
QoS Services with Dynamic
Packet State

Ion Stoica

Carnegie Mellon University

(joint work with Hui Zhang and Scott Shenker)



istoica@cs.cmu.edu

Today’s Internet

• Service: best-effort datagram delivery

• Architecture: “stateless” routers
– excepting routing state, routers do not

maintain any fine grained state about traffic

• Properties
– scalable

– robust
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Trends

• Deploy more sophisticated services, e.g.,
traffic management, Quality of Service (QoS)

• Two types of solutions:
– Stateless: preserve original Internet advantages

• RED – support for congestion control

• Differentiated  services (Diffserv) – provide QoS

– Stateful: routers perform per flow management
• Fair Queueing - support for congestion control

• Integrated services (Intserv) – provide QoS
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Stateful Solutions: Router  Complexity

• Data path
– Per-flow classification

– Per-flow buffer

 management

– Per-flow scheduling

• Control path
– install and maintain

 per-flow state for

 data and control planes

Classifier

Buffer
management

Scheduler

flow 1

flow 2

flow n

output interface

…

Per-flow State
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Stateless vs. Stateful

• Stateless solutions are more
– scalable

– robust

• Stateful solutions provide more powerful and
flexible services
– Fair Queueing vs. RED

– Intserv vs. Diffserv
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Question

• Can we achieve the best of two worlds, i.e.,
provide services implemented by stateful
networks while maintaining  advantages of
stateless architectures?
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Answer

• Yes, at least in some interesting cases:
– Per-flow guaranteed services [SIGCOMM’99]

– Fair Queueing approximation [SIGCOMM’98]

– large spatial service granularity [NOSSDAV’98]
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Scalable Core (SCORE)

• A contiguous and trusted region of network
in which
– edge nodes – perform per flow management

– core nodes – do not perform any per flow
management
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The Approach

• Define a reference stateful network that
implements the desired service

  

  

  

  

    

  

Reference Stateful Network

  

  

  

  

SCORE Network

2.   Emulate the functionality of the reference
      network in a SCORE network
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The Idea

• Instead of having core routers
maintaining per-flow state have packets
carry per-flow state

  

  

  

  

    

  

  

  

  

  

Reference Stateful Network SCORE Network
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The Technique: Dynamic Packet State
(DPS)

• Ingress node: compute and insert flow
state in packet’s header
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The Technique: Dynamic Packet State
(DPS)

• Ingress node: compute and insert flow
state in packet’s header
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The Technique: Dynamic Packet State
(DPS)

• Core node:
– process packet based on state it carries and

node’s state

– update both packet and node’s state
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The Technique: Dynamic Packet State
(DPS)

• Egress node: remove state from packet’s
header
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Examples

• Support for congestion control

• Per flow guaranteed services
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Core-Stateless Fair Queueing (CSFQ)

• Approximate functionality of a network in
which every node performs Fair Queueing (FQ)

  

  

  

  

    

  

  

  

  

  

Reference Stateful Network
SCORE Network

FQ FQ
FQ

FQ

FQFQFQ

CSFQ
CSFQ

CSFQ

CSFQ

CSFQ

CSFQ
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Algorithm Outline

• Ingress nodes: estimate rate r  for each flow
and insert it in the packets’ headers
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Algorithm Outline

    

• Ingress nodes: estimate rate r  for each flow
and insert it in the packets’ headers
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Algorithm Outline

• Core node:
– Compute fair rate f on the output link

– Enqueue packet with probability

– Update packet label to r = min(r, f)

    

P = min(1, f / r)
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Algorithm Outline

• Egress node: remove state from packet’s
header
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Example: CSFQ Core Core

• Assume estimated fair rate f = 4

– flow 1, r = 8 => P = min(1, 4/8) = 0.5
• expected rate of  forwarded traffic 8*P = 4

– flow 2, r = 6 => P = min(1, 4/6) = 0.67
• expected rate of  forwarded traffic 6*P = 4

– flow 3, r = 2 => P = min(1, 4/2) = 1
• expected rate of forwarded traffic 2
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Simulation Results

• 1 UDP (10 Mbps) and 31 TCPs sharing a 10
Mbps link
– fair rate 0.31 Mbps

Bottleneck link
(10 Mbps)

UDP (#1) - 10 Mbps

TCP (#2)

TCP (#32)

...

UDP (#1)

TCP (#2)

TCP (#32)

...
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CSFQ
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Results

• Complexity
–  n – number of (active) flows

• Accuracy
– the extra service that a flow can receive in

CSFQ as compared to FQ is bounded

FIFO/RED FRED FQ CSFQ

State O(1) O(n) O(n) O(n) - edge
O(1) - core

Time O(1) O(1) O(log n) O(1)
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Examples

• Support for congestion control

• Per flow guaranteed services
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Guaranteed Services

•  Intserv:
– provide per flow bandwidth and delay guarantees, and

achieve high resource utilization

– support for fined grained and short-lived reservations

– not scalable

• Diffserv (Premium Service):
– Scalable (on data path)

– cannot provide low delay guarantees and high resource
utilization simultaneously

• even at low utilization (e.g., 10%) in a medium network (e.g., 15
hops) the worst case queueing delay > 200ms

– centralized admission control (e.g., Bandwidth Broker) - not
appropriate for short-lived reservations
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Goal

• Unicast Intserv guaranteed service semantic

• Diffserv like scalability
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Solution

• Data path: approximate Jitter-Virtual Clock
(Jitter-VC) with Core-Jitter Virtual Clock (CJVC)

• Control path: approximate distributed admission
control

  

  

  

  

    

  

  

  

  

  

Reference Stateful Network
SCORE Network
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Jitter-VCJitter-VC
Jitter-VC

CJVC
CJVC

CJVC

CJVC

CJVC

CJVC



istoica@cs.cmu.edu

Theoretical Results

• CJVC provides same end-to-end delay
guarantees as Jitter-VC (and Weighted
Fair Queueing)

• Admission control: provides semantic of a
hard state protocol, but…
– typically achieves only 80 % link utilization
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Implementation

• Problem: Where to insert the state ?

• Possible solutions:
– between link layer and network layer headers

(e.g., MPLS)

– as an IP option

– find room in IP header

• Current implementation (FreeBSD 2.2.6):
use 17 bits in IP header
– 4 bits in DS field (former TOS)

– 13 bits by reusing fragment offset



istoica@cs.cmu.edu

Status

• Working prototype in FreeBSD 2.2.6 that
implements:
– Core-Stateless Fair Queueing

– Guaranteed services
• data path – Core Jitter Virtual Clock

• control path – distributed admission control
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Conclusions

• Diffserv has serious limitations:
– no flow protection

– cannot provide guaranteed services and high
resource utilization simultaneously

– no scalable admission control architecture (e.g.
Bandwidth Broker)

• DPS compatible with Diffserv: can greatly
enhances the functionality while requiring
minimal changes

• Let’s do it in Qbone !
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More Information

http://www.cs.cmu.edu/~istoica/DPS


