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Abstract-Recent advances  in  computer  communications  are 
discussed  including computer-traffic and  channel  error  character- 
istics,  optimal  fixed message block  size,  statistical  multiplexing, 
and loop systems. A unified model  is developed and  then  used to 
analyze  the  queueing  behavior of the  star  and loop systems. 
Numerical  results for selected traffic intensities  and  message 
lengths, given in graphical  form,  provide insight  into  the  performance 
of these  systems. 

INTRODUCTION 

S COMPUTER communication  systems  such as 
time  sharing  and  distributed  computer  systems 
grow in  scale  and  complexity,  the  problem  of 

being  able to  understand  and  to  predict  system beha.vior 
becomes increasingly  important. It becomes  clear that  in 
order  to  synthesize  a  system  that  meets  operating  and 
performance  criteria a t  minimum  cost  for compu-Ling, 
communication,  and  operation,  two  key  problem  atreas 
need to  be studied:first,  the  interfacing  problem  between 
computer  and  communication  systems;  second,  the  rela- 
tionships  among  communication traffic sources,  channcls, 
and  computer  resource  allocation  mechanisms. 

The difficulties in  studying  and  understanding  these 
problems  are 1) c,onlputer  designers’  lack of knowledge 
in  communication  tec,hnology; 2) communication  engi- 
neers’  lack of knowledge  in  computer  technology ; and 3) 
the  lack of tools and models  with  which to  analyze  the 
behavior of these complex systems. The first  two  dificul- 
ties  may be  resolved by exchange of information  between 
computer  designers and  communication  specia.lists.  The 
third difficulty may be  remedied by  periodically  sum- 
marizing  important  research  related  to  computer c:om- 
munication  systems that  is scattered  throughout  various 
journals,  conference  proceedings, and  technical  reports. 
In  this  paper we aim at  the  last  objective. 

Our  presentation will  be divided  into  two  distinct  but 
related  parts. In  the first part, we present  recent  advances 
including  computer traffic characteristics,  c,hannel  error 
characteristics,  selection of optimal fixed message  block 
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size,  statistical  multiplexing,  and loop systems. In   the 
second part, we develop  a  model  for  terminal-to-com- 
puter  cornmunicstion tha t  results  in a unified treatment 
of  several  types of computer  communication  systems. 
The  results of this unified  approac,h  are  summarized in 
Section 11-A;  the  detailed  analysis  begins in  Section TI-B. 

I. SOME RECENT ADVANCES IN COMPUTER 
COMMUNICATIONS 

A .  Computer  Trafic  Characteristics 
It has become apparent  that  real progress in modeling 

and  analysis  depends  upon  more  t,han  elegant  analytical 
results  based  upon  convenient  but  unsupported  assump- 
tions.  Measurement  and  observation are needed ; a  study 
of the  computer traffic characteristics of in-house  time- 
sharing  systems  has been undertaken by the  Bell  Tele- 
phone  Laboratories  to  obtain  estimates of system  vari- 
ables.  Two  types of systems  under  study  are  long 
holding  time  (connect  to  disconnect)  and  short  holding 
time.  Long  holding  time  is  characteristic of business and 
scientific  applications  that  require  extensive  computation ; 
a  holding  time  typically of 15-30 min.  Short  holding  time 
is  characteristic  of  inquiry-response  systems  such as on- 
line  banking,  credit  bureau,  and  production  cont,rol;  typi- 
cally  holding  times of a few seconds to one  or  two 
minutes. 

Jackson  and  Stubbs [ I ]  and  Fuchs  and .Jackson [2] 
have  reported  the  results of long  holding  time.  They 
show that  the volume of computer-to-user  traffic is an 
order of magnitude  higher  than  that of user-to-computer 
traffic. The  interarrival  time between  messages  can  be 
approximated  by  an  exponential  distribution;  that  is,  the 
stream of messages  can  be  assumed to  constitute  a  Pois- 
son proc,ess. Furthermore,  the  length of messages  can  be 
satisfactorily  approximated  by  the  geometrical  distribu- 
tion.  During  the  call  interval,  the  user  is  active  only 
5 percent of the  time  and  the c,omputer  is  active  about 
30 percent. of the  time.  Thus,  the  channel is  idle  for a 
significant  portion of the  holding  time.  The traffic char- 
acteristics of short  holding  time  are  reported on by 
Dudick et al. [3] .  The measured  results  from  four  such 
systems  reveal  that  user  send  time  (the  total  amount  of 
time  during which  user characters  are  being  transmitted) 
is  less than 15 percent of the holding  time.  This  parameter 
is important  to  the design of statistical  multiplexors.  The 
character  interarrival  times  can he represented  as  a  sum 
of two  gamma  distributions,  the  number of user  segments 

I 
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per  call can be represented  by a geometrical  distribution, 
and  the  number of computer  segments  per  call can  be 
represented  by  a  geometrical  distribution.  These  measure- 
ments  and  estimated  system  variables  not  only  provide 
us  with  insight  into  the  behavior of the  system  and  shed 
light  on  areas  that need improvements,  but  are  essential 
in  the modeling  and  analysis of computer communicat.ion 
systems. 

B. Channel Error Characteristics 
The  communication  channel  provides  the  links  between 

processors  and  terminals  and  plays  an  important.  role in 
computer  communication  syst>ems.  Thus, a characteriza- 
tion of channel  performance is important  for  underetand- 
ing  the  cause of errors,  for  suggesting  the  possible  im- 
provements in the design  of  transmission  equipment  and 
the design of efficient error-control  systems,  and  for  plan- 
ning  optimal  oomputer  communication  systems. 

To characterize  telephone  channel  error  performance,  a 
survey  measurement  program of the  telephone  network 
to  determine  the  error  performance  and  the  data  speed 
capabilities  is  necessary. A series of such  studies  started 
by  the  Bell  Systems  in 1958 was  directed  towards  this 
goal and  several  papers  have been published on this  sub- 
ject [4]-[S]. Here we shall  emphasize  recent  survey  re- 
sults (1969-1970) on  high-speed  voice-band data  trans- 
mission  performance on the switched  telecommunication 
network [7] and low-speed data  transmission  perform- 
ance  on  the  switched  telecommunication  network 181. In  
these  two  papers,  the  distributions of error  per  call  are 
given  on a bit,  burst,  and  block  basis.  Information  is  also 
presented  on  the  distribution of intervals  between  errors, 
the  structure of burst errors, and  the  number of errors 
in  blocks of various sizes. Such  statistics  provide  in- 
formation  on  channel  reliability  and  are also useful  in 
the design of efficient error-control  procedures. 

In   the  high-speed  voice-band data  transmission  chan- 
nel,  toll traffic was  used as a hs i s  for  the  sampling  plan, 
which  resulted  in  the  selection of approximately 600 
dialed-toll  connections  between  geographically  dispersed 
local  switching offices. Data  rates of 1200,  2000, 3600, 
and 4800 bits/s  are  measured  on  the  Bell  System  switch 
telecommunication  network. The measured  results  show 
a  substantial  improvement of performance  in  comparison 
with  the  results of previous  surveys.  For  example,  the 
measured  results  for  operation at  1200 and 2000 bits/s 
show that  approximately 82 percent of the  calls  have  an 
average  error  rate of 1 error  in lo5 bits or better  average 
over  short,  medium,  and  long  haul  calls,  while  the 1959 
Alexander,  Gryb,  and  Nast  survey 141 shows only 63 
percent of their  test  calls  reached  this (lo-") performance 
level  for  operation at  the  same  data  rate. A general  tend- 
ency  for  performance to  degrade  with  transmission  dis- 
tance  has been noted.  These  results  also  indicate  that 
impulse  noise  accounted  for  a  large  percentage of the 
observed  errors. 

Low-speed data transmission  corresponds  to  teletype- 
writers,  computer  ports,  and  other  terminal  devices  that 
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communicate by means of data organized in characters 
(comprised of several  bits)  using  start-stop  transmis- 
sion at  a rate of 300 bits/s.  Character-error s t h t i c s ,  
rather  than  bit-error  statistics,  are  the  parameters of 
interest in this  type of transmission  because  the mes- 
sage  consists of a  display  (in  teletypewriters)  or  use 
of characters in  most  applications  (in  computers). 
Measurements  were  made on 534 connections  with 
over 21 million  characters ( 1  character = 10 bits) 
transmitted.  Over 90 percent. of the low-speed  test  calls 
contained-  about 36 000-54 000 characters. A character 
error  rate of or less is  indicated  for  approximately 
78 percent of all  calls,  while 9.5 percent of all  calls  have 
a. lost  character  rate of or less. Errors  occurring  in 
the  messages  are in  bursts  rather  than  at  random.  The 
number of character  errors  in  a  block  increases  with  the 
block length.  Since  this is the  first  report.  on  low-speed 
data, no  comparison  with any  previous  survey is pos- 
sible.  Further  analysis of the  statistics will give insight 
into  the causes of errors,  which  in  turn  may  suggest ap- 
proaches  to  improve  error  performance. 

C.  Opt imal  Fixed  Message Block ,%e 
The message outputs from a com:puter are us!lally in 

strings of characters or bursts.  The  variation of message 
length  can  best be described hy a  probability  distribu- 
tion.  For  ease in data  handling  and  memory  manage- 
ment., the  random  message  length is usually  partitioned 
into  several fixed-size blocks. Due  to  the  random length 
of the message, the last.  partitioned block usually is not 
filled by  the message but is filled with  dutnmy  informa- 
tion. 

For reasons of economics and  reliability,  error  detec- 
tion and  retransmission  are  employed in many  data com- 
munication  systems 151, [SI. The  optimal block size is 
an  importapt  parameter in the design of such  systems. 
From  the  acknowledgment  point of view, it is  desirable 
to select the  largest  possible block  size.  Since  each  mes- 
sage  block requires at  least  one  acknowledgment  signal, 
the fewer the  number of blocks  needed  for a  message, 
the less the  channel  capacity  required  for  acknowledg- 
ments. On the  other  hand,  since a, larger  message  block 
has  a  higher  channel  wastage  due  to  the  last unfilled 
partitioned block and  has  also a higher  probability of 
error,  it is desirable  to  select  the  smallest  possible  block 
size. Thus  there is a tradeclff in selecting the  optimal 
block  size. 

Kucera [lo],  Balkovic  and  Muench [ I l l ,  and  Kirlin 
[ 121 have-studied  the  optima,l  message block  size for the 
error  detection  and  retransmission syljtem that maximizes 
t,ransmission  efficiency.  Chu 1131 considers an  additional 
important  parameter,  the  message  (file)  length,  in  deter- 
mining  the  optimal  message block  size,  which  signifi- 
cantly  affects  the select.ion of' the  optimal  message  block 
size. His model  considers  average  message  (file)  length, 
message  length  distribution,  channel  error  characteristics 
(random  error  and  burst.  error),  overhead  for  addressing, 
error  control,  and  acknowledgment  delay. His criterion 

. .  
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for  optimality  is t o  nlinimize the  time  wasted in  acknowl- 
edgments,  retransmissions,  and  the  waste  in  the  last  un- 
filled  block. 

D. Statistical Mdtiplexing 
Multiplexing  is  commonly used to  share  and efficiently 

utilize  a  conmunication  channel.  Currently  data  multi- 
plexing has  taken  two  forn~s:  frequency division n~ul t i -  
plexing (FDM)  and synchronous  time  division  multi- 
plexing (STDM) commonly  known as  time division 
multiplexing.  Frequency  division  multiplexing  divides  the 
channel  bandwidth  into  several  subchannels  such  that  the 
bandwidth of each  subchannel is greater  than  that re- 
quired  for  a  message  channel.  Because of the need to 
employ  guard  bands  to  prevent  data  signals  from  each 
of the  data  channels  from  feeding  into  adjacent  channels 
and because of the  relatively  poor  data  transmission  char- 
acteristics of the voiceband  channel  near the edges of its 
bandwidth, F D M  does not  make  as efficient use of the 
voiceband,as does STDM. 

In  STDM, each user (terminal) is  assigned  a fixed 
time  duration  or  time  slot on the cornmunication  channel 
for  the  transmission of messages  from terminals  to  com- 
puter.  The multiplexing apparatus  scans  the  set of users 
in  a  round-robin  fashion.  After  one  user's  time  duration 
has  elapsed,  the  channel is switched to  another  user. 
With  appropriately designed synchronous  operation,  re- 
quired  buffering  can  be  limited to one character  per  ter- 
minal.  Addressing  is  usually  not  required  since  the  user 
is identified  by the time slot position. The STDM tech- 
nique,  however,  also  has  certain  disadvantages. It is  in- 

. efficient in  channel  utilization  to  permanently assign a 
segment of bandwidth  that is utilized  only  a  portion of 
the  time.  Statistics collected  from several  typical  operat- 
ing  time-sharing  systems 111 showed that  during  a  call 
(connect  to  disconnect) , the  user-to-computer  traffic, in 
the long  holding  time  case, is active  only 5 percent of the 
time.  Thus  STDM would  be very inefficient in  channel 
utilization in  such an  environment  since  it  allocates  a 
time  slot  to  each  user  independent of his activity.  In 
order  to  increase  channel  utilization,  statistical  multiplex- 
ing  or  asynchronous  time  division  multiplexing (ATDM) 
has been proposed [14] , [ 151 for  computer  communica- 
tions.  The  basic  idea is to switch from one user to  another 
user  whenever the  former is idle and  the  latter  ready  to 
transmit  data.  Thus  the  data is  asynchronously  or  sta- 
tistically  multiplexed  with  respect to  the users. With such 
an  arrangement,  each  user would  be granted access to  the 
channel  only when he  has a message to  transmit.  The 
crucial attributes of such  a  multiplexing  technique  are 1) 
an  address  is  required  for  each  transmitted  message  and 
2) buffering is required to  handle  statistical  fluctuations 
in  the  input traffic. 

The  data  structure  for messages  fornling the  input.to 
the  multiplexor buffer can be  classified into  four  cate- 
gories:  constant-length  messages;  random-length mes- 
sage ; mixed (constant  and  random  length) message ; 
random-length  ~nessages  segmented  into fixed-size  blocks. 

The collstant-length  message  input  corresponds to  tele- 
type ("Y) input,  each  user  types  in  one  character a t  a 
time. The  random-length message input  corresponds  to 
paper-tape  input,  cathode-ray  tube  (CRT)  input  or 
computer  output.  The  mixed-message  input  corresponds 
to traffic from  a  mixture of types  of.i.iput.  terminals  such 
as  CRT,  TTY,  etc.  For  ease  in  data  handling  and 
memory  Inanagement,  random-length  messages  are  often 
segmented  into  fixed-size  blocks that  correspond to  the 
last  type of data  structure. Since  messages  have  random 
length,  the  last block of a  message  usually  cannot be 
entirely filled. As a  result,  this  type of data  structure 
requires  a  larger buffer than  that. of random-length  mes- 
sages that  are  not  segmented [ 141. The  buffer  behavior 
in  terms  of  buffer overflow probability  and  expected 
queueing  delay  due  to buffering of these  four  types  of 
data  structures  have been analyzed  by  finite  waiting- 
room queueing  models [ 14]-[17]. 

The  buffer  behavior of a  statistical  multiplexor  for 
mixed-nlessage  inputs lies in between that  of constant- 
length and  random-length messages [17].  The  output 
process of a statistical  multiplexor  has been studied  by 
Pack [ lS ] .  

The  demultiplexor  distributes  messages to appropriate 
destinations  according to  their message  addresses. Thus, 
the  behavior of the demultiplexing  buffer  not  only  de- 
pends  on  traffic  intensity  but  also on  traffic  scheduling to 
various  destinations. In the case of a  time-sharing  sys- 
tem, message  scheduling is determined  by  the  job- 
scheduling  algorithm of the  computer's  operating  system. 
In  the case of distributed  computer  systems, message 
scheduling  is influenced  by the message-routing  algo- 
rithm.  A  simulation  study of the demultiplexing  buffer 
behavior  revealed  that,  for  a given input traffic  volume, 
the best huffer  behavior  can be  achieved  by  scheduling 
an  equal  amount of traffic to each  destination [19]. 
Hence  there  is  a close relationship  among  demultiplex- 
ing  system  performance  and  scheduling  algorithms [ Z O ]  
in  computer  operating  systems  and/or message routing 
algorithms.  Further  research in this  direction would  be 
desirable.  Results  obtained  in  this  area will be essential 
in the  joint  optimization of the  overall  performance of 
such  cornputer  communication  systems. 

Buffering is required in order  to  provide  error  control 
and message  scheduling,  which  are  two  Important  func- 
tions  in  computer  conlmunication  systems.  Since  statisti- 
cal  multiplexing  requires buffering  in order  to  handle 
statistical  fluctuations,  the  multiplexing buffer can  also 
be used for  these  functions. 

From  these  studies we conclude that  in  an  ATDM 
system,  an  acceptable buffer overflow probability  can be 
achieved  by  a  reasonable  buffer  size; the expected  queue- 
ing  delay is very s l d l  and  acceptable  for  most  applica- 
tions.  Hence, ATDM or  statistical  multiplexing  is  a 
feasible  technique  for  data  communications.  Furthermore, 
ATDM  greatly improves the  transmission efficiency and 
system  organization. 

We have  constructed  a  statistical  multiplexor at the 
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University of California, Lou Angcles (UCL'A) . Our pre- 
liminary  experience  has sho~vn  that  the  gain in com- 
munication  cost,  especially in long distance  transmission, 
by  employing ATDM in  conlputer  communication  could 
far outweigh  costs of overhead  in  addressing  and  storage 
for  buffering.  Statistical  multiplexing  should,  therefore, 
have  high  potential  for use in future  computer com- 
munication  systems. 

IEEE ' J tL4NS4C'J l~JSS (OS C O M M U N l C . A T l O N S ,  J U N E  1972 

A .  S w u m u r y  of Resu l t s  

We shall  first  consider  the  single .terminal system  as 
shown  in  Fig. 1 ; a single  buffered  terminal  linked  to a 
celltral  station (e.g., a CPU) t)y a conllnunication  chan- 
nel. This  system  transfers  data  from  the  terminal  to  the 
central  station. We imagine that  the  time  axis 0 I t < 
has i~een  divided  into  contiguous  intervals ( j  - 1 ) A  5 
t < jA (1 5 J < co) ; we  call  this  the  jth  slot  (Fig. 2 ) .  
Each  slot  is  capable of transfcrring a single clutu unit. 
The  data  unit  may tje viewed as a. character, a hytc, or 
a fixed-size  t)lock. In   the terminology of queueing  theory, 
the  channel  is  a  server  and  thc  data  units  play  the  role of 
custonlers.  Since  the  data  units  arc of fixed length, the 
service  time of eac,h customer  is  constant A. Further- 
more,  the  service  operation  may  stait  only at times of 
the  formjA (0 I j < co). 

The  performances  in  such  a  systeln  that  are of inter- 
est  arc I )  the  delay  experienced  by a group of V L  data 
units  and 2 )  the buffer  size  roquired to  achieve a certain 
1e \d  of overflow probability. 

For  mathematical  tractability, wc have  assunled in 
our analysis  buffers of infinite capacity. If, in this  case, 
the  probability  that a buffer  contains  more  than n data 
units  is sufficiently snlall,  then we can be reasonably 
confident that  the  system  wilh a bul'fer of this  capacity 
will exhibit  approximately  the  sanle  behavior. 

The arrival of traffic a t  a buffer will be descrihed  by 
stationary  random processes. Let X be the  random  num- 
ber of arrivals  (in  data  units)  during a  slot  interval  and 
p = E{-Y} and u2 = var { - S }  be the  expectation  and 
variance of S .  We show  in  Section 111-D that  the ex- 
pected  value  and  variance of thc  stationary buffer  queue 
length  are 

E.  Loop Systems 
A special distributecl-co~nl)uter-syste~l~ architecture of 

considerable  recent  interest is the loop (rillg)  system. 
This  type of system  connects a11 terminals  and/or corn- 
puter  by a common bus or loop. The  major  advantages 
are the simple  routing  algorithm  and  ease  in  control of 
information. FFrnw  and  Newhall I21 1 1)roposcd and 
constructed a loop system wit11 bursty traffic,  which  con- 
nects  various  devices  such as  teletype,  plotter,  cathode- 
ray  tube  display,  disk  control  unit,  and  computer 
together.  Pierce [22] proposetl a hierarchy  of  intercon- 
nected  loop  systems  with  randonl-leltgth messages seg- 
lnented  into fixed-size  hlocks and  provides  a  schenlc  for 
transferring  information  anlong  the  various  levels  of 
loops.  Konlleim  and  Meister 1231 analyzed  such a hier- 
archical  system.  Hayes  and  Sherman [24] studied  the 
message  delay clue to  buffering  for a single-loop  system. 
The  data source  is  assumed  to be of a  bursty  nature. 
The  traffic generated  by  each  user is assunled  to t)e idcnti- 
cally  distributed  with  uniformly  distributed  destinations. 
Konheim  and  Meister 1251 studied  the loop systenl  as  a 
priority  service  system.  Messages  may  enter  the  system 
at any  input  terlninal  located  on  the loop. Priority is as- 
signed on the basis of positior~ on the loop; the  terminal 
closest to  the  computer  has  highest  priority  and  priorities 
decrease  with  distance  from  the  co~nputer. The stationary 
queue  lengths  and  average  virtual  waiting  time  are  cal- 
culated.  Spragins I261 has  calculated  the  waiting  time 
with  Poisson arrival process. A variant of this  priority 
schenle  is the  multidrop  system  in which the  central 
processing  unit (CPU) serves  ea&  terlninal on the loop 
in  sequence;  when  a  terminal  is  served,  it  retains  the 
use of the  channel  until  its  buffer  is  empty.  The  channel 
is then idle  for a certain  llumber of slots  for  fralning 
and  synchronization  information  before  resuming  the 
service of the  next  terminal.  The  stationary-queue-length 
distribution  and  delay  have been reported  in 1271. 

11. UNIFIED MODEL FOR A CLASS OF COMPUTER 
COMMUNICATION SYSTEMS 

In Section I, we discussed the recent. advances  in  traf- 
fic characterization  and  analysis of several  colnputer 
communication  systems.  This  motivates  us  to  develop 
a unified  approach  to  the  analysis of a variety of com- 
puter  communication  systems  that is the  theme of Sec- 
tion 11. We begin  with a summary of results  deferring 
the  analysis  until  Sections 11-B to I. 

where p3 is the  third  central rnonlent E {  ( X  - P ) ~ )  of the 
input process. The traffic  intensity  (and  channel  utili- 
zation) p is equal t o  p. 

While  the  analysis  in  Section I1 will not  assume 3 

particular  distribution  for  input  traffic,  numerical  results 
will be  presented  for a compound  Poisson  process  moti- 
vated  in  part  by  the result6  obtained  in [2] .  For  this 
process, t,he times at Ivhich messages a.rrive are  determined 
by :L standard  Poisson  process  (with  rate x (messages/slot 
interval))  while the  lengths of the messages are geo- 
nletrically  distributed  with  mean  length ?Ti = 1/(1 - q)  
with 0 5 4 < 1. The  probability of j data units  arriving 
at, a terminal  during a slot  interval is 
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Fig. 1. The single terminal  system. 

+A---tcA--- ... 
( j - l ) A   j A   ( j t l ) A  

. ... 
Fig. 2. Gr:1phic:d represmtation of time  slots 

b X  , j = O  

1 I j < m . ( 3 )  

The  mean  and  variance of X are p = X/ (1  - y) and 
U' = h ( l  + y) / ( l  - y)'. We show in  Section 11-D that, for 
this  process (3), 1%- {L* 5 7 1 1 ,  the probability  that  the 
buffer  contains  no  more t,harl n data  units is 

Pr {L* I n ]  = 

Numerical  results  for  selected message lengths  are por- 
trayed  in  Fig. 3. Comparison of (4) with  the overflow 
probability in the finite  waiting-room   nod el [ l e ]  shows 
that  the  former is a good approximation  for  the low- 
overflow-probability  region. 

Next we consider the  star  system  (Fig. 41, which  con- 
sists of a  central  station  and 1V terminals  linked  by a 
comnlon  buffer. 

When we assume that  the traffic  is independent  from 
terminal  to  terminal,  the  number of data  units  that  ar- 
rive at   the common buffer during  a slot interval is the 
sum of A' independent processes. The  formulas  for  the 
expected  value  and  variance of the  stationary  queue 
length  in  the buffer arc (1) and (2') except that  we re- 
place p, 2 ,  and p3 by 

._ 
I . 10 IO0  1000 

N. DATA UNITS 

Fig. 3. The stationary-state  probability, Pr  {L* > N } .  for the 
s1ng-k terminal  system  with  compound  Poisson procras input 
p = 0.6. 

In   an STDM loop system  (Fig. 5 ) ,  the  rate of rcmov- 
ing  data  units  from  the buffer a t  each  terminal is gcn- 
erally  much  higher  than  the data arrival  rate. As a re- 
sult,, the buffer's capacity ~ u a y  be lilllited to  one  datn 
unit. If this  is  not  the  case, or if data  tend  to  arrive  in 
bursts,  then  buffering is required.  With STDM cacll tcr- 
minal is  assigned a fixed proportion of the  time  slots,  c.g., 
every 1Vth slot. Service at  thc  ith  terminal T t i )  is thus 
indcpendent of the traffic at  the  remaining  terminals  and 
the  analysis of the  behavior of the   h f fc r  at T " )  is iclcnti- 
cal to that  of the single  terminal nlodel (Fig. 1) after a 
reinterpretation of the  input  process.  The  cspcctcd vnluc 
and  variance of the  stntionnry  queue  length  in  the h f f c r  
a t  7'"' arc 

( 5 )  
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corresponding to  a  system  -utilization p = N A .  Fig. 6 
portrays  the  expected  stationary  queue  length  for  selected 
utilizations  with  identical  Poisson  input  processes.  The 
stationary  expected  delay for m data  units  (entering  at 
the  ith  terminal)  is 

1 

Fig. 5. 

u 
The loop system 

where N P ' ~ ) ,  Nu'")', and N p : i ' i )  are  the  mean,  variance, 
and  third  central  moments of the  arrival  process at T'i' 
over N contiguous  slots; that  is,  between  the  start of 
consecutive  service  operations at T'".  When the  input 
process  is (3) then  Pr  {L'"'" 5 n }  is  given  by (4) when X 
is replaced  by  and q by q'"'. 

To  measure the  delay  in a queueing  system  with  batch 
arrivals, i t  is natural   to employ  the  notion of virtual 
customers;  after  the  start of the  jth  slot we insert m 
(virtual)  data  units.  Their  delay is the difference between 
queueing  time  '(total  time  spent in system)  and  service 
time.  The  stationary  expected  delay for m data  units is 

In   an   ATDM loop system,  the  time  slots  no longer 
have  a fixed relationship  with  the  terminal.  The  number 
of service  slots that  a  terminal receives  in  a  fixed-time 
interval  varies  and  the buffer behavior becomes a com- 
plex analytical  problem.  We  first  examine  the  queue 
discipline that  favors  terminals  closer  to  the  central  sta- 
tion of the  loop.  This  introduces  a  priority  structure;  a 
slot is available  to  the  ith  terminal when and  only  when 
the buffers a t   the  first. i - 1 terminals  are  simultaneously 
empty.  Note  that  the  behavior of the buffer a t  T(i)  is not 
influenced by  the traffic a t  terminals T ( j )  with j > i. 
When  all  input  processes  are  standard  Poisson [ (3) with 
A ( i )  = A, q'') = 0 (1 5 i 5 N )  ] the expected  value of 
the  stationary  queue  length :it. the  ith  terminal is 

1 iX 
Dm(<) = m + 2 = -  iih + (i .- l )h  

1 - (i - 1)X (m - 1) ___-__ - 

, (9) 

and  may be attributed  to -two sources: 1) data  units 
already buffered at   the first i terminals,  and 2) data  units 
that  join the  system  at one of the :first i - 1 terminals 
before  completion of the service of the ?n data  units.  The 
second effect reflects the  priority  structure of the  system. 
Fig. 7 displays (9) for  a loop system  with  ten  terminals. 

Finally, we study  in  Section 11-H the loop system 
under  still  another  queue discipline-hub  polling. This 
system,  also  commonly  known  as a multidrop  network 
with  polling,  sequentially slerves the N terminals.  In- 
stead of allocating  a fixed proportion of the  channel  to 
each terminal  (as in  STDRII), the  channel  is  assigned to  
a  terminal  until  the buffer at  the  terminal  is  emptied. 
The  channel  then  remains  idle  for r slots (for framing 
and  synchronization  information)  and  the  process con- 
tinues  with  a  poll of the  next  terminal.  A  single  poll of 
each of the N terminals  is  defined as a  cycle of the  sys- 
tem.  We  restrict  our  presentation  to  the  case of identically 
distributed  input  processes  and show that  the  stationary 
expected  length of the  polling  cycle  is 

B{.e*] = ~- 
Nr 

1 - N p '  

which  corresponds  to  a  system  utilization of p = N p .  
The expected  value of the  stationary  queue  length  at 
a  terminal is  independent of the  terminal  position  index 
i and is given by 

while the  stationary expected  delay for rn data  units is 

When  input traffic is  given  by ( 3 )  the  average  queue 
length  as  a  function of utilization for a  system  with  ten 
terminals  and r = 1 slot  is shown  in Fig. 8. 

I?. The Arrival Process 

, 7 q p * ]  = $X (i - 1)X2 + (1 - (i - 1)q2  
(1 - iX)(l - (i - 1 ) q 2  

1 X 
+ 3 r- (i - 1)X (*) set of nonnegative  integers. The-law1 of a random variable 

The next  two  sections  consist of certain  preliminary 
notions;  the  main  development of the unified  model 
starts in  Section 11-D. 

We will denote  random  variables  by  capital  letters 
X, X, ,  X3(?), : * . These  variables  will  take  values  in  the 
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Fig. 7 .  Stationary  expected  delay for m virtual  data  units as a 
function of terminal  position for an ATDM loop  system  with 
Poisson  input ~~rocess  p = 0.7. 

S is  the  (probability nlassj function 

p x ( k )  = P r  {X = k ) ,  (0 5 k < m )  

to which we associate the probubility gemrating function 

m 

P&) = E(XS) = C p x ( k ) z k .  (13) 
k - 0  

m 

p . 4 )  = 1 
k = O  

the  series (13)  converges for  all com1)lex z with / z \  < 1 
and  thus PAr (z )  is  an  analytic  function  within  the ope11 
unit  disk { z  : / z i  < I } .  The correspondence  hetween p x  
(the  law)  and Ps (the  generating  function) is biunique; 
each  deterrhines  the  other.  We use the  notation E {  } 
throughout  to  denote  the  expectation of the  random 
variable  appearing  within  the  brackets.  The  variance of 
X, denoted  by  var { S } ,  is  defined by  var (X} = E { S ' }  
- E ' { X }  whenever  the  indicated rnoments exist.  Gen- 
erating  functions  arise  in  a  natural  fashion  in  probability 
calculations.  They  play  essentially  the  sanle  manipula- 
tive  role  as do Laplace  transforms  in  classical  transient 
analysis.  The  moments of a  random  variable S may  he 
expressed  in terms of the  derivatives of its  generating 
function P.v a t  z = I ;  in  particular 

E ( X }  = P'.y(l) (14) 

var ( X )  = P",(I) + PtS(1) - (P'.y(1))2. (1.9 

With  a  slight  abuse of notation we will write E ( P x ~  and 
var (PAY') for  the  right-hand  sides of (14) and (15'), rc- 
spectively. 

Three  features  are  central  in  the  description of a ~ L I C L W -  

ing  problem. 
1)  The  arrival  process, which specifies how customers 

(in  our  case  data  units)  arrive  in  the  system. 
2) The  service process,  which describes  the  nature  and 

duration of the  service  operation. 
3)   The  queue  discipline,  which  prescribes  the  rules of 

interaction  between  service  facility  and  customers. 
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In  the service  systems  that we consider, the service 
operation is the  transfer of data  from  a  terminal to  a 
central  station  and  the  server is the  channel.  The  server 
will alternately be made  available  to  the  various sources 
of customers  (terminals)  according  to  the  queue  dis- 
cipline  and we will examine  the effects of this  service 
policy  on  system  performance. 

We  assume that  the  time axis 0 5 t < m is divided 
into  contiguous  intervals or slots of common duration  as 
indicated  in  Fig. 2 .  The  channel  may  transfer  a single data 
unit  withiu  each  slot  and  t,he  service  operation  may  take 
place  only at times of the  form j A  with 0 < j < a. We 
will specify an  arrival process (at a terminal)  by  counting 
the  number X of data unit,s that  arrive  in a time  interval 
of length A. The  arrival process will have  the  form 
x = { X j  : 1 5 j < m ), where X; is the  number of data 
units  that  arrive  during  the  jth  slot.  We  shall  assume 
throughout  that  the  random  variables  are  independent 
and  identically  distributed.  We  denote  by P(z )  the com- 
mon  generating f u n d o n  E { z-”) (independent of j). We 
will refer to  X as a stanclad i n p u t  process. 

The simplest  example of a st,andard  process  is  provided 
by coin tossing;  here X ;  = 0 or 1 (heads or tails)  with 
probabilities p ( 0 )  and 1 - p(O) ,  respectively.  The  as- 
sociated  generating  function is P ( z )  = p ( 0 )  + (1 - p ( 0 ) ) z .  

The Poisson  process provides  us  with a second  example. 
A Poisson  process X counts  the  number of events X[,,,, 
that  take place in  the  interval a 5 t < b. For  our  case,  the 
event  is  the  arrival of a d a h  unit.  Two  properties  are 
characteristic of a Poisson  process. 

1) xlo,,bl) and X,,,,,?, are  independent  provided 
aI  < b ,  < a, < b,. 

The  parameter x is  called the  rate of the process and is 
equal  to  the  expected  number of events  in  a  unit  interval. 
The  random  variables { X ;  : 1 5 j < m ) with X i  = 
32[(i-1,n.ia, constitute  a  stmdard process with p = 

E { X ; )  = AA and a2 = var X j  = AA. An  important  and 
simple  generalization of the  standard Poisson  process  is 
obt,ained  by  allowing  for  multiple  arrivals at a  Poisson 
epoch. Thus we assume  that,  the  arrival  times of messages 
are  determined  by  a  standard  Poisson  process  with  rate A 
(in  messages/unit  time) but  the  number of data  units  that 
arrive a t  one of these I’oisson epochs  is  governed by  an 
auxiliary  (and  independent) law 3K. The  resulting  process 
is a compound  Poisson process. If M ( z )  is the  generating 
function of this  auxiliary  law 3n and X; = ‘ i ~ [ ( ; - , ) ~ , , ~ )  

and 

6‘ = var (X;) = ~ A ( I  + y)/[(1 - q)’ ] .  

C. The Prob1e.m of Gumbler’s Ruin 
We  continue  the  preliminaries  with  a  short  examina- 

tion of the  problem of garn5ller’s ruin.  With  the  proper 
interpretation,  the  equations  describing  the  fortunes of 
our  garnbler will also  describe  fluctuations in  the  con- 
tents of a  buffer. The connection will be supplied in Sec- 
tions 11-D to H. 

A gambler begins with  an  initial  capital of X. and 
plays  a  sequence of independent  and  identical  games. 
The  ith game  produces  a  (nonnegative  integral)  gain 
of S i  from  which  is  deducted an  entrance fee of one unit 
per  game.  The  net  worth of the  gamhler  after  the  play of 
the  jth  game is thus 

Play  continues  until  ruin;  that  is,  unlil L j  5 0. Gambler’s 
ruin  occurs  after  game T whe-re 

The problem is to  describe the law of T in  terms of the 
initial  capital X,,  and  the payoff on  each  game. 

Introduce  the  generating  functions K ( z )  = E {  zXo} and 
P(z)  = E{z”’) (1 5 j < a). Note  that  the payoff process 
{ X ;  : 1 5 j < ) is a standard process in our sense. 

I n  order to  reflect real life we further  assume  that 
E ( X , J  < and E { X , }  < I ,  (1 5 j < m ) .  That is, the 
gambler  begins  with a finite  expected  amount of capital 
and  the  game  favors  the  house. As is well known  (in 
mathematics  as well as  real life) the  ruin of the  gambler  is 
certain;  the  event { T = m ) corresponding to   an unlimited 
number of plays, is an  event of probability  zero. 

We  start wit,h the  recurrence  formula 

with p ( k )  = Pr { S j  = k }  and g,,, I,. = the  probability 
that  ruin  has  not  occurred  prior  to  the  nth  game  and 
L,, = k .  Note  that  this  even  can  occur in one of the 
following k + 1 mutually  exclusive  ways: 1) no  ruin 
prior  to  game n - 1, L,,+, =: j followed by 2) a  gain of 
k - j + 1 on the nth game  with 1 :< j 5 IC + 1. Equa- 
t.ion (18) sums  the  probabilities of these k + l possible 
events.  Define 

then {X,  : 1 5 j < m ) is a standard process and P(z )  = m m 

exp A(M(z)  - 1). The choice M ( z )  = z corresponds to  the G&) = gn.kzk 1G(z, w) = c,(z)wn 
standard Poisson  process. 

We  say  that  the mess:ige lengths  are  geometrically the  above  series  converging when 1 i . j  < 1, Iu!I < 1. Ob- 
distributed if M ( z )  = (1 - q ) z / ( l  - qz )  with 0 < q < 1. serve  that gn ,  () = G ,  (0) = PI: { T  = n }  and hence G ( 0 ,  W )  

l h e  average message length is 7% = 1/(1 - q )  while the = E{wT} is the  probability  generating  function of the l a v  
mem  and variance of the  resulting  input process are of T .  We start by translating (18) into a relationship  in- 

k = 0  n = II 

r 7  
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volving the  generating  functions.  Multiply (18) by z' 
and  sum 0 5 IC < ~0 to  obtain 

and  then  by w n  and  sum 1 I n < 00 to  obtain 

G(z, w) = - zK(2) - wP(z)G(O, w) 
x - wP(x) 

The  numerator  in  (19)  contains  an  unknown  boundary 
term G (0 ,  w )  . It is determined  by  an  appeal  to an'aly- 
ticity.  According  to  Rouchh's  theorem [28] the denomi- 
nator of (19)  has  a  simple zero z = e ( w )  

e(w) - mP(e(w)) = o (20) 

of modulus less than i for  each w, /wI < 1. By  carefully 
examining (20) for w real  and 0 2 w < 1 we easily  see 
that  'B(w) + 1 as w + 1. By  differentiating (20) we find 
( d k ) ) / ( d w k )   e ( w )  I = 2 0,  (1 2 k < w )  so that $0 is 

itself the  generating  function of some  probability  law. 
Since G ( z ,  w) is  analytic  in 1x1 < 1, JwI < 1, the  van- 

ishing of the  denominator when z = e ( ~ )  requires that  
t.he numerator  must  also  vanish at  this  point.  This  yields 
the following  proposition. 

Proposition 1 : 

G(O, W )  = E ' { w ~ ]  = K ( e ( w ) )  

providing  us  with  the  solution,  the  generating  function of 
the law of T in terms of the  generating  function of the 
initial  capital X,, and  the payoff structure  as reflected by 
the  generating  function 8. 

I n  general  the  explicit  deternlination of # (and hence 
G (0, w)) requires  the  solution of a  (generally)  tran- 
scendental  equation (20) and  may  present  some difficul- 
ties.l Even when the  explicit  form of 0 is not  calculated 
much  can be learned  from (20) ; if p = E { X j } ,  2 = var 
{ X j }  then  by  differentiating (20) a t  w = 1 we  find 

which  implies 

E ( T )  = E ( L o ]  - 1 
1 - P  

and 

['29] that B(w) is given by 
1 A simple  case of interest is P(z )  = exp A(z - 1). Here it is known 

D .  The Single  Terminal  Model 

We  now  return  to  the  main  development  and  show  what 
the  relationship is between  gamblei's  ruin  and  computer 
communications  systems.  The  system of Fig. 1 consists of a 
single  buffered terminal  linked t o  a CPU. Data from  the 
terminal  are  generated  by a standard process X = 

{Xi : 1 5 j < a } and  the service  operation is to  transmit 
these  data  (one  data  unit  per  slot)  from  the  buffer  to  the 
CPU. The  state of the  system  can  be  described  by  the 
state  variables 

Li = the  number of data  units buffered at  the  terminal 
just  prior  to  the  start of the  slot  for (j -I- 1)th 
slot (0 5 j < a). 

The  system  evolves  according to  

L; = (Li-, - 1)' + Xi, 1 5 j < (23) 

where a+ = max (a, 0).  Indeed, a data  unit is  removed 
in  the  jth  slot,  provided  that  there is a  data  unit  present 
(i.e., Lj-l > 0 ) ,  leaving  a  queue of length (Lj-1 - 1) +. 
These  data  units  are  joined  by X, new arrivals  during 
the  interval ( j  - 1) A 5 t < j A .  

Before  considering the  analysis of (23) let  us  note 
some  points of similarity  and  dissimilarity  with (16) ,  
which  describes the  fortunes of the  gambler. We may 
draw  the following  correspondences 

.removal of data units tf entrance  fee/play 
arrival of data units tf payoff 
initial  queue  length - initial  capital 

between these  two  problems.  When  the  gambler  reaches 
ruin,  the  game is over, while ruin  in  this  context cor- 
responds to  the  emptying of the buffer. Play continues 
here  and  thc buffer awaits  the  arrival of the next data 
unit ( s ) .  The  essential  point is that  the  emptying of the 
buffer marks  a  renewal  point of the  system;  the  system 
begins afresh,  independent of the  past,  at such  a  re- 
newal  point.  Technically, we are  dcaling  with a Markov 
chain;  in  the  problem of gambler's  ruin the point 0 is 
an  absorbing  point  while  here i t  is a reflecting point. 
The generating  function 0 of Section 11-C admits  the 
following  important  interpretation; it is the  generating 
function of the  renewal  time of the  systenl of Fig. 1 ;  
the  time between  consecutive  renewal  points of thc 
system. 

Let 

HI(2) = E{z ' ; ' )  

and 

m 

H(2,  w) = H,(z)w' 
i = O  

observing, as  previously,  that  these  generating  functions 
are defined (and  analytic)  in (21 < 1, jw I < 1. The 
equation of evolution (23) translates  into  a  relationship 
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involving  the  generating  function H ( z ,  w) as  in  Section 
11-c 

H(2, w) = zHo(z) + w(z - l)P(z)H(O, w) 
z - wP(2) 7 (24) 

where H o  ( z )  describes the  initial  loading of the buffer. 
The  boundary  term i ( 0 ,  w)  is  determined  as  in  Section 
11-C;  the  denominator of (24) vanishes  when z = O(w) 
and  the  analyticity of H ( z ,  w) requires that  the  nu- 
merator  have  this zero. Thus 

which  provides  the  full  transient  solution  for  the  system 
of Fig. 1, albeit nijt in  a  particularly  transparent  form. 
More  manageable  results  can be obtained if we  ex- 
amine  the  limiting  (in  t.ime)  behavior of this  system. 
It is  known [30] that  the  random  variables { L j  : 0 5 j 
< m }  converge  in  law, L" = lim L j  (in  law),  meaning 
that  

H*(z) = E { z L * ]  = lim (25) 

exists. H" is the  generating  function of the  stationary 
distribution of the  Markov  chain { L j  : 0 5 j < m}. The 
existence of the  stationary dist.ribution  requires the 
hypothesis E { X j }  < 1 expressing the  fact  that  data 
should  not  arrive at  the  terminal  at a rate  faster  than 
i t  can  be  repoved  (from  the  buffer).  To  evaluate  the 
limit df (25), we employ  a  Tauberian  theorem [31] ; 
accordingly 

j - r m  

n 

in the sense that  the existence of either of the  limits  im- 
plies the existence of the  other  and  their  equality.  The 
fight-hand  limit  is  the  so-cdled  Ceasaro, 1 or ( C ,  1) 
limit of the sequence { H ,  ( z )  : 0 I j < m}, which admits 
a  simple  physical  interpretation that  we shall  discuss 
later.  We  multiply  (24)  by ( 1  - w)  and  let w t 1 obtain- 
ing 

with p = E { X j } .  If we write 

m 

H*(z) = Pr (L* = n]zn 

then  the  stationary-state  probabilities P r  {L" = n} can 
be  found from (26)  although  a closed form  determina- 
tion  may  in  general be tedious. In  the  special  case P ( z )  
= exp A [(I - q ) z / ( l  - q z )  - I ] ,  Pr {L" 5 n} is  given 
by (4).  

Even  when  the  stationary-state  probabilities  cannot 
easily be found,  the  moments of the  stationary  law of 
L" can be found  from  (26)  by  differentiation a t  z = 1 

n=O 
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and we obtain E { L i ' }  and  var { L " )  as  given  in (1) and 
(2) * 

The  equality 

admits  an  interesting  physical  interpretation;  the  limit 
above  is  a  time  average  and Pr {L" = n.} is the expected 
fraction of time  (as  measuri?d  in  slbts) that   the contents 
of the buffer equals n. The choice n = 0 corresponds to 
the  nonutiliaation of the  server  (channel)  and  hence  the 
system  utilization p = 1 - Pr {Lis  = 0 )  = p. 

This  waiting-line analysis; provides  also  a  measure of 
the  delay.  We will suppose that a  group of 7n data  units 
enters  the  system  at  time ~ ( j  + l ) A  + 0 ;  that  is,  just 
after  the  start of the  jth slot..' This  group will be delayed 
by  the  presence of (Lj - 11) + dat.a  units.  Its  delay  is 
defined as  the  queueing  time  (total  time  spent  in  the  sys- 
tem) less the  service  time.  Thus  the  delay 1 + (Lj - 1) + 
is  independent of m. To find the  stationary expected 
delay we take  expectation  and  let j -+ co to  obtain D, = 
E{L"-}  + 1 - p. We now will show 'how this  model  (with 
a  suitable  reinterpretation)  presents  a  unified  approach 
to  the  analysis of a  class of compute:r communication  sys- 
stems. 

E .  The Star System 

The  star  system (Fig. 4) consists of A central  station 
(CPU)  and N terminals  linked  by a common  buffer. Each 
terminal  is  provided  with a separate  access to  the buffer 
which'collects  data  for  the  CPU.  1)at.a  arrive at the N 
terminals  according  to  random processes % ' l ) ,  X('), . . . , 
%'N' 

%(i) = {xj'": 1 5 j < w }, 
where the  superscript  refers t o  terminal  number.  Each 
process is a  standard  input  process  and we assume  the N 
processes  independent. The  state of the buffer  is  described 
by  the  state  variable 

L j  = the  total  number of data units buffered just  prior 
to  the  start  of the (j + 1)th  slot 

and  the  system evolves  according to  the  equation 

1 5 j < 00. (27) 

This is  just  (23),  where Xi there  is  replaced  by Xi(') + 
X i ( ' )  + . . . + Xj""'.  The  analysis of Section 11-D is 
applicable; if PC') (x) = E { zxl } is the  generating  function 
of the process then  the generaking function of the 

quite  arbitrary; we could equally  have chosen to  have  them  enter 
* The choice of when  the  virtual customers enter  the  system  is 

a t  time ( j  + l ) A  + 0. What we have in mind is a  measure of delay 
for  the  next  group of m data unit!; that,  enters  after  the  start of the 
j t h  slot. 
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effective input process in  the  star  system 

{Xi( ')  + X,(" + . . . + 1 5 j < m 1 
is 

P(2) = P ( 1 ) ( 2 ) P ( z ) ( x )  . . * P ( N ) ( Z ) .  

The laws of { Li: 0 5 j < m } converge  provided p ( ' )  + 
p(') + . . . + p ' N '  < 1 and  the  limiting  law is given by 

H*(z) = E{xL'}  = lim ~ ~ ( 2 )  

The  formulas for the expected  value  and  variance of the 
stationary  queue  length L" are  given  in (1) and (2) when 
we reigterpret  the  input  process;  this  requires  that we 
replace p, 2 ,  and p3 in ( 1 )  and (2) by 

E ( L * )  = - 
1 (1 + q>X 1 X  
2 ( 1  - q)(l  - q -  X )  + , 1  - q 

var ( L * }  = X ( 1  +_4q + 4 7  

( 1  + d X  

3(1 - q)'(l - q - X )  

+ (i ( 1  - q)( l  - q - X )  

- -  ( ~ 2x - l)(* - 3 )  
12 1 - q  

and P r  {L" 5 n }  is  given by (4) with A defined  as  pre- 
viously. 

F .  The  Loop  System  With  Synchronous  Time  Division 
Multiplexing 

The loop  system  (Fig. 5) consists of a central  station  and 
N buffered  terminals.  The  terminals  are  linked  by  a single 
channel that  is alternately  made  available  to  the  terminals. 
Let us  first  consider the case  in  which  data  can  be  trans- 
mitted  only  from  the  terminals  to  the  centra]  station. 

In   STDM  the  set  of slots 

S = (si = [ ( j  - l ) A ,   j A ) :  1 5 j < a }  

is partitioned  into N subsets Sei) = { skN+ i :  0 5 IC < } by 
assigning  every Nth  slot to  terminal T'". Data from  the 
ith  terminal  can be transmitted  to  the  central  station 
only  in  the  slots S ( i )  assigned to  it .   The  input processes 

variables  are 
p ) ,  c p ,  . . . , are  as  in  Section II-E and  the  state 

L j ( i )  = the  number of data  units buffered at the  ith 
terminal  just  prior  to  the  arrival of the 
(j + 1)th  slot for 0 5 j < m, 1 5 i 5 N .  

Note  that  for fixed j, the  state  variables L j ( l ) ,  L j ( ? ) ,  * . , 
L / ( N )  refer  to  the  state of the  system  at  different  instances 
of  time;  the difference  is related  to  the  transit  time of a 
slot  from  terminal t o  terminal.  This difference will play 
110 role in the  analysis of this  system  or  those  to  be  dis- 
c,ussed in  Sections II-G and II-H. 

The  esseptial  point  here  is  that  the  contents of the 
buffers are  independent  random  variables.  The  service 
capacity of the  system  has been divided in a fixed man- 
ner  among  the N competing  users  independent of the  ac- 
tual traffic. The  analysis of the  queue  length in the buffer 
at  any  terminal,  say !Fi), reduces to  the  analysis of the 
single  terminal  system  (Fig. 1) with a reinterpretation of 
the  input  process.  The  state  variable Lj( i )  experiences 
changes due  to  two effects: 1 )  the  removal of a  data  unit, 
and 2) the  arrival  of'new  data  units.  The  first  change ca-n 
take place  only a t  times of the  form j A  with j - i + 1 = 
0 (modulo N )  . 

Let Si(;' = & ( i + l ) N + i - l ( i )  and 
N 

y y  = XIN+i+k- l ( i ) .  
k = l  

We  have 

ci(;) = (gi-l(i) - 1)' + yi('),  1 5 j < m, 1 5 ,i 5 N ,  

(28) 

which  is (23) with X i  there  replaced  by yi('). Note  that 
yi(') is  the  total  number of data  units  that  arrive  during 
N contiguous  slots; that  is,  between  the  &art of con- 
secutive  service  operations at the  ith  terminal.  The  results 
of Sectmion II-D show that  the  random  variables (tic'): 
0 5 j < } converge in law  provided E (  yi(i)  } = 
N E { X i ( i ) }  = N p " '  < 1 .  The  limiting  law L'"* = lim 
d: j ( i )  has  generating  function 

from  which we obtain  the  moments E(L("*}  and  var 
{L ' "* )  given  in ( 5 )  and (6). 

I n  measuring  delay we encounter two phenomena ; the 
delay  due  to  customers  already  in  the  system  and  the 
delay  due  to  the  nature of the  service  operation.  Suppose 
a group of m data  units  enters  the  system  at t.he ith  ter- 
minal  just  after  the  start of slot s jN+i+a- l  with 0 I (Y 

< N .  The contents of the buffer  is 

k = 1  

T o  obtain  the  stationary  expected  delay (71, we average 
the  above  equation  over possible entry  times (0 I 01 < 
N )  , take  expectation  and let. j + 00. 

C .  The Loop Systeln  With  Asynchronous  Time 
Multiplexing [25]  

An undesirable effect of the  fixed-slot  assignrnent of 
STDM is the  creation of long  queues  and thc  attendant 
delays. In  this section we study  the  same  system  under 
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a  second  service  policy. The first  terminal, in the sense 
of position on the loop, that  requires  a  slot  receives the 
slot.  This service  policy establishes  a  priority  structure; 
T ( l )  has  the  highest  priority  and  priority  decreases  with 
terminal  position  number.  Priorities  depend  upon  position 
of the  terminal  on  the loop and we study  the effect of 
priority on the  grade of service a t  each  terminal. 

With  the  same  state  variables  as  in  Section 11-F, the 
system  evolves  according to  the  equations 

IEEE  TRANSACTIONS O N  COMIMUNICATIONS, J U N E  1972 

We  start  by  observing  that (29)  implies 

hi'" + Li'2' + . . . + Li(i-l) = ( L ; . . l ( l )  + Lj- l (z )  + . . . 
+ h;-l(i-l) - 1)' + Xi(l) + . X j ( 2 )  + . . . + Xi+l),  (33) 

which  again  is  a  variant of (23) with L i  replaced  by Lj'" + 
+ I n  particular] thse times  at which the  event 
Li'" + Li(') + + . . + Li'"') = 0 occurs  are  the service 
epochs { T i ( " :  1 5 j < } at  the  ith  terminal. As we have 
observed  in  Section 11-D the  increments { T i ( i )  - T i - l ( L ) :  
1 < j < m }3 are  independent  and  identically  distributed 
with  generating  function e'"(w), the  solution of (31).  The 
Gean  and  variance of the renewal  time T j ( i )  - T i - l ( i - l )  

Li(') + . . . + J- , i ( i - l )  and ;yj by J:l(l) + Xi("  + . . . 

The  j th slot  is  available to  the  ith  terminal if and  only if 
it  is  not  taken  bv  one of the first i - 1 terminals;  that  is, 

have  already  been  calculated (21) and (22). We thus 
obtain  the  formulas .% 

if and  only if Lj-l( l )  + Lj-1'2' + . .  . + Li.-l('-l) = 0. 
Let T l ( i )  < T z ( ' )  < denote  the  times  at which the (34) 
event Li'" + Li'" + . . . + L i ( i - l )  = 0 occurs. These 
are  the  epochs of service at  the  ith  terminal.  We  may  then 
replace (29) by 

E{Ti(i)  - Tj- l ( t ) }  = __ 1 '  
1 - 2 p ( k )  

k = l  

i - 1  
\- ( k ) l  
L L  cT 

For simplicity  in  notation] we let 
T ; ( i )  

Then (30a)  becomes 

&(i) = (Ci-l(i)  - 1)' + yY,(". (30b) 

We  recognize that  (30b)  takes  the  same  form  as (23) with 
X i  there  replaced  by y+(<). Note  that yj(i)  is  the  sum of 
T i C i )  - independent  and  identically  distributed 
random  variables.  Suppose we prove  the following. 

Proposition 2: The  renewal  times { T j ( < )  - Ti- l ( i ) :  
1 < j < a3 ) are  independent  and  identically  distributed 
random  variables  with  generating  function 

e ( i ) ( tu )  = - T ~ - ~  1 1  

where O'"(w) is the  unique  solution of the  equation 
i-1 

e( i ) (w)  - w IT P k ) ( e " ) ( W ) )  = 0,  (31) 
k = 1  

which  is of modulus less than one  for  each w, IwI < 1. 
The  random  variables { yi('): 1 < j < } will then 

constitute  a  standard process  in  our  sense  and  the  results of 
Section  11-D  are  applicable to  the  study of the  system 
(30b). If H i t i ) ( z )  = E { z ' ~ ( ~ ) }  then  the ( & i ( i ) :  0 5 j < } 
converges  in  law E{z ' (" 'J  = H'"*(X) = lim H ~ ( ' ) ( z )  
provided E{yj("} < 1 (1 < j < a). Now {yjCi):  1 < 
j < 03 ) is  a  compound process. Its  generating  function  is 
O(i)(P(") and hence 

where p ( k )  = E { X i ( k ) )  and u ( k ) 2  . - - var { X i ( k ) ) .  The 
compound  process { yi(i):  1 < j < m } is  the effective 
input process at  the  ith  terminal  and  its  mean  and  var- 
iance  are 

so that  the  stability  condition E{ 'yz ( i )  } < 1 becomes 
p ( l )  + p ( 2 )  + . . . + p " )  < 1. I n  order that  all  terminals 
possess  stationary  distributions, we then  require p"' + 
p " )  + . . . + p ( N )  < 1. The  ;stationa.rg  stat.e  probabilities 
may  be  found  from (32),  which we may now  write,  by 
virtue of (36), in  the  form 

k = l  

The  moments of L'i'* are  given  by (1) and (2)  when we 
replace p, a', and p3 by  the correspon-ding  moments of the 
effective  input process. The first  two 'of these  moments  are 
given  in (36) and (37). 

A simplification  in  the  formulas is achieved  when we 

(Z - i )e(<)(Pi)(Z))  
H("*(Z) = (1 - E { Y ~ ( ~ )  1) n ( * ) ( p ( i ) ( Z ) )  . (32) 3 The first  renewal  epoch T I (  i) depends u-pon the  initial  loading of 

the buffers a t   the  first i - 1 ternlinals. If L O ( ; )  = 0 (1 I j < i), 
then E{wT,  ( i )  } = e(" , (w)  also. This will cause  no  difficulties smce 

It remains to prove  the  proposition  and  calculate E {  Yi(i)  } . we are  interested  only in the  limiting  behavior. 
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assume that  the  terminal  input traffic from  all  terminals 
are  identical  Poisson  processes P c i ) ( x )  = exp h(z  - 1) 
( 1  5 i 5 N ) .  The  expected  value of the  stationary  queue 
length at  the  ith  terminal is given  in (8) and  corresponds 
to a  system  utilization of p = Nh. 

To  calculate  the  delay for a  group of ' m  data  units  that 
join at  time j A  + 0 we observe that  there  are  two sources 
of delay: 1) data  units  already  buffered  at  terminals T'", 

a t  terminals T'" ,  T " ) ,  . . . , T"-" but before the com- 
pletion of the service of these m data  units.  The second 
source  of the  delay reflects the  preferential service related 
to position  on the loop. The  problem of gambler's  ruin 
provides  us  with  the  solution.  Consider  this  problem  with 

Lo = initial  capital - m + (2 Li(k) - + g X i ( & )  

T'" . . . , T ( ; ) ,  and 2) data  units  that join subsequently 

k = l  k = l  

x ,  - Xk+i( ' )  + ' '  ' + x&+i(i-l)(l 5 IC < m )  

= cumulative  arrival  process at   the first i - 1 terminals. 

The  notation - indicates  that  the  two  random  variables 
are  equal  in  distribution.  The  queueing  time  (total  time 
spent  in  system) is equal  to 1 + T ,  where T is the  time  to 
ruin.  Using  Proposition 1 and  letting j --f m we find 

k = l  

When all input  processes  are  identical  standard  Poisson 
processes P( ' ) ( z )  = exp h(z  - l), (39) reduces to (9). 

H .  The Loop System With Hub Polling. 
We  conclude  with an  examination of the loop  system 

under  another  queue  discipline-hub polling. The N 
terminals  are  queried  in  sequence for service; if a  terminal 
responds  "yes," it  retains  control of the  channel  until  its 
buffer  is  emptied.  The  channel is then  idle  for r slots  to 
provide for addressing  information,  edd of  message,  check 
digits,  and line control  information.  The  same  query is 
then  addressed  to  the  next  terminal  and  the  process  repeats 
until all N terminals  have  been polled. We call this a cycle 
of the system. The polling procedure is thereafter  repeated. 

The  state of the  system  can  be  described  by  the  vector- 
valued  state  variable, L j  = ( L i ( l ) ,  L j ( ' ) ,  . . . , L i ( N ) )  of 
Section 11-F. The  generating  function of this  vector 
variable is the  analytic  function of N variables 

Fi(z , ,  2 2 ,  . .  . , X * , )  

defined  for z in  the  polydisk { ( x 1 ,  zz, . . . , z N )  : ( z l l  < 1 ,  
( x 2 (  < 1, . . . , /x , (  < I} .  We  limit  our  discussion  to  the 
special  case of identically  distributed  input processes,  i.e., 
P(x) = P"'(z)(l  5 i 5 N ) .  

The  idea of the  analysis is to  study  the cyclic nature of 
the service operation. It will turn  out  that when we look a t  
the  state of the  system  at  the  start of a cycle: it  will 
exhibit  regularity.  The  process  sampled a t  these  points 
will constitute  a  Markov  chain  with  stationary  dis- 
tribution. We will sketch  the  development;  the  details 
will be  found  in [27]. 

We begin by considering the  operation  "empty  the 
buffer a t  T'"" and  the effect this  has  on  a  generating 
function. If F ( x , ,  zz ,  . . , z N )  is the  generating  function of 
the  state  at  the  start of this  operation,  then 

N n P I ( ~ ~ ) F ( ~ ~ ,  Z z ,  . . . , z i - l ,  e( 0 p ( z k ) ) ,  x i + 1 ,  . . . ,z,) 
k = l  

k f i  

(40) 

is  the  generating  function  at  the  start of the  operation 
"empty  the buffer a t  T'"')." For proof of (40) note  that 
F ( z l ,  x z ,  . . . , x,) provides  a  complete  probabilistic 
description of the  state of the  system;  in  particular,  the 
number of data  units buffered a t  T(<). According to  the 
gambler's  ruin  problem,  this  determines  the  length of time 
needed to  empty  this buffer.  While this buffer is  being 
emptied,  data  are  simultaneously  arriving  at  the  remaining 

N - 1 t,erminals  and (40) retains  count of these  arrivals. 
The  initial  t,erm 

fi p r ( z k )  
k = l  

represents  a  count of the  arrivals  during  the  idle  slots. 
We will denote  this  operation  with  the  notation F -+ 8 , F  
with 1,F given  by (40).  The effect of a single  cycle  in the 
polling  process  corresponds to  the  operator eF = 
E N E N - l  . . . &,SIF.  If F describes the  state of the  system a t  
the  start of the  pth cycle  then eF describes the  state  at  the 
start of the  (p+l) th  cycle. We seekasteady-state  solution; 
that  is,  some  distribution of the  contents of the buffer a t  
the  start of a  cycle F ,  which  remains  unchanged  after a 
single  cycle 

eF = F.  (41) 

At  this  point, we may  make use of the  symmetry  that 
results  when  all  input  processes  have  the  same  distri- 
bution; (41) may  be  replaced  by 

( E ~ F ) ( ~ I ,  zz, . . . x,v) = F(zz ,  ~ 3 1  . . . , zN, 21) .  (42) 

Two  important  properties of the  solution of (42) (or (41))  
can  be  proved: 1 )  there exists a  unique  solution of (42)) 
and 2 )  for  any  initial  distribution G', e"G' 4 F as p + m . 
We  may  then  regard F as  a  stationary  distribution for the 
contents of the buffers at  the  start of a cycle. 
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The  actual  calculation of the F that  satisfies (42) is 
quite  straightforward.  We  introduce a family of auxiliary 
functions 

- ( N  - 2)  5 k 5 0 

m 

. rI P ( H y x , ,  22, . . . , 2,v-1))"r. (45) 
k = 1  

The  validity of the  argument  depends  upon  proving  the 
convergence of the infinite  product  (45).  For  this  purpose 
i t  suffices to  prove 

when z = (zl, x z ,  . . + , z N )  = 1 = (1,  1, . . . , 1) and 
1 5 j 5 N - 1. Here we make  use of the  recursive 
definition  (43); if 

then (43) yields 

We  introduce  the  generating  functions 

m 

Ai(2) = uk,iZk, 1 I j 5 N - 1; 121 < 1 
k = l  

Then (46) yields 

u 1 - 2"-1 

so that  

IEEE TR.4NS.4CTIONS ON  COMMUNICATIONS, J U N E  1972 

The infinite  product  converges  whenever N p  < 1, which 
again  expresses  the  natural  requirement  that  data  should 
not  enter  the  system  at a r.ate  faster  than  it  can be re- 
moved. Wc have  also  proved 

Equation  (47) gives the expected  contents of the buffer 
at T( I )   a t   the   s ta r t  of a  cycle. A similar  argument  (in- 
volving  generating  functions)  proves 

- __ ~ - - - .  Nrp(1 - p)  N2r2p"(l - p)' 

1 - Np ' (1 -- Np)'  (48) 

It remains  for YS t o  define what we mean  by  the  limiting 
behavior of the  system.  Suppose { T ~  : 1 I i < a} are  the 
times a t  which the cycles  start.  with T~ = 0. The  ratio 

(49) 

is an  average of the  function x L ' ( ' )  over  the  first i - 1 
cycles. It can  be  shown  that  this  ratio  converges  as i + 
with  limit 

Nr 1 .- P(2) 

which we can  interpret  as  the t.ime-averaged  generating 
function  for  the  contents of the buff'er a t  terminal  one. It 
averages  the  generating  function $'<(x,  I, . . . , 1) over  the 
first i - 1 cycles  with i -+ 03. The limit  exists and is 
given  by (50) for  every  initial  distribution F o ( z l ,  x o ,  . . . , 
x,) of the buffers.  Since  service at each of the  terminals  is 

(46) the  same,  the  superscript 1 appearing  on  the  left-hand 
side of (50) can be  replaced by any  index i, 1 5 i 5 N .  I n  
principle, (50) provides  us  with  the  stationary-state 
probabilities P r  { L ( i ) *  = n,], but  their  calculation  is- 
formidable.  The  stationary g:xpect,ed length of the  queue 
at  the  ith  terminal is  found  by  d.ifferentiating (50) at 

. x  = 1. We  require  the  intermediate  results  (47)  and (48) 
to  obtain  the  formula of equation ( I  1). 

It remains to  describe  the  delay  for a group of ?n data  
units  that  enters as before  just  after  the  start of some  slot. 
Suppose  they  enter at terminal T'". There  are  two  sources 
of delay  for  this  group: 1) the  group  may  enter  in  that 
part of a cycle  during  which  the  channel  is  available  to 
T'<' or 2) in a part of the cycle  durin,g  which the  channel  is 

" a  Ai(1) = -- H ' k ) ( ~ 1 7  . . . , x . ~ - ~ ) I ~ = ~  = ___- 
P ( N  - d .  either  idle or available to  one 'of the  remaining  t.erminals. 

k=1 axi 1 - Np In  the  former case, the  group  is dela,yed only  by  the  data 
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units  already buffered at T‘”. In   the lather  case they  are 
delayed by  these  units  and  by  the  time  delay  until  the 
channel  is  next  made  available to  5”“’. Averaging  over 
many cycles as  in (49), we  find the  delay  formula of (12). 

I. Models With Two-Way Trufic 
We  have  restricted  our  attention  thus  far  to  the  problem 

of one-way  traffic,  from a terminal  to  the  central  station. 
We  comment  here briefly on  what modifications are 
possible when we admit  the possibility of data flow in  two 
directions. The  channels  are  assumed  to  be  half-duplex. 
Consider the loop  system  with  asynchronous  time  division 
multiplexing and  suppose  that a slot  may  be  used for either 
CPU-to-terminal or terminal-to-CPU  transfer. The chan- 
nel will be  made  available  alternately  to  the  CPU  and 
terminals.  The  simplest  model  assumes  that  the  jth  slot 
contains  data  from  the  CPU  with  probability q and is free 
(and  hence  available  for  terminal-to-CPU  transfers)  with 
probability 1 - q. The  CPU-to-terminal traffic is thus 
modeled by a 0th  terminal wit,h an  input process = 
{Xi(’’: 1 5 j < a }, which is a realization of’coin tossing. 
The  analysis of this model follows along  the  lines  estab- 
lished in Sections 11-D and 11-G. The essential  point is 
tha t  a slot  may  be  used  for  either  terminal-to-CPU  or 
C1’U-to-terminal transfers  but  not,  both.  We  can  generalize 
by allowing  for  periods  during  which the  channel  is  not 
available (see [32] )  and  by more  general  CPU-to-terminal 
processes (see [33]). 

A  second  model  is  from  a  view of store  and  forward 
networks.  We  first assign highest  priority  to  the traffic 
from  the  terminals-to-CPU. Traffic from  the  CPU  to a 
terminal  is  temporarily buffered a t  intermediate  terminals 
when  a  conflict  over  a slot  arises. Tha t  is, if a  slot con- 
taining  a  data  unit  from  the  CPU  for  terminal y(”) 
reaches  terminal T(J’)  (with j < i) and finds that  the  buf- 
fer  there  contains  a  data  unit,  for  the  CPU, it is stored 
there,  freeing  the  slot for this  higher  priority  transmis- 
sion.  This buffered data  unit  remains  at T(J’ )  until  a  free 
slot  appears  and  then  resumes  its  journey.  The  analysis 
of this  system  has been carried  out  in [33] (see  also 

This completes the discussion of Section 11. We  note 
that  the  results  in Section I1 are closely related  to  those 
in  Section I. For example,  the  input traffic to  the buffer 
is  based  on the  measured  computer-traffic  characteristics; 
the fixed message  block  size  used in  the unified  model 
can  be  determined  from  the fixed block-size  model and 
channel  error  characteristics;  the buffer behavior of the 
star  system is related  to  that of the  statistical  multi- 
plexor  buffer;  and  the buffer behavior of the STDM loop 
system.  The  ATDM loop system  and  hub  polling  are 
special  cases of the  general loop system. 

[341). 

111. CONCLUSIONS 
Recent  advances  in  computer  communication  systems 

have been summarized.  Based on queueing  theory,  a 
unified  model has been developed that  can be  used to 
analyze  a  class of computer  communication  systems  in- 

cluding  the  star  and loop  systems.  Such  a  unified ap- 
proach  provides us with  more  insight.  into  the  system 
behavior  (delay, buffer  overflow) and  performance  trade- 
offs of these  systems.  These  play  an  important role in  the 
planning  and  optimization of computer  conmumication 
systems. 
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Analysis and. Design of Reliable Computer  Networks 

Absfracf-In the  design of a  computer  network,  one of the 
fundamental  considerations  is  the  reliability  and availability of the 
communication paths  between  all  pairs of centers  in  the  network, 
These  characteristics  are  strongly  dependent on the topological 

.layout of the  communication  links  in  addition  to  the reliability and 
availability of the  individual  computer  systems  and communication 
facilities. Based on graph  theoretic  models  for  computer  and com- 
munication  networks,  many  different reliability measures  have  been 
defined.  Attempts  have  been  made  to  characterize  networks  that 
are optimal  with respect  to  these  measures. In this paper, the  most 
‘significant  reliability  criteria and  their  relevance  to  different applica- 
tions will be  discussed.  Furthermore, we survey  the  status of current 
research on the  different  criteria.  The difficulties and  limitations on 
each reliability measure will be pointed out  and  what  seem  to  be  the 
most  fruitful areas for further  investigation will be  indicated. 

1 
I .  INTRODUCTION 

N THIS PAPER, a  computer  network  is  modeled  by 
a  linea,r  graph  in  which  the  nodes or vertices  corre- 
spond  to.  computer  centers  in  the  network  and  the 

edges  correspond to  the  communication  links. In   the de- 
sign of a  computer  network,  one of the  fundamental 
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considerations  is  the  reliability  and  availability of the 
communication  paths  between  all  pairs of centers  in  the 
network.  These  characteristics  strongly  depend  on  the 
topological layout of the  communication  links  in  addition 
to  the  reliability  and  avaihbility of the  individual com- 
puter  systems  and  communication  facilities.  Graph  theo- 
retic  models for computer  and  communication  networks 
have  previously been  used in  the  literature  to  character- 
ize maximally  reliable  networks  based  on  different  reli- 
ability  measures.  The difficulties and  limitations  on  each 
of these  measures will be discussed  in  this  paper,  in  addi- 
tion  to  the  problem  areas  that  appear  to be fruitful for 
further  investigation. 

I n  studies of communication  and  computer  networks, 
reliability  has  been defined in  a  number of different  ways. 
A network  has been  defined to be  operational  in  the  pres- 
ence of failures  provided  communication  paths  exist be- 
tween  certain  pairs of nod.es. Alternatively,  a  network 
has been  considered to be operational  in  the  presence of 
failures if every  node  could  communicate  with  a  certain 
percentage of the  other  nodes.  However,  these  definitions 
would be more  meaningful if they  quantitatively  reflected 
the  traffic-carrying  capacity of the  network  in  the  pres- 
ence of failures. For example, a line-switching  network, 
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