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oday’s Internet

e Service: best-effort datagram delivery

e Architecture: “stateless” routers

— excepting routing state, routers do not
maintain any fine grained state about traffic

 Properties
— scalable
— robust
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rends

« Deploy more sophisticated services, e.g.,
traffic management, Quality of Service (QoS)

 Two types of solutions:

— Stateless: preserve original Internet advantages
« RED - support for congestion control
e Differentiated services (Diffserv) — provide QoS

— Stateful: routers perform per flow management
e Fair Queueing - support for congestion control
* Integrated services (Intserv) — provide QoS
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Stateful Solutions: Router Complexity

« Data path
— Per-flow classification

— Per-flow buffer

Per-flow State

management
— Per-flow scheduling

e Control path
— Install and maintain __|
per-flow state for
data and control planes
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Stateless vs. Stateful

« Stateless solutions are more
— scalable
— robust
« Stateful solutions provide more powerful and
flexible services
— Fair Queueing vs. RED
— Intserv vs. Diffserv
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Question

« Can we achieve the best of two worlds, I.e.,
provide services implemented by stateful
networks while maintaining advantages of
Stateless architectures?
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Answer

e Yes, at least in some interesting cases:
— Per-flow guaranteed services [SIGCOMM’99]
— Fair Queueing approximation [SIGCOMM’98]
— large spatial service granularity [NOSSDAV’98]
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Scalable Core (SCORE)

e A contiguous and trusted region of network
In which
— edge nodes — perform per flow management

— core nodes — do not perform any per flow
management
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he Approach

e Define areference stateful network that
Implements the desired service

2. Emulate the functionality of the reference

network in a SCORE network
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The Idea

 Instead of having core routers
maintaining per-flow state have packets
carry per-flow state
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The Technique: Dynamic Packet State
(DPS)

e Ingress node: compute and insert flow
state Iin packet’s header
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The Technique: Dynamic Packet State
(DPS)

e Ingress node: compute and insert flow
state Iin packet’s header
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The Technique: Dynamic Packet State
(DPS)

e Core node:

— process packet based on state it carries and
node’s state

— update both packet and node’s state
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The Technique: Dynamic Packet State
(DPS)

« Egress node: remove state from packet’s
header
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Examples

 Per flow guaranteed services
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Core-Stateless Fair Queueing (CSFQ)

e Approximate functionality of a network in
which every node performs Fair Queueing (FQ)

FQ CSFQ
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Algorithm Outline

Ingress nodes: estimate rate r for each flow
and insert it in the packets’ headers
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Algorithm Outline

Ingress nodes: estimate rate r for each flow
and insert it in the packets’ headers
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e Core node:

Algorithm Outline

— Compute fair rate f on the output link
— Enqueue packet with probability
P=min(1,f/r)

— Update packet label to r = min(r, 1)
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Algorithm Outline

« Egress node: remove state from packet’s
header
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Example: CSFQ Core Core

« Assume estimated fair rate f =4
— flow 1, r=8=>P =min(1, 4/8) = 0.5 3
« expected rate of forwarded traffic 8 P =4 6
_ flow 2, r =6 => P = min(1, 4/6) = 0.67 2
e expected rate of forwarded traffic 6*P =4
— flow 3, r=2=>P=min(1,4/2) =1
e expected rate of forwarded traffic 2

Core Node (10 Mbps)
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Simulation Results

« 1 UDP (10 Mbps) and 31 TCPs sharing a 10
Mbps link
— fair rate 0.31 Mbps

UDP (#1) - 10 Mbps () () UDP (#1)

() TCP (#2)
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Throughput of TCP and UDP Flows
with RED, FRED, FQ, CSFQ
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Results

o« Complexity
— n —number of (active) flows
FIFORED| FRED | FQ CSFQ
State | O(1) O(n) |On) O(n) - edge
O(1) - core
Time | O(1) O(1) |O(logn) |O(1)
e Accuracy

— the extra service that a flow can receive in
CSFQ as compared to FQ is bounded
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Examples

e Support for congestion control
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Guaranteed Services

e |ntserv:

— provide per flow bandwidth and delay guarantees, and
achieve high resource utilization

— support for fined grained and short-lived reservations
— not scalable

e Diffserv (Premium Service):

— Scalable (on data path)
— cannot provide low delay guarantees and high resource
utilization simultaneously

e even at low utilization (e.g., 10%) in a medium network (e.g., 15
hops) the worst case queueing delay > 200ms

— centralized admission control (e.g., Bandwidth Broker) - not
appropriate for short-lived reservations
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Goal

e Unicast Intserv guaranteed service semantic
o Diffserv like scalability
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Solution

« Data path: approximate Jitter-Virtual Clock
(Jitter-VC) with Core-Jitter Virtual Clock (CJVC)
« Control path: approximate distributed admission

control
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heoretical Results

« CJVC provides same end-to-end delay
guarantees as Jitter-VC (and Weighted
Fair Queueing)

« Admission control: provides semantic of a
hard state protocol, but...

— typically achieves only 80 % link utilization
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Implementation

e Problem: Where to insert the state ?

e Possible solutions:

— between link layer and network layer headers
(e.g., MPLS)

— as an IP option
— find room in IP header
e Current implementation (FreeBSD 2.2.6):
use 17 bits in IP header
— 4 bits in DS field (former TOS)
— 13 bits by reusing fragment offset
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Status

 Working prototype in FreeBSD 2.2.6 that
Implements:
— Core-Stateless Fair Queueing

— Guaranteed services

o data path — Core Jitter Virtual Clock
e control path — distributed admission control
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Conclusions

Diffserv has serious limitations:
— no flow protection

— cannot provide guaranteed services and high
resource utilization simultaneously

— no scalable admission control architecture (e.g.
Bandwidth Broker)

DPS compatible with Diffserv: can greatly
enhances the functionality while requiring
minimal changes

Let’s do it in Qbone'!
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More Information

http://www.cs.cmu.edu/~istoica/DPS
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