is even, the broadcast of group 
(A, A) must begin at some even time. However, since 
the g.c.d. (greatest common divisor) of A and 2A + 1 
is 1 (i.e., mutually prime), the possible times to start 
receiving group (2A+ 1,2A+ 1) are t, t + 1,. . . , t + 2A. 
As illustrated in the figure, the following six scenarios 
can happen: 

l The Even Loader starts to download group (A, A) 
at time t, and the Video Player immediately plays 
back the data as soon as they arrive. The data 
from group (2A + 1,2A + 1) do not arrive at the 
Odd Loader until time t + 2A. 

l The Even Loader starts to download group (A, A) 
at time t, and the Video Player immediately plays 
back the data as soon as they arrive. The data 
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t- 

Playback duration 

1. 
for segments i and h-1 i 

1 ! 
!: 2A+l I 

C, 2A+1 J 
. . . *-- . . . I i 

( 2Ai1 1 
2A+1 1 

4 
Time 

Possible broadcasts 
of segments i and i+l 

/ : ’ \ 
/ : \ 

/ i ‘\ \ 

60*b’D1*(2A) 

11 60*b*Dl*(A-2) 

Figure 2: Second transition type: (A, A) +- (2A + 1,2A + l), A is even. 

from group (2A + 1,2A + 1) do not arrive at the 
Odd Loader until time t + 2A - 1. 

l The Even Loader starts to download group (A, A) 
at a time before t. The Video Player starts to play 
back (A, A) at time t. The data from group (2A + 
1,2A + 1) do not arrive at the Odd Loader until 
time t + 2A. 

l The Even Loader starts to download group (A, A) 
at a time before t. The Video Player starts to play 
back (A, A) at time t. The data from group (2A + 
1,2A + 1) do not arrive at the Odd Loader until 
timet+2A-1. 

l The Even Loader starts to download group (A, A) 
at time t, and the Video Player immediately plays 
back the data as soon as they arrive. The data from 
group (2A + 1,2A + 1) arrives at the Odd Loader 
at time t. 

l The Even Loader starts to download group (A, A) 
at a time before t; and the Video Player begins 
to play back the data as soon as they arrive. The 
data from group (2A+ 1,2A+ 1) arrives at the Odd 
Loader at time t. 

We note that for the first scenario, no disk buffer is 
required to support the jitter-free playback. For the re- 
maining cases, since the Video Player can always find 
the required data directly from the Even Loader or from 
the prefetched buffer, jitter-free is again guaranteed. 
The storage requirement for this case is illustrated in 
the plot shown at the bottom of Figure 2. The curves 
are based on the worst-case (in terms of storage re- 
quirement) scenario corresponding to the earliest possi- 
ble broadcast of group (A, A), and the earliest possible 
broadcast of group (2A + 1,2A + 1). We explain the 
curves as follows: 

l From t + 2 - A to t, the Even Loader fills the disk 
buffer with data from group (A, A). As a result, 
the curve corresponding to group(A, A) rises dur- 
ing this period. The curve becomes flat for the 
duration from t to t + 2 + A because the Player 
starts to consume the data at time t. 

l The curve corresponding to group (A, A) drops af- 
ter time t + 2 + A because the Even Loader is idle 
while the Player continues to consume data. 

l The curve corresponding to group (2A + 1,2A + 1) 
continues to rise until time t + 2A. This is due to 
the fact that the Odd Loader fills the buffer with 
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- I Playback duration 
for segments i and i+l I- 

even 
----t 

t+l+A 
ttl-A..* t-l ; ‘+I ... i 

t+2A 
i Time 

Possible broadcasts 
of segments i and it1 

)) 
60*b*Dl*(A-1) 

Figure 3: Third transition type: (A, A) + (2A + 2,2A + 2), A is odd and playback time of A is even. 

data from segment i + 2 during this period. The 
curve becomes ffat after t + 2A because the Player 
starts to play back segment i + 2 at that time. 

l The curve labeled “overall effect” shows the aggre- 

gate effect of the other two curves. It shows that 
the storage requirement is 60 . b . D1 -2A. 

Finally, Let us now examine the third type of group 
transition, namely (A, A) 3 (2A + 2,2A + 2). Since A 
must be odd, the broadcast of group (A, A) can start 
at either an odd time or an even time. The two cases 
are illustrated separately in Figure 3 and 4, respectively. 
Their interpretation is similar to that given for Figure 2. 
Basically, jitter-free playback is assured in either situa- 
tion due to the following reasons: 

l The two transmission groups are downloaded by 
two different loaders. Since we assume that each 
loader has the capability to receive data at the 
broadcast rate, the two download streams can oc- 
cur simultaneously. 

l Since the downloading of group (A, A) starts before 
or at t, and completes before prior to t + 2A, the 
Video Player should be able to start the playback 

of (A, A) at time t, and continue to play back the 
video segment without any jitter. 

l The playback of group (2A + 2,2A + 2) should not 
encounter any jitter either since the Even Loader 
starts to load this group no later than time t + 2A 
which is the time required to begin the playback of 
this group. 

We note in Figure 4 that the client might be down- 
loading both groups (A, A) and (2A + 2,2A + 2) si- 
multaneously during the time period from t - 1 to t. 
During this period, if the client also needs to download 
group (A$,? ), then SB will not work since it allows 
only two downloading streams at any one time. For- 
tunately, this can never happen since (9, 9) is an 
even group, and as such its playback must not end at 
time t which is odd. We note that if (y,F) ends at 
an odd time, then the next broadcast of this group will 
necessarily start at an odd time. That is not possible 
for any odd groups. The playback of group (F, F), 
therefore, must terminate by time t - 1. 

The computation of storage requirements under the 
third type of group transition are illustrated at the bot- 
tom of Figures 4 and Figure 3. Since the explanations 
are similar to that discussed for Figure 2, we will not 
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Figure 4: Third transition type: (A, A) + (2A + 2,2A + 2), A is odd and playback time of A is odd. 

discuss them any further. Comparing the storage re- 
quirements under the various group transition types, 
we notice that the cases illustrated in Figures 2 and 4 
are most demanding. Since the buffer must be large 
enough to accommodate the most demanding condi- 
tion, we conclude that the storage requirement for SB 
is 60 * b 9 .Dl- (W - 1) which is obtained by applying the 
formula, given in Figure 2, to the last group transition 
of the series (X,X) j (W, W, --a, W). 

5 Performance study 

In this section, we present the performance study 
for our SB scheme, For comparison, pyramid-based 
schemes, PB:a, PB:b, PPB:a and PPB:b as discussed in 
Section 2, are also investigated. To ensure the fairness, 
the desired values for the design parameters (i.e., Ii’, P, 
and o) are determined for each technique using its own 
methodology, The other parameters are as follows. We 
assume that there are M = 10 popular videos requir- 
ing periodic broadcast. The playback duration of each 
video is D = 120 minutes. They are compressed using 
MPEG-1, so that the average playback rate is b = 1.5 
Megabits per second. We choose storage requirement, 
I/O bandwidth and access latency as our performance 
metrics. The formulas for computing these parameters 

have been determined for PB and PPB in Section 2. We 
derive the corresponding formulas for SB in the follow- 
ing: 

II0 0 W=lorK=l, 
bandwidth = 2-b Mb/s W=2orK=2,3, 

requirement 3 - b Mb/s otherwise; 

Access latency = D1 = 
D 

CL mW@>, W) 
minutes; 

Storage requirement = 60 . b . D1 . (W - 1) Mbits. 

For the convenience of the reader, we repeat the for- 
mulas for each scheme in the tables (Table 1 and 2). 
These formulas mill be used to make the plots discussed 
in the following subsections. 

5.1 Determining the Design Parameters 

To compare the performance of the three broadcast 
schemes, we varied the network-I/O bandwidth from 
100 Mbits/set to 600 Mbits/set. The rationales for 
choosing this range of network-I/O bandwidth in our 
study are as follows. First, PB and PPB do not work 
if the server bandwidth is less than 90 Mbits/set (i.e., 
CY becomes less than one). Second, 600 Mbits/set is 
large enough to shorn the trends of the various design 
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Table 2: Design parameters determination. 
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Figure 5: The values of K, P and Q! under different 
network-I/O bandwidth. 

schemes. 

To facilitate our studies, we first need to examine the 
design parameters used by each scheme. The desired 
values for these parameters under various network-I/O 
bandwidths were computed using the formulas given in 
the previous sections, and plotted in Figure 5. The 
curves for K and for P are labeled with “(K)” and 
“(P)“, respectively. The curves for CY are plotted sep- 
arately in Figure 5(b). We observe that the h’ values 
are much larger for the proposed scheme under vari- 
ous network-I/O conditions. This means that SB uses 
a larger number of significantly smaller data fragments. 
This characteristics result in less demanding on storage 
bandwidth, shorter access latency and smaller storage 
requirement as we will see in the following subsections. 

5.2 Disk bandwidth requirement 

In this study, we compare the disk bandwidth re- 
quirements of the broadcasting schemes under various 
network-I/O bandwidths. We investigated the proposed 
technique under four different values of W (i.e., the 
width of the %kyscraper”), namely 2, 52, 1705, and 
54612. They are the values of the 2-nd, lo-th, 20-th and 
30-th elements of the broadcast series, respectively. The 
reason for not considering larger elements in the series is 
due to the fact that we limit our study to network-I/O 
bandwidth less than 600 Mbits/set. Under this condi- 
tion, Figure 5(a) indicates that the desired values for W 
should correspond to K values less than 40. We note 
that these values of W can be computed using the series 
generating function given in Section 3.2. 

The results of this study are plotted in Figure 6. For 
references, we also show the lines corresponding to b, 4+b, 
5-b and 50.b, xvhere b is the playback rate and is equal to 
1.5 Mbits/set or 0.1875 MBytes/set. We observe that 
SB and PPB have similar disk bandwidth requirements 
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Figure 6: Disk bandwidth requirement (MBytes/set). 

600 

at the receiving ends. The requirement for SB, how- 
ever, can be lowered if we select W to be 2. As we will 
see later that a smaller W reduces storage bandwidth 
and space requirements with some sacrifice on access 
latency. In practice, we can control W, or the width 
of the skyscraper, to achieve the desired combination of 
storage bandwidth requirement, disk space requirement, 
and access latency. We note that the curves for SB are 
consistent with our analysis in Section 3 showing that 
SB requires only 3.b disk bandwidth to ensure jitter-free 
performance regardless of the W values. Our results are 
also consistent with those observed in [l] in that PB is 
very demanding on the storage-I/O bandwidth. It is 
shown in Figure 6 that an average bandwidth as high 
as 50 times the display rate (about 10 MBytes/set) is 
required by PB. 

5.3 Access latency analysis 

The performance in terms of access latency is inves- 
tigated in this study. Again, we varied the network-I/O 
bandwidth between 100 Mbits/set and 600 Mbits/set, 
and observe its effect on the access latency. The plots 
are shown in Figure 7. 

We observe that the access latency of PPB can be 
quite significant. For instance, if the access latency is 
required to be less than 0.5 minutes, then we must have 
a network-I/O bandwidth of at least 300 Mbits/set in 
order to use PPB. In terms of SB, W can be controlled 
to offer the best performance. More specifically, larger 

W values can be used to keep the access latency low. 
Nevertheless, improving the latency to well below 0.3 
minutes is practically insignificant. We will observe in 
the next section that it is desirable to keep W small in 
order to reduce the storage costs at the receiving ends. 
Therefore, we must make a trade-off between access la- 
tency and buffer space requirement. We will revisit this 
issue in the next section after examining the storage 
requirement. We note that PB offers excellent access 
latency. However, as we have discussed, improving the 
latency from 0.1 minutes to 0.0001 minutes and beyond 
is not very interesting. 

5.4 Storage requirement 

The effect of the network-I/O bandwidth on the disk 
space requirement under various broadcasting schemes 
is plotted in Figure 8. As shown in the figure, PB 
scheme requires each client to have more than 1.0 
GBytes of disk space, which is more than 75% of the 
length of a video. PPB scheme reduces this require- 
ment to about 250 MBytes. The savings, however, are 
accomplished by sacrificing the access latency as dis- 
cussed in the last subsection. For instance, when B is 
about 320 Mbits/set, PPB:b requires only 150 MBytes 
or so of disk space. Unfortunately, its access latency 
in this case is as high as five minutes. Under the same 
situation, SB scheme with W = 2 has smaller access 
latency and requires only 33 MBytes of disk space at 
the receiving end. 
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Figure 7: Access latency (minutes). 

To determine a good W, we can cross-examine Fig- 
ure 7 and Figure 8. If the network-I/O bandwidth of the 
server is greater than 200 Mbits/set, then “W = 52” 

is a good choice for the workload. It offers an access 
latency of approximately 0.1 minute. This good perfor- 
mance can be had for a buffer space of less than 200 
MBytes. For instance, if the network-I/O bandwidth 
is 600 Mbits/set, each client needs only 40 MBytes of 
buffer space in order to enjoy an access latency of about 
0.1 minutes. Such a combined benefit is many folds bet- 
ter than anything that can be achieved by PB or PPB. 
While PB and PPB must make trade-off between access 
latency, storage costs, and disk bandwidth requirement, 
the proposed scheme allows the flexibility to win on all 
three metrics, 

6 Concluding Remarks 

Network-I/O has been identified as a serious bottle- 
neck in today’s media servers. Many researchers have 
shown that broadcast is a good remedy for this prob- 
lem. In this paper, we surveyed several broadcast- 
ing schemes. We discussed drawbacks in the current 
designs, and proposed an alternative approach, called 
Slq/scr~per Broadcast (SB), to address the problems. 

SB is a generalized broadcasting technique for video- 
on-demand applications. Each SB scheme is character- 
ized by a broadcast series and a design parameter called 
the width of the “skyscraper.” In this paper, we focus 
on one broadcast series which is used as an example to 

illustrate the many benefits of the proposed technique. 
We showed that the width factor can be controlled to 
optimize the desired combination of storage costs, disk 
bandwidth requirement and access latency. Our perfor- 
mance study indicates that SB can achieve significantly 
better performance than the latest techniques known as 
Pyramid Broadcasting. Although the original Pyramid 

Broadcasting (PB) offers excellent access latency, it re- 
quires very large storage space and disk bandwidth at 
the receiving end. Permutation-Bused Pyramid Broad- 

casting (PPB) is able to address these problems. How- 
ever, this is accomplished at the expense of a larger ac- 
cess latency and more complex synchronization. With 
SB, we are able to better these schemes on all three 
metrics. 
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