
A Simple Rate-Control Fairness Algorithm for
Wireless Mesh Networks

Szymon Jakubczak
�
, Alex T. K. Lau

�

, Lily Li
�

, Paul A.S. Ward
�

�
Institute of Computer Science, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland
Email: S.Jakubczak@elka.pw.edu.pl�

School of Computer Science, University of Waterloo,
200 University Ave. W., Waterloo Ontario, Canada N2L 3G1

Email: atklau@alumni.uwaterloo.ca�

Department of Electrical and Computer Engineering, University of Waterloo,
200 University Ave. W., Waterloo Ontario, Canada N2L 3G1

Tel: 1-416-666-4016
Email: l7li@shoshin.uwaterloo.ca�

Department of Electrical and Computer Engineering, University of Waterloo,
200 University Ave. W., Waterloo Ontario, Canada N2L 3G1

Email: pasward@ccng.uwaterloo.ca

Abstract

The use of 802.11-based multi-hop wireless mesh networks as an alternative technology for last-mile broadband Internet
access is growing rapidly. However, without a suitable fairness algorithm such networks exhibit extreme network-layer unfairness
causing various nodes to starve or have extremely poor throughput.

Based on the hypothesis that if the fair bandwidth achievable by each node is known and enforced at each node, network-layer
fairness can be achieved, we propose a simple three-step rate-control algorithm that requires no changes to the underlying 802.11
MAC.

In this paper we formally describe the algorithm, proving that it converges rapidly. We also provide simulation results
showing that the algorithm achieves excellent fair sharing of the network while responding rapidly to changes in the network
state. Finally, our simulations show that our algorithm often achieves more than 95% of the theoretical maximum fair-share
aggregate throughput, while offering much more attractive fairness than current schemes.

Index Terms
Wireless mesh network, multihop wireless network, fairness, rate control, congestion control

1

A Simple Rate-Control Fairness Algorithm for
Wireless Mesh Networks

Abstract— The use of 802.11-based multi-hop wireless mesh
networks as an alternative technology for last-mile broadband
Internet access is growing rapidly. The primary advantages
of such an approach are ease of deployment and lower cost.
However, such networks have a critical problem, viz. they exhibit
extreme network-layer unfairness. Without a suitable fairness
algorithm, various nodes can starve or have extremely poor
throughput. The more distant a node is from its destination, the
greater the likelihood of this problem occurring. This problem
occurs even with the use of TCP, which attempts to provide fair
sharing.

Based on the hypothesis that if the fair bandwidth achievable
by each node is known and enforced at each node, network-
layer fairness can be achieved, we propose a simple rate-
control algorithm. Our three-step method consists of distributed
acquisition of network-state data, computation of the fair-share
rate, and self-policing. The algorithm requires no changes to the
underlying 802.11 MAC.

In this paper we formally describe the algorithm, proving that
it converges rapidly in theory. We then simulate the algorithm,
showing that it achieves excellent fair sharing of the network, and
that it responds rapidly to changes in the network state. Finally,
our simulations show that our algorithm provides this fairness at
minimal cost, often achieving more than 95% of the theoretical
maximum fair-share aggregate throughput, while offering much
more attractive fairness than current schemes.

I. INTRODUCTION

Wireless mesh networks (WMNs) have received significant
attention as an alternative technology for last-mile broadband
Internet access [1]. Such networks belong to a particular sub-
class of wireless multi-hop ad-hoc networks. The distinctive
properties of WMN are:

� Stationary: All nodes of a WMN are immobile. This
implies that the topology of a WMN is mostly static.
Topological changes are caused not by mobility but
by incremental deployment and node failure. To avoid
pre- and re-configuration, WMNs have to support self-
configuration when the topology changes, though this
should be relatively rare.

� Traffic pattern: WMNs consist of regular nodes that
act as hosts and/or routers, and gateways that bridge
between the WMN and a fixed network (typically the
Internet). Unlike the general peer-to-peer paradigm of
ad hoc networks, the traffic in WMNs is not normally
between pairs of arbitrary nodes, but between hosts and
their designated gateway.

Fairness is a critical property in computer networks [2].
However, current WMNs based on the IEEE 802.11 MAC
and standard network-layer protocols cannot provide fairness
to each user. In particular, it has been demonstrated that nodes
close to the gateway can starve those that are more hops
away [2]. Although significant research has been done to

address fairness issues over MAC-layer flows within a single-
hop, we are not aware of any solutions that efficiently provide
fairness over network-layer flows in multi-hop networks.

Jun and Sichitiu [1] suggest that “once how much bandwidth
each node can receive is known, this value can be enforced
at each node,” and network-layer fairness can be achieved.
Inspired by their observation, we present a simple rate-control
algorithm that can be used to achieve network-layer fairness
while obtaining reasonable aggregate channel utilization. Our
three-step algorithm is able to adjust flow rates dynamically
as various nodes start or stop transmitting, while requiring no
changes to the 802.11 MAC.

The remainder of this paper is organized as follows. In
Section II we describe our three-step algorithm. We then
formally prove it correct. In Section IV we present simulation
results that demonstrate the efficacy of our algorithm. We
discuss related work in Section V, comparing it with our
approach. We conclude by observing what issues remain open.

II. ALGORITHM

In this section we formally describe our algorithm. We first
state our assumptions, which allows us to develop a formal
graph model of WMNs. We then state our algorithm in the
context of this model.

We first assume that routing is effectively static, based on
the fact that in WMNs nodes are stationary, and likely quite
reliable. What we mean by “effectively static” is that changes
in routing will be significantly less frequent than changes in
stream activity. This assumption implies three things: node
failure is rare, new node addition is rare, and load balancing
is not being used. Within WMNs the first two implications are
certainly true. The third is an undesirable restriction, but one
that we hope to remove in the near future.

We further assume that the WMN has a single gateway.
This is almost certainly not true, but, given static routing, for
each node there will be a single gateway. We thus partition a
multi-gateway WMN into disjoint WMNs, each of which has a
single gateway. While there may be interference between the
resulting set of WMNs, this is a problem that must already
be dealt with insofar as there may be interference from any
number of other sources.

Finally we assume that the routing is symmetric. As with
the limitation to static routing, this is a restriction we expect
to address soon.

Given these assumptions, we model the WMN as a graph
in which the vertices are the wireless nodes and an edge
exists between any two vertices iff the nodes they represent
are within transmission range. The traffic pattern combined
with symmetric routing implies that the subgraph of routes is
a spanning tree.

2

We define a link as any edge in the spanning tree. Two
links contend if they cannot be used simultaneously. We then
define a stream as a directed path in the spanning tree over
which data flows, and whose endpoints are the gateway and
a regular node. It is relatively easy to see that all edges in a
stream are links, and any edge that is not part of a stream is
not used to transmit data. For the remainder of this paper we
will consider the data that is being transmitted over the stream
as being synonymous with the stream.

If a stream originates at the gateway, and terminates at a
regular node, we term it a downstream. Conversely, if the
stream originates in the WMN, and terminates in the gateway,
we term it an upstream. It then follows that, if there are

�
regular nodes, there can be a maximum of � � streams,

�
upstreams and

�
downstreams.

With these assumptions and this model in mind, we can
now state the algorithm. It consists of three major steps:

1) gather information required to compute fair-share band-
width

2) compute the fair-share rate for each stream
3) enforce the computed rate at stream origins

For the third step we choose a simple solution: the origi-
nating node places all packets belonging to one stream in a
paced queue. It is a variation of a leaky bucket, but with an
adjustable rate. The next packet is scheduled to be released
after a delay of �������
	���������������������������
�����
� .

We now address the substantially more difficult first and
second problems. This gives us both a method to calculate the
fair-share bandwidth, and knowledge of what information must
be distributed to the various nodes. Having that knowledge, we
will present in Section II-B our distribution mechanism.

A. Computational Model

The algorithm relies on the computational model used to
compute the fair bandwidth allocation for each stream. This
is an optimization problem subject to the feasibility model
for the network, the network state, and the fairness criterion
adopted.

The feasibility model reflects the rate constraints imposed
by the network. It consists of a set of linear constraints
determined by how streams use the wireless medium, which
can be determined by the routing (i.e. usage of links by
streams) and link-contention (i.e. usage of medium by links).
Because of location-dependent contention, the medium can be
conceptually divided into resources of limited capacity. Thus
we built a network resource model in the style of Kelly et al.
[3].

Link contention can be captured by a link contention
graph � �"!$#&%('*) , where # is the set of all links, and+�, %�-/.102' iff links

,
and - contend. While various authors

have proposed to divide the medium into resources according
to cliques in the contention graph (e.g. [4]), we adopted
the simpler model of collision-domains [1] to reduce node
computation requirements. A collision-domain is associated
with each link and contains all its contenders. We combined
this collision-domains model with a variation of the two-hop
link-contention model [1], [5]. In our model two links contend

if one endpoint of one link is within transmission range of
one endpoint of the other link. Note that since transmission
range is often much less than interference range, this model
underestimates the level of contention. However, since the
collision-domain overestimates contention compared to the
more accurate cliques, our combined model offers acceptable
accuracy, with computational simplicity. As for the capacity
of a collision domain, we adopt Jun and Sichitiu’s definition
of the nominal MAC-layer capacity 3 as the throughput that
can be achieved at the MAC layer in a one-hop network with
infrastructure [6].

We extend the feasibility model by the network state, which
encompasses stream activity. Additional constraints requiring
that no stream should receive more throughput than requested
are included. We consider only binary activity state: the stream
is either silent (requests zero) or never satisfied (requests
infinity).

The fairness criterion implements the selected fairness
model. In this paper we experiment with absolute fairness
(i.e. all active streams receive same rates). However, any
mathematically tractable criterion could be adopted. That said,
as described below, we use one bit per stream to describe
the network state, which restricts the amount of information
about nodes’ transmission intentions. Should more-dynamic
state information be necessary, the encoding will need to be
extended.

The resulting computational problem is to find the band-
width allocation vector satisfying the adopted fairness crite-
rion, subject to network feasibility and stream-activity con-
straints. The knowledge that must be obtained for this com-
putation is, then, which nodes are transmitting at any given
instance, and what is the network topology.

B. Network-State Distribution

Given our assumption that the topology and routing in-
formation of WMN are relatively static, this information
can be propagated to the various nodes using any suitable
information-dissemination protocol. Network state (i.e. the
activity status of every possible stream), however, can change
more rapidly. While there are a large number of ways in
which this information can be gathered, we imposed various
constraints on any acceptable solution. First, we did not want
to change the MAC layer, since this would substantially limit
the applicability of our solution. Second, we did not wish to
use control packets, partly because this would represent an
extra overhead to the solution, but also because we wanted the
finer granularity of being able to react to every data packet
transmitted. Third, we wanted a fully-distributed solution.
More precisely, we did not want our solution to depend on the
behaviour of some specific node, since this would likely reduce
the ability of the system to react quickly, and could present
a single point of failure. For the same reason, group decision
making schemes were rejected. Rather, each node is required
to collect data, independently compute its fair-share rate, and
police itself. Based on these considerations, we propose a
distribution algorithm that works on top of the existing IEEE
802.11 MAC by piggybacking the activity information in every
data packet transmitted.

3

The activity information of all possible streams in the WMN
is encoded in bitmaps. Each bit uniquely represents the activity
status of one stream (i.e. active or inactive). The association
of bits to streams is relatively static, since the topology is
relatively static, and thus not the focus of this paper. The
activity information of the whole WMN is then distributed
with every data packet. Note that since the IEEE 802.11 MAC
data frame allows 2300 bytes per packet, and the typical MTU
for a network-layer packet is 1500 bytes or less, there is plenty
of room to insert this activity information. Moreover, since
only one bit is required per stream, this activity information
is of negligible size (e.g. for

�
= 24 the bitmap uses 6 bytes)

and not likely to significantly impact network performance.
The receiver of a data packet extracts the activity infor-

mation from the packet and updates itself if the activity
information in the packet is more up-to-date. Since a node
can hear packets transmitted by its neighbours, we have it
snoop these packets. This assures that even if there are no data
packets transmitted from node � to its neighbouring node � ,
� can still get the more up-to-date information from � .

In order to decide whose information is more up-to-date
we implement a version control rule which states that the
node which is closer to � is more up-to-date on the activity
of streams originating from � . The distance is measured in
number of links on the spanning tree.

Algorithm 1 Piggybacking algorithm
Event localChange(stream, activity)

info[stream] := activity

Event received(packet, neighbour)
if not packet.info = info then

for all stream do
if nextHopTo(stream.origin) = neighbour then
info[stream] := packet.info[stream]

Event silentUplinkNode()
for all stream do

if nextHopTo(stream.origin) = uplink node then
info[stream] := active

Event silentLink(child)
for all stream do

if nextHopTo(stream.origin) = child then
info[stream] := inactive

The pseudocode of our implementation is presented in
Algorithm 1. At each node the array info stores the local
knowledge of the network state. Each time it is updated, the
fair-share rate of local streams is recomputed. The received

event implements the version control rule. Note that the
neighbour is hop-wise closer to the node iff neighbour

is the next hop to node in the link tree.
1) Silent and Passive Subtrees: Piggybacking requires ex-

isting data transmissions. As a result, nodes that are within
a subtree with no active traffic, will not be kept up-to-date.
We refer to such a subtree as a silent subtree. However,
this brings up the question as to what activity information
a node in a silent subtree should use when it activates. In
our solution we take the conservative approach of having such

nodes assume full activity of by streams for which it has no up-
to-date information. This is consistent with the TCP slow start
approach, and should not affect the performance of our system
when it is used in conjunction with TCP. The detection of a
silent subtree is handled by the silentUplinkNode event
shown in Algorithm 1. If the node’s uplink (next hop to the
gateway) neighbour becomes silent, the node is the root of a
silent subtree, and the info on streams it does not relay (on
which it cannot obtain up-to-date information) is adjusted.

We refer to a subtree that has only downstream traffic as a
passive subtree. Unlike silent subtrees, passive subtrees will
be kept up-to-date. That said, insofar as they do not originate
data, it is not as critical to keep the nodes in a passive subtree
up-to-date.

2) Deactivation Detection: New activation information can
be naturally piggybacked by the packets of the activated
stream, or other streams, and distributed throughout the net-
work. The arrival of the first packet signals activation.

However, the detection of stream deactivation is trickier.
It can only be signaled when inactivity (i.e. lack of packets)
is detected by a node that is transmitting (either originating
or relaying) packets. We set a time threshold for inactivity,
which is adjusted to �����/���� ����� � ������� ���	����
 ��� � . It is thus the
estimated time required to observe � packets of the monitored
stream. This � factor effectively controls the sensitivity of the
algorithm with respect to stream activity. High sensitivity will
result in weaker stability and possible false positives that could
lead to unfairness. On the other hand, low sensitivity will result
in wasted bandwidth, not utilized until the deactivation event
is raised and distributed.

If the deactivating node is not within a passive subtree,
the relayed upstream packets can piggyback the deactivation
information. However, if a node remains within a passive
subtree after deactivation, the parent of that passive subtree
will notice the lack of upstream packets from its child trigger-
ing the silentLink(child) event. The deactivation of the
stream can be thus detected and distributed in the active part
of the network. We later refer to this mechanism as delegated
deactivation detection.

III. THEORETICAL ANALYSIS

In this section we demonstrate how the network-state distri-
bution algorithm presented in the previous section converges
when network state changes. We consider distribution by both
direct data transmissions and packet snooping. We show what
factors influence the speed of convergence. We conclude that
our algorithm is sufficient to ensure fairness.

A. Proof of Correctness

Given a network with some nodes that have out-of-date
info, we show that Algorithm 1 converges to a state where all
active stream origins are fully up-to-date if no more activity
change events occur. The version control rule effectively
isolates the activity information of each stream, hence we only
need to show that the distribution of activity information of a
single stream converges.

4

We consider a discrete temporal model where packet trans-
mission is instantaneous, but preceded by a non-zero delay.
Let ��! , %�-) denote the path (a sequence of nodes) in the link
tree connecting node

,
to node - , and let � �! , % -)�� denote

the number of hops on that path. We let � denote the origin
of the stream activity change event. In the case of delegated
deactivation detection, � is the parent of the passive subtree.

Theorem 1: It takes exactly � ��! � % �)�� subsequent successful
packet transmissions over subsequent links of the path �! � % �)
to bring � up-to-date with � .

Proof: We use induction on � ��! � % �)�� .
� ��! � % �)������ implies � � � , and � is already up-to-date.
In general, due to the version control rule, � al-

ways learns the information from its up-to-date neighbour
� ���/���	� ��
���! �) �� . Exactly one successful packet transmis-
sion between and � is necessary. Since � ��! � %��)������ ��! � % �)��
the induction hypothesis implies has learned the up-to-date
information in � ��! � %��)�� transmissions. Finally, � ��! � %��)������ �
� ��! � % �)�� .

It is important to note that, thanks to snooping, the trans-
mission from does not need to be addressed to � , provided
that � can receive it. As a result the distribution of activity
information is still possible even if there are no transmissions
in the desired direction. For example, in the case when out-
of-date nodes only originate upstream traffic, but have no
downstream traffic directed to them.

We are therefore particularly interested in the possibility
of successfully capturing a data packet when there is no
downstream traffic to an active subtree. Let � denote its root,
and the parent of � . Suppose is transmitting, then no
child of � could transmit to � due to the two-hop contention.
Furthermore, as there are no downstream transmissions in the
whole subtree, the children of � are silent. We conclude that
� is likely to succeed in capturing ’s transmission, and will
eventually do.

Theorem 1 shows that it takes a finite number of packet
transmissions to bring any node � up-to-date with � . If
we disregard the passive subtrees, and assume at least one
downstream is active in the WMN, there is always a packet
transmission pending at each node. Therefore, Algorithm 1
is guaranteed to converge. It follows, that if the model used
to compute the optimal rates is accurate, the selected fairness
model is achieved.

B. Time Delay

The time of convergence is the time necessary to propagate
recent network state changes across the network and bring
all nodes up-to-date. We consider the propagation time of
an individual event. According to Theorem 1 the total delay
of propagation over a path is the sum of the delays at each
subsequent hop of the path. The convergence time will be
determined by the slowest propagating path.

Since we abstracted from the details of the MAC protocol,
exact values cannot be provided. However, the delay of a
packet transmission from a node is on average inversely
proportional to total (regardless of direction) output packet
rate of that node. Hence nodes that relay little traffic are effec-
tively the bottlenecks of the distribution. However, such nodes

are actually parents of subtrees that contribute little traffic.
It is acceptable that activity information propagates slowly
through these low-activity subtrees. Silent-subtree pruning is
the extreme case where zero activity results in no information
propagation need. Although the delegated detection of deacti-
vation does not require any transmissions, the signal of stream
deactivation travels at the same speed as its packets according
to the previous rate allocation.

It is important to note that any stream packet can participate
in the distribution of the activity information. As a result,
the information can travel significantly faster than the data
in the streams. In particular, the higher stream activity, the
smaller the fair-share rate. However, the number of packets
being transmitted in the network will remain at the capacity
of the network. The result is that the speed of network state
distribution is relatively higher as more streams participate.

The impact of propagation delay is different in the cases of
stream activation and deactivation. After an activation a new
load is introduced into the network which was not accounted
for in the computation of the current fair-share rate. A long
propagation delay could thus lead to unfairness. In contrast,
slow propagation of a deactivation event cannot disturb the
fairness, but rather cause a loss of utilization.

IV. EXPERIMENTS

We simulated our algorithm for both UDP and TCP traffic
using the ns-2 [7] simulator. No changes to its implementation
of the 802.11 MAC protocol were made. For the spanning-tree
routing, we use static shortest-path routing. The core of the
implementation follows the description from Section II. We
set � ���� ���
�� ���
� = 1 Mbps, 3 = 860 kbps, �/���������������� =
1500 bytes.

For the UDP experiments, we use CBR-generate traffic over
UDP transport. However, rather than use the leaky-bucket
variant described previously, we control the rates of the CBR
generators directly.

In our TCP experiments a stream consists of a single one-
way FTP over TCP connection between the gateway and a
regular node. In actual deployment, however, a stream should
encompass all data flow between a pair of WMN nodes.

TCP stream is, by nature, bidirectional. However, if the
actual “application” data flows only in one direction, there
is a substantial asymmetry in the bandwidth consumptions of
the two directed components. In our experiments we use a
simple solution: we only control the rate at the data source,
and ”reserve” some bandwidth for the ACK packets. If the
coordination overhead is equivalent to � bytes, then this
reservation is obtained by scaling 3�� � � ��������� "!� ���#����� $� ��!&%�� ('#! 3 . In
our TCP experiments we set 3 � = 735 kbps.

Recall from the previous section, we set an inactivity
threshold equivalent to � packets using the current fair-share
rate. This threshold will be used when monitoring both relayed
and self-originated traffic. We chose to be more conservative
and used � �)��* to avoid false positives. These would be
particularly undesirable in combination with TCP congestion
control forcing the subject stream to back off. The trade-off
is some waste of the bandwidth.

5

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 25 50 75 100 125

T
hr

ou
gh

pu
t (

bp
s)

Time (seconds)

Active Streams

3->0

7->0

0->2
3->0
4->0
6->0
7->0

3->0
4->0
6->0
7->0

3->0
4->0

3->0
4->0

7->0

0->2
3->0
4->0
6->0
7->0

Fig. 1. Simulation results for chain topology with plain TCP

In our experiments, we simulate stream dynamics by
scheduling stream activity changes either manually or ran-
domly. These events divide the entire time-line into time
intervals of static activity.

For each interval we gather the following measures:
� �������-�� = standard deviation / average of throughputs

(among active streams). This is a measure of how varied
the received service is. Value 0 means perfect fairness.
The higher the value, the more variation among the
streams.

� � � � ����-�� = minimal throughput / average throughput.
It illustrates the unfairness in the form of starvation
of the most hindered streams. Value 0 means complete
starvation. Value 1 means perfect fairness.

� ��-�� ��� � = average throughput / � ���	����
/��� � according to
the computational model. This measure evaluates overes-
timation of the computational model. The desired value
is 1 provided the above fairness measures are satisfac-
tory. Note that if the computational model is sufficiently
accurate, it is infeasible to satisfy the fairness criterion
when this measure exceeds 1.

We then compute the scenario average weighing each sample
by interval length.

A. Chain Topology

In our simulations with a chain topology the transmission
range is one hop and the interference range is two hops. The
nodes are ordered by index: 0,1. . . ,7 where 0 is the gateway.
Each experiment is 125 seconds long and is divided into
5 equally lengthed intervals by manually scheduling stream
activity changes. Fig. 1 and Fig. 2 show the throughput of
each TCP stream without and with our fairness algorithm
respectively. We measure throughput at each stream sink over
each second, and average it over last 5 seconds.

We can see that the throughputs in Fig. 1 are very bursty.
Furthermore, there is a big difference between the maximum
and minimum throughput throughout the simulation. In fact,
stream ��� � , *�� � and �	� � get almost completely
starved at times, demonstrating the unfairness of the network
as studied by many researchers [1], [2], [8].

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 25 50 75 100 125

T
hr

ou
gh

pu
t (

bp
s)

Time (seconds)

Active Streams

3->0

7->0

0->2
3->0
4->0
6->0
7->0

3->0
4->0
6->0
7->0

3->0
4->0

3->0
4->0

7->0

0->2
3->0
4->0
6->0
7->0

Fig. 2. Simulation results for chain topology (TCP) with fairness algorithm

The throughputs depicted in Fig. 2, on the other hand, shows
very small variations (����� ��-�� � ��
 � ��� , � �	� � ��-� � ��
 �����)
across the whole simulation period, representing that fairness
was achieved with our algorithm.

Our measurements also show that the aggregate throughput
(i.e. bandwidth utilization) without fairness is higher than that
with fairness. Various researchers [1], [9] have pointed out
that fairness is in conflict with the bandwidth utilization in
multi-hop wireless networks. For example, in a 2-Hop chain
the aggregate throughput cannot be more than '� 3 if absolute
fairness is achieved. However, the aggregate throughput can
be maximized at 3 if we sacrifice fairness and let the farther
node starve. In our experiments the aggregate throughput with
fairness is 73% of that without fairness.

We now demonstrate how our distribution algorithm works
when presented with activation and deactivation events.

If activation or deactivation occurs at a node where traffic
is being relayed (When streams ��� � , ��� � and *�� �
become active at time 25s, and when stream ��� � becomes
inactive at time 50s), the up-to-date activity information are
easily distributed via the piggybacked packets.

The propagation delay of activation is less than 0.24s, which
amounts to 1.83 packet according to the throughput at the time.
Note that in Fig. 2 the convergence time seems to be always
about 5s. This is because we measure the throughputs every
second and average over 5 second. The plot resolution is not
high enough to visualize the convergence.

The convergence time after the deactivation of stream
��� � is much longer (6.23s). Note that this value includes
the inactivity time threshold as described in the previous
sections.

The more interesting scenario is when streams ��� �
and *�� � are deactivated at time 75s. Node 7 and 6 then
become part of the silent subtree 7-6-5. The deactivation will
not be propagated until node 4 detects the silent subtree. Note
that silent subtree detection does not take longer than normal
deactivation detection as the whole network gets updated
within 6 seconds.

In the last interval of Fig. 2 node 7 is active again. Since it is
in a silent subtree it assumes that all the nodes in the upstream
are active and starts slowly. It takes only about 0.34s for node

6

TABLE I

RANDOM SCENARIO FAIRNESS RESULTS

fairness transport dynamic � ��������� 	�
��������� ��������� �
- TCP No 1.30 0.07 1.60

Yes 1.02 0.04 1.50

SRCFa UDP No 0.05 0.84 0.97

Yes 0.10 0.81 0.91

TCP No 0.03 0.87 0.99

Yes 0.08 0.82 0.85

RRFQb UDP No 2.54 0.13 1.07

Yes 1.71 0.13 0.87

TCP No 0.34 0.33 1.17

Yes 0.39 0.22 1.20

athe proposed Simple Rate-Control Fairness
bround-robin fair-queing

TABLE II

RANDOM SCENARIO DISTRIBUTION DELAY RESULTS

transport ������� ����� ��� � �!�"� ������� �!#�� ��� � �!#��
UDP 1.2 1.0 19.9 5.6

TCP 0.8 1.4 29.5 13.4

7 to get completely updated about the whole network status
and speed up to the fair bandwidth.

B. Random scenarios

Each measure is obtained by averaging across 200 scenarios.
Each scenario consists of a random 15-node topology of
average diameter of 7.5 hops. There are 14 upstreams and
14 downstreams running for 1000.0 seconds. We simulate
dynamics by independent random stream activity. Average
interval length between any activity changes is ca. 5.5 seconds,
and there are on average ca. 14.7 streams active at any time.
Without dynamics there is just a single interval with all streams
active.

The results are presented in Table I. Experiments without
dynamics evaluate the validity of the computational model
and the concept of source rate control as a whole. It seems
that it can deal well with various topologies and stream
configurations. The streams receive similar service and the
minimal service is well above 80% of average. Also in the
static case TCP cooperates well with proposed rate con-
trol. High accuracy indicates negligible overestimation. With
stream dynamics the results slightly degrade, but it should
be noted that when activation is concerned the subject stream
starts from zero throughput. Combined with congestion control
mechanisms of TCP (e.g. slow start) this affects the total
service that the activating stream can receive in the short
measurement interval.

The results for plain TCP (i.e. without fair rate control)
display severe unfairness (� �	������
 ����-��) but also increased
utilization (+50% of average thruput). We also compare the
aggregate throughput for each scenario with and without fair
rate control. The average ratio is 63% and 58% for static and
dynamic cases respectively. We conclude that the proposed

fairness algorithm offers significant improvement in terms of
fairness at the price of total TCP throughput reduced by ca.
40%.

We have also performed experiments with round-robin fair-
queuing as proposed in [2] for reference comparison. The
results in Table I indicate that fair-queing is not sufficient to
attain the requested level of fairness and place FQ between
plain TCP and our solution in terms of both fairness and
utilization. The reason for that is the inherent unfairness of
the 802.11 MAC.

For dynamic scenarios we compute a normalized measure
of propagation delay: � � % � � � $�%�&'$ ��(��#�*) &,+.-0/'1 ��2�354 ��) %�687 � %�/$ ��!&% / � 6):9 /averaged for intervals started by activation (�) and deactivation
(�) separately. It should be interpreted as the number of
packets that could be sent during the propagation time using
the fair-share. The results are gathered in Table II. Since the
deactivation threshold is adjusted to the fair-share as described
in Section II-B.2, � � includes � in contrast to � � . This explains
the difference between those two measures.

According to the analysis in Section III-B, these normalized
measures increase with the network diameter but decrease with
the number of active streams. It is thus presumed that they
will decrease with WMN size. From the results we conclude
that the convergence time is small, and the propagation speed
is faster than it would be possible with typical feedback
mechanisms of congestion control.

V. REVIEW OF PREVIOUS WORK

Fair bandwidth allocation in wireless ad hoc networks has
been given attention in many previous works. However, most
of them address the problem at the level of the link-layer [4],
[10]–[16], i.e. where all relevant flows span single hop only.
Only few works addressed fairness issues at the network-layer
of wireless ad hoc networks.

Woo and Culler [8] adapt the p-persistence MAC scheme
proposed in [4] aiming for proportional fairness. The scheme is
tailored for the multi-hop setting by separating the originated
stream from the relayed streams into two outbound flows
managed independently by the p-persistence scheme. Addi-
tionally, through manipulation of parameters they are virtually
assigned different weights. These are basically proportional to
the number of relayed streams. The resulting allocation does
not conform to any well-defined model of fairness.

Jun and Sichitiu [2] explore the relationship between link-
layer fairness guarantees and network-layer fairness. Specifi-
cally, they investigate the performance of several fair queuing
schemes employed in the routers of a WMN. The goal set is
absolute (or weighted) fairness. Their results inter alia ratio-
nalize the weighing applied in [8]. Furthermore, they indicate
that in order to achieve fairness a queue per each relayed
stream needs to be maintained. Additionally, it is shown that
the achieved throughput could be increased with QoS-like
MAC guarantees. However, they base on the assumption that
the MAC in use is fair. Given our experimental results with
FQ, we conclude it is not sufficient to provide end-to-end
fairness in an 802.11-based WMN.

Tirthapura and Velayutham propose a distributed rate-
control algorithm to achieve a new model of network-layer

7

fairness [5]. The model resembles max-min fairness in that less
constrained streams can receive higher rates. The algorithm
is based on dynamic estimation of the flow-contention level
and allocates each flow a rate inversely proportional to the
estimate. The whole stream receives a rate equal to the most
hindered among its flows. A vote-like algorithm to forward
this minimum rate candidate to the origin is proposed.

It is important to note that the speed of information dis-
tribution in our solution can be substantially faster, because
the stream activity is not inferred from its presence in the
neighbourhood, but explicitly distributed in the network. Ad-
ditionally, our algorithm does not restrict the fairness model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a simple rate-control
algorithm to address the fairness problem of network-layer
streams in wireless mesh networks. Our algorithm consists of
three components:

1) A distributed algorithm for the delivery of stream-
activity information. The data is piggybacked on data
frames, and thus requires no changes to underlying
802.11 MAC. We have given a proof of correctness
of this algorithm and also shown that it will converge
within � packet transmissions, and frequently much less,
where � is the diameter of the network.

2) A computational task, performed at each node, for
determining the fair-share rate for each stream.

3) A self-policing algorithm, that limits output rate to the
computed fair-share rate.

We have studied our algorithm through simulations over vari-
ous topologies. The simulation results show that our algorithm
provides network-layer fairness with both UDP and TCP traffic
at minimum cost. We observe significant improvement in
fairness when compared with plain TCP, and TCP backed
by fair-queuing. In the simulations with UDP our algorithm
achieves above 95% of the computed fair-share.

We have observed that if the fair share is overestimated due
to the inaccurate computational model, the fairness will be
destroyed and the packets loss rate will be increased. We plan
to deal with this issue by adapting the fair share rate to the
packets loss.

The piggybacking scheme proposed here is simple and
reliable but is still subject to improvements reducing the
messaging overhead. The impact of the time threshold for
deactivation detection as discussed in Section II-B.2 needs to
be further investigated.

In our system model we assume static routing and with a
single gateway, which may not always be true in real-world
WMN environments. In case dynamic routing is adopted with
multiple gateways used, load-balancing algorithms are needed
to better utilize the network resources. This complicates both
the fairness model, which will interact with any load-balancing
scheme, and the distribution of network state information. We
are currently investigating these problems.

REFERENCES

[1] J. Jun and M. L. Sichitiu, “The nominal capacity of wireless mesh
networks,” IEEE Wireless Communications, pp. 8–14, October 2003.

[2] ——, “Fairness and QoS in multihop wireless networks,” in Proc. of
the IEEE Vehicular Technology Conference (VTC), October 2003.

[3] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[4] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan, “Achieving MAC
layer fairness in wireless packet networks,” in Proc. of The 6th Annual
International Conference on Mobile Computing and Networking, 2000,
pp. 87–98.

[5] S. Tirthapura and A. Velayutham, “Fairness and throughput optimization
of end to end streams in multihop ad hoc wireless networks.”

[6] J. Jun, P. Peddabachagari, and M. L. Sichitiu, “Theoretical maximum
throughput of IEEE 802.11 and its applications,” in Proc. of the
Second IEEE International Symposium on Network Computing and
Applications, April 2003, pp. 249–256.

[7] “The network simulator - ns-2,” available at http://www.isi.edu/-
nsnam/ns/.

[8] A. Woo and D. E. Culler, “A transmission control scheme for media
access in sensor networks,” in Proc. of the 7th Annual Internation
Confererence on Mobile Computing and Networking, 2001, pp. 221–
235.

[9] A. K. Somani and J. Zhou, “Achieving fairness in distributed scheduling
in wireless ad-hoc networks,” in Conference Proceedings of the 2003
IEEE International. Performance, Computing, and Communications
Conference, April 2003, pp. 95–102.

[10] M. Ergen, “IEEE 802.11 tutorial,” June 2002.
[11] V. Bharhgavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A

media access protocol wireless LANs,” in Proc. of SIGCOMM, 1994,
pp. 249–256.

[12] C. L. Fullmer and J. J. Garcia-Luna-Aceves, “Floor acquisition multiple
access (FAMA) for packet-radio networks,” in Proc. of SIGCOMM,
1995, pp. 262–273.

[13] Y. Wang and J. J. Garcia-Luna-Aceves, “Channel sharing of competing
flows in ad hoc networks,” in Proc. of The IEEE Symposium on
Computers and Communications (ISCC ’03), July 2003, pp. 87–98.

[14] L. Tassiulas and S. Sarkar, “Maxmin fair scheduling in wireless net-
works,” in Proc. of INFOCOM (3), vol. 10, June 2002, pp. 320–328.

[15] H. Luo, S. Lu, and V. Bharghavan, “A new model for packet scheduling
in multihop wireless networks,” in Proc. of The 6th Annual Internation
Conference on Mobile Computing and Networking, 2000, pp. 76–86.

[16] H. Luo and S. Lu, “A topology-independent fair queueing model in
ad hoc wireless networks,” in Proc. of the International Conference on
Network Protocols, November 2000, pp. 325–335.

