
1246 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

FAST TCP: Motivation, Architecture, Algorithms,
Performance

David X. Wei, Student Member, IEEE, Cheng Jin, Steven H. Low, Senior Member, IEEE, and Sanjay Hegde

Abstract—We describe FAST TCP, a new TCP congestion con-
trol algorithm for high-speed long-latency networks, from design
to implementation. We highlight the approach taken by FAST TCP
to address the four difficulties which the current TCP implementa-
tion has at large windows. We describe the architecture and sum-
marize some of the algorithms implemented in our prototype. We
characterize its equilibrium and stability properties. We evaluate
it experimentally in terms of throughput, fairness, stability, and re-
sponsiveness.

Index Terms—FAST TCP, implementation, Internet congestion
control, protocol design, stability analysis.

I. INTRODUCTION AND SUMMARY

CONGESTION control is a distributed algorithm to share
network resources among competing users. It is impor-

tant in situations where the availability of resources and the set
of competing users vary over time unpredictably, yet efficient
and fair sharing is desired. These constraints—unpredictable
supply and demand and the desire for efficient distributed op-
eration—necessarily lead to feedback control as the preferred
approach, where traffic sources dynamically adapt their rates to
congestion in their paths. On the Internet, this is performed by
the Transmission Control Protocol (TCP) in source and destina-
tion computers involved in data transfers.

The congestion control algorithm in the current TCP, which
we refer to as Reno in this paper, was developed in 1988 [20]
and has gone through several enhancements since, e.g., [1], [14],
[18], [21], [47], [58]. It has performed remarkably well and is
generally believed to have prevented severe congestion as the In-
ternet scaled up by six orders of magnitude in size, speed, load,
and connectivity. It is also well-known, however, that as band-
width–delay product continues to grow, TCP Reno will eventu-
ally become a performance bottleneck itself. The following four
difficulties contribute to the poor performance of TCP Reno in
networks with large bandwidth–delay products.

1) At the packet level, linear increase by one packet per round-
trip time (RTT) is too slow, and multiplicative decrease per
loss event is too drastic.

Manuscript received November 28, 2004; revised September 14, 2005;
approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Knightly.
This work was supported by the NSF under Grants ANI-0113425 and
ANI-0230967, Caltech Lee Center for Advanced Networking, the ARO under
Grant DAAD19-02-1-0283, the AFOSR under Grant F49620-03-1-0119,
DARPA, and Cisco. An abridged version of this paper appears in Proceedings
of IEEE INFOCOM, March 2004, and an expanded version appears online at
http://netlab.caltech.edu/FAST.

D. X. Wei, C. Jin, and S. H. Low are with the Division of Engineering and
Applied Science, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: slow@caltech.edu).

S. Hegde is with Akamai Technologies, San Mateo, CA 94404 USA.
Digital Object Identifier 10.1109/TNET.2006.886335

2) At the flow level, maintaining large average congestion
windows requires an extremely small equilibrium loss
probability.

3) At the packet level, oscillation in congestion window is
unavoidable because TCP uses a binary congestion signal
(packet loss).

4) At the flow level, the dynamics is unstable, leading to se-
vere oscillations that can only be reduced by the accurate
estimation of packet loss probability and a stable design of
the flow dynamics.

We explain these difficulties in Section II and motivate a delay-
based solution. Delay-based congestion control has been pro-
posed, e.g., in [3], [12], [23], [69], [72]. See [4], [5], [27], [28],
[36], [56], [68], [75] for other recent proposals.

Using queueing delay as a congestion measure has two advan-
tages. First, queueing delay can be more accurately estimated
than loss probability both because packet losses in networks
with large bandwidth–delay product need to be rare events under
TCP Reno (e.g., probability on the order 10 or smaller), and
because loss samples provide coarser information than queueing
delay samples. Indeed, measurements of delay are noisy, just
as those of loss probability. Each measurement of packet loss
(whether a packet is lost) provides one bit of information for the
filtering of noise, whereas each measurement of queueing delay
provides multi-bit information. This makes it easier for an equa-
tion-based implementation to stabilize a network into a steady
state with a target fairness and high utilization. Second, based
on the commonly used ordinary differential equation model of
TCP/AQM, the dynamics of queueing delay has the right scaling
with respect to network capacity. This helps maintain stability
as a network scales up in capacity [8], [51], [53].

In Section III, we lay out an architecture and present an
overview of some of the algorithms implemented in our first
prototype. Even though the discussion is in the context of FAST
TCP, the architecture can serve as a general framework to
guide the design of other congestion control mechanisms, not
necessarily limited to TCP, for high-speed networks. The main
components in the architecture can be designed separately and
upgraded asynchronously.

We evaluate FAST TCP both analytically and experimen-
tally. In Section III-B, we present a mathematical model of the
window control algorithm. We prove that FAST TCP has the
same equilibrium properties as TCP Vegas [44], [50]. In par-
ticular, it does not penalize flows with large propagation de-
lays and it achieves weighted proportional fairness [31]. For the
special case of single bottleneck link with heterogeneous flows,
we prove that the window control algorithm of FAST is locally
asymptotically stable, in the absence of feedback delay.

In Section IV, we present both experimental and simulation
results to illustrate throughput, fairness, stability, and respon-
siveness of FAST TCP, in the presence of delay and in hetero-

1063-6692/$20.00 © 2006 IEEE

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1247

geneous and dynamic environments where flows of different de-
lays join and depart asynchronously. It is important to evaluate
a congestion control algorithm not only in terms of throughput
achieved, but also what it does to network queues and how that
affects other applications sharing the same queue. We compare
the performance of FAST TCP with Reno, HSTCP [15], STCP
[32], and BIC TCP [75], using their default parameters.

In Section V, we summarize open issues and provide refer-
ences for proposed solutions.

II. MOTIVATIONS

A congestion control algorithm can be designed at two levels.
The flow-level (macroscopic) design aims to achieve high uti-
lization, low queueing delay and loss, fairness, and stability. The
packet-level design implements these flow level goals within
the constraints imposed by end-to-end control. Historically for
TCP Reno, packet-level implementation was introduced first.
The resulting flow-level properties, such as fairness, stability,
and the relationship between equilibrium window and loss prob-
ability, were then understood as an afterthought. In contrast, the
packet-level designs of HSTCP [15], STCP [32], and FAST TCP
are explicitly guided by flow-level goals.

A. Packet and Flow Level Modeling

The congestion avoidance algorithm of TCP Reno and its
variants have the form of AIMD [20]. The pseudo code for
window adjustment is

This is a packet-level model, but it induces certain flow-level
properties such as throughput, fairness, and stability.

These properties can be understood with a flow-level model
of the AIMD algorithm, e.g., [19], [29], [39], [41]. The window

of source increases by 1 packet per RTT,1 and decreases
per unit time by

packets

where pkts/s. is the round-trip time,
and is the (delayed) end-to-end loss probability, in period
.2 Here, is the peak window size that gives the “av-

erage” window of . Hence, a flow-level model of AIMD is

(1)

Setting in (1) yields the well-known formula
for TCP Reno discovered in [37], [48], which relates loss prob-
ability to window size in equilibrium:

(2)

1It should be (1� q (t)) packets, where q (t) is the end-to-end loss proba-
bility. This is roughly 1 when q (t) is small.

2This model assumes that window is halved on each packet loss. It can be
modified to model the case, where window is halved at most once in each RTT.
This does not qualitatively change the following discussion.

TABLE I
COMMON DYNAMIC STRUCTURE: w IS SOURCE i’S WINDOW SIZE, T IS ITS

ROUND-TRIP TIME, q IS CONGESTION MEASURE, x = w =T ; a, b(w), �,
 , � , � ARE PROTOCOL PARAMETERS; SEE [24]

TABLE II
COMMON EQUILIBRIUM STRUCTURE: x IS SOURCE i’S THROUGHPUT IN

packets/sec, T IS EQUILIBRIUM ROUND-TRIP TIME, q IS END-TO-END

CONGESTION MEASURE IN EQUILIBRIUM. THE PARAMETERS ARE: � = 1:225
FOR RENO, � = 0:120 FOR HSTCP, AND � = 0:075 FOR STCP. FOR FAST,

� SHOULD VARY WITH LINK CAPACITY

In summary, (1) and (2) describe the flow-level dynamics and
equilibrium, respectively, for TCP Reno.

Even though Reno, HSTCP, STCP, and FAST look different
at the packet level, they have similar equilibrium and dynamic
structures at the flow level; see [24] for detailed derivations. The
congestion windows in these algorithms all evolve according to

(3)

where and .
They differ only in the choice of the gain function ,
the marginal utility function , and the end-to-end con-
gestion measure . Within this structure, at the flow level, there
are thus only three design decisions:

• : the choice of the gain function determines
the dynamic properties such as stability and responsive-
ness, but does not affect the equilibrium properties;

• : the choice of the marginal utility function
determines equilibrium properties such as the equilibrium
rate allocation and its fairness;

• : in the absence of explicit feedback, the choice of
congestion measure is limited to loss probability or
queueing delay. The dynamics of is determined
inside the network.

At the flow level, a goal is to design a class of function pairs,
and , so that the feedback system described

by (3), together with link dynamics of and the intercon-
nection, has an equilibrium that is fair and efficient, and that
the equilibrium is stable, in the presence of feedback delay. The
design choices in FAST, Reno, HSTCP, and STCP are shown
in Table I. These choices produce equilibrium characterizations
shown in Table II.

We next illustrate the equilibrium and dynamics problems
of TCP Reno, at both the packet and flow levels, as band-
width–delay product increases.

B. Reno’s Problems at Large Window

The equilibrium problem at the flow level is expressed in (2):
the end-to-end loss probability must be exceedingly small to

1248 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

sustain a large window size, making the equilibrium difficult
to maintain in practice, as bandwidth–delay product increases.
Indeed, from (2), , i.e., the average number
of packet losses (or loss events) per window decreases in in-
verse proportion to the equilibrium window size for Reno. From
Table II, this number for HSTCP is .
Hence, it also decreases with the equilibrium window, but more
slowly than for TCP Reno. For STCP, this number is

, which is independent of, and hence scalable with,
the equilibrium window size. The recommended values in [32]
for the constants are and , yielding an av-
erage loss of 0.075 per window. Even though equilibrium is a
flow-level notion, this problem with Reno manifests itself at the
packet level, where a source increases its window too slowly
and decreases it too drastically. In contrast, HSTCP and STCP
increase more aggressively and decrease less drastically.

The causes of the oscillatory behavior of TCP Reno lie in its
design at both the packet and flow levels. At the packet level,
the choice of binary congestion signal necessarily leads to
oscillation in congestion windows and bottleneck queues, and
the parameter setting in Reno worsens the situation as band-
width–delay product increases. At the flow level, the system
dynamics given by (1) is unstable at large bandwidth–delay
products [19], [39]. These must be addressed by different
means.

Congestion window can be stabilized only if multi-bit feed-
back is used. This is the approach taken by the equation-based
algorithm in [13], where congestion window is adjusted based
on the estimated loss probability in an attempt to stabilize
around a target value given by (2). This approach eliminates
the oscillation due to packet-level AIMD, but two difficulties
remain at the flow level.

First, equation-based control requires the explicit estimation
of end-to-end loss probability. This is difficult when the loss
probability is small. Second, even if loss probability can be per-
fectly estimated, Reno’s flow dynamics, described by equation
(1) leads to a feedback system that becomes unstable as feed-
back delay increases, and more strikingly, as network capacity
increases [19], [39]. The instability at the flow level can lead to
severe oscillations that can be reduced only by stabilizing the
flow level dynamics. We present a delay-based approach to ad-
dress these problems.

C. Delay-Based Approach

The common model (3) can be interpreted as follows: the goal
at the flow level is to equalize marginal utility with the
end-to-end measure of congestion . This interpretation im-
mediately suggests an equation-based packet-level implemen-
tation where the window adjustment depends on not only
the sign, but also the magnitude of the difference between the
ratio and the target of 1. Unlike the approach taken
by Reno, HSTCP, and STCP, this approach eliminates packet-
level oscillations due to the binary nature of congestion signal. It
however requires the explicit estimation of the end-to-end con-
gestion measure .

Without explicit feedback, can only be loss probability,
as used in TFRC [13], or queueing delay, as used in TCP Vegas
[3] and FAST TCP. Queueing delay can be more accurately es-
timated than loss probability both because loss samples provide
coarser information than queueing delay samples, and because

packet losses in networks with large bandwidth–delay products
need to be rare events under schemes such as Reno. Indeed, each
measurement of packet loss (whether a packet is lost) provides
one bit of information for the filtering of noise, whereas each
measurement of queueing delay provides multi-bit information.
This facilitates an equation-based implementation to stabilize a
network into a steady state with a target fairness and high uti-
lization.

At the flow level, the dynamics of the feedback system must
be stable in the presence of delay, as the network capacity in-
creases. Here, again, queueing delay has an advantage over loss
probability as a congestion measure: the dynamics of queueing
delay have the right scaling with respect to network capacity,
according to the commonly used ordinary differential equation
model. This helps maintain stability as network capacity grows
[8], [51]–[53].3

This motivates the following implementation strategy. First,
by explicitly estimating how far the current state is
from the equilibrium value of 1, a delay-based scheme can drive
the system rapidly, yet in a fair and stable manner, toward the
equilibrium. The window adjustment is small when the current
state is close to equilibrium and large otherwise, independent of
where the equilibrium is. This is in stark contrast to the approach
taken by Reno, HSTCP, and STCP, where window adjustment
depends on just the current window size and is independent of
where the current state is with respect to the target (compare [24,
Figs. 1(a) and (b)]). Like the equation-based scheme in [13], this
approach avoids the problem of slow increase and drastic de-
crease in Reno, as the network scales up. Second, by choosing
a multi-bit congestion measure, this approach eliminates the
packet-level oscillation due to binary feedback, avoiding Reno’s
third problem. Third, using queueing delay as the congestion
measure allows the network to stabilize in the region below
the overflowing point, when the buffer size is sufficiently large.
Stabilization at this operating point eliminates large queueing
delay and unnecessary packet loss. More importantly, it makes
room for buffering “mice” traffic. To avoid the second problem
in Reno, where the required equilibrium congestion measure
(loss probability for Reno, and queueing delay here) is too small
to practically estimate, the algorithm must adapt its parameter

to capacity to maintain small but sufficient queueing delay.
Finally, to avoid the fourth problem of Reno, the window con-
trol algorithm must be stable, in addition to being fair and effi-
cient, at the flow level. The emerging theory of large-scale net-
works under end-to-end control, e.g., [6], [8], [11], [19], [31],
[33]–[35], [39], [41], [42], [44], [46], [50]–[53], [56], [63], [64],
[73], [76] (see also, e.g., [30], [40], [43], [57] for recent sur-
veys), forms the foundation of the flow-level design. The theory
plays an important role by providing a framework to understand
issues, clarify ideas, and suggest directions, leading to a robust
and high performance implementation.

III. ARCHITECTURE AND ALGORITHMS

A. Architecture

We separate the congestion control mechanism of TCP into
four components in Fig. 1. These four components are function-

3See [45] for the pitfalls of using delay to predict loss in the hope of helping
a loss-based algorithm adjust its window.

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1249

ally independent so that they can be designed separately and up-
graded asynchronously.

The data control component determines which packets to
transmit, window control determines how many packets to
transmit, and burstiness control determines when to transmit
these packets [24], [71]. These decisions are made based on
information provided by the estimation component.

An initial prototype that included some of these features was
demonstrated in November 2002 at the SuperComputing Con-
ference, and the experimental results were reported in [26]. In
the following, we explain in detail the design of the window
control component.

B. Window Control Algorithm

FAST reacts to both queueing delay and packet loss. Under
normal network conditions, FAST periodically updates the con-
gestion window based on the average RTT according to

where , is the minimum RTT observed so
far, and is a positive protocol parameter that determines the
total number of packets queued in routers in equilibrium along
the flow’s path. The window update period is 20 ms in our pro-
totype.

We now provide an analytical evaluation of FAST TCP. We
present a model of the window control algorithm for a network
of FAST flows. We show that, in equilibrium, the vectors of
source windows and link queueing delays are the unique so-
lutions of a pair of optimization problems (6)–(7). This com-
pletely characterizes the network equilibrium properties such as
throughput, fairness, and delay. We also present a preliminary
stability analysis.

We model a network as a set of resources with finite capaci-
ties , e.g., transmission links, processing units, memory, etc.,
to which we refer to as “links” in our model. The network is
shared by a set of unicast flows, identified by their sources. Let

denote the round-trip propagation delay of source . Let be
the routing matrix where if source uses link , and 0
otherwise. Let denote the queueing delay at link at time
. Let be the round-trip queueing delay, or

in vector notation, . Then the round-trip time of
source is .

Each source adapts its window periodically according
to4

(4)

where , at time .
A key departure of our model from those in the litera-

ture is that we assume that a source’s send rate, defined as

4Note that (4) can be rewritten as (when � (w ; q) = � , constant)

w (t+ 1) = w (t) + (� � x (t)q (t)) :

From [44], TCP Vegas updates its window according to

w (t+ 1) = w (t) +
1

T (t)
sgn (� � x (t)q (t))

where sgn(z) = �1 if z < 0, 0 if z = 0, and 1 if z > 0. Hence, FAST can be
thought of as a high-speed version of Vegas.

, cannot exceed the throughput it receives.
This is justified because of self-clocking: within one round-trip
time after a congestion window is increased, packet transmis-
sion will be clocked at the same rate as the throughput the
flow receives. See [66] for detailed justification and validation
experiments. A consequence of this assumption is that the link
queueing delay vector, , is determined implicitly by the
instantaneous window size in a static manner: given
for all , the link queueing delays for all are
given by

if
if

(5)

where again .
The next result says that the queueing delay is indeed well

defined. All proofs are relegated to the Appendix and [24].
Lemma 1: Suppose the routing matrix has full row rank.

Given , there exists a unique queueing delay vector
that satisfies (5).

The equilibrium values of windows and delays of the
network defined by (4)–(5) can be characterized as follows.
Consider the utility maximization problem

(6)

and the following (dual) problem:

(7)

Theorem 2: Suppose has full row rank. The unique equi-
librium point of the network defined by (4), (5) exists
and is such that is the unique
maximizer of (6) and is the unique minimizer of (7). This
implies in particular that the equilibrium rate is -weighted
proportionally fair.

Theorem 2 implies that FAST TCP has the same equilibrium
properties as TCP Vegas [44], [50]. Its equilibrium throughput
is given by

(8)

In particular, it does not penalize sources with large propaga-
tion delays . The relation (8) also implies that, in equilibrium,
source maintains packets in the buffers along its path [44],
[50]. Hence, the total amount of buffering in the network must
be at least packets in order to reach the equilibrium.5

We now turn to the stability of the algorithm.
Theorem 3 (Single-Link Heterogeneous-Source): Suppose

there is only a single link with capacity . Then the system
defined by (4)–(5) is locally asymptotically stable.

The basic idea of the proof is to show that the mapping from
(scaled) to defined by (4)–(5) has a Jacobian
whose spectral radius is strictly less than 1, uniformly in ;
see Theorem 6 in the Appendix. Hence, converges lo-
cally to the unique equilibrium. The proof technique seems to

5A version of the FAST implementation deals with the problem of insufficient
buffering by choosing � among a small set of pre-determined values based on
achieved throughput. This can sometimes lead to unfair throughput allocation
as reported in some of the literature. This version was used around early 2004,
but discontinued since.

1250 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

Fig. 1. FAST TCP architecture.

be different from those in the current literature of TCP conges-
tion control. It also reveals some interesting global properties of
FAST TCP at a single link.

Corollary 4: Suppose there is only a single link with ca-
pacity .

1) The equilibrium point is given by

with .
2) Starting from any initial point , the link is fully

utilized, i.e., equality holds in (5), after a finite time.
3) The queue length is lower and upper bounded after a finite

time. If all sources have the same propagation delay,
for all , then the system converges in finite time.

The stability result reported here is limited to local asymp-
totic stability at a single link with heterogeneous sources and
feedback delay is ignored. In [65], the local stability result is ex-
tended to a multilink network in the absence of feedback delay.
With feedback delay, local stability can be maintained for the
case of a single link, provided the heterogeneity of the delays
is small. This delayed stability result is extended in [66] to a
multilink network; furthermore, global stability at a single link
is established in the absence of delay using a Lyapunov argu-
ment. These results are summarized in [67]. In [9], a condi-
tion for global asymptotic stability is given for a single-source
single-link network.

IV. PERFORMANCE

We have conducted experiments on our dummynet [55]
testbed comparing performance of various new TCP algorithms
as well as the Linux TCP implementation. For more complex
scenarios that are hard to reliably emulate with our dummynet
testbed, we report some simulation results on ns-2 [77]. The
experiment and simulation results reported aim to zoom in on
specific properties of FAST. These scenarios may be incom-
plete or unrealistic. Experiments in production networks can be
found in [17] and [26]. Other results not presented in this paper
are collected in [70] and [79].

A. Testbed and Kernel Instrumentation

Our testbed consists of a sender and a receiver both run-
ning Linux, that are connected through an emulated router
running dummynet under FreeBSD. Each testbed machine has
dual Xeon 2.66 GHz CPUs, 2 GB of main memory, and dual
on-board Intel PRO/1000 Gigabit Ethernet interfaces. We have
tested these machines to ensure each is able to achieve a peak
throughput of 940 Mb/s with the standard Linux TCP protocol
using . The testbed router supports paths of various
delays and a single bottleneck capacity with a fixed buffer
size. It has monitoring capability at the sender and the router.
The receiver runs multiple sinks with different port

Fig. 2. Dynamic scenario I (3 flows): active periods.

numbers for connections with different RTTs. We configured
dummynet to create paths or pipes of different RTTs, 50, 100,
150, and 200 ms, using different destination port numbers on
the receiving machine. We then created another pipe to emulate
a bottleneck capacity of 800 Mb/s and a buffer size of 2000
packets, shared by all the delay pipes. To reduce scheduling
granularity, we recompiled the FreeBSD kernel so the task
scheduler runs every 1 ms. We also increased the size of the
IP layer interrupt queue to 3000 to accommodate large bursts
of packets. For each connection on the sending machine, the
kernel monitor captures the congestion window, the observed
base RTT, and the observed queueing delay. On the dummynet
router, the kernel monitor captures the throughput at the bottle-
neck, the number of lost packets, and the average queue size
every two seconds.

We tested five TCP implementations: FAST, Reno (Linux),
HSTCP, STCP, and BIC-TCP using their default parameters for
all experiments. The FAST TCP is based on Linux 2.4.20 kernel
(is set to 200 packets), HSTCP, Scalable TCP and Reno are
based on Linux 2.4.19 kernel, BIC TCP was based on 2.4.25
kernel. We ran tests and did not observe any appreciable differ-
ence among the three plain Linux kernels, and the TCP source
codes of the three kernels are nearly identical. Linux TCP im-
plementation includes all of the latest RFCs such as New Reno,
SACK, D-SACK, and TCP high performance extensions. There
are two versions of HSTCP [10], [38]. We present the results of
the implementation in [38], but our tests show that the imple-
mentation in [10] has comparable performance.

In all of our experiments, the bottleneck capacity is
800 Mb/s—roughly 67 packets/ms, and the maximum buffer
size is 2000 packets.

B. Case Study: Static Scenario I

In the first dynamic test, the number of flows was small so
that throughput per flow, and hence the window size, was large.
There were three TCP flows, with propagation delays of 100,
150, and 200 ms, that started and terminated at different times,
as illustrated in Fig. 2.

For each dynamic experiment, we generated two sets of fig-
ures. From the sender monitor, we obtained the trajectory of in-
dividual connection throughput (in Kb/s) over time. They are
shown in Fig. 3. As new flows joined or old flows left, FAST
TCP converged to the new equilibrium rate allocation rapidly
and stably (left column). Reno’s throughput was also relatively
smooth because of the slow (linear) increase between packet
losses. It incurred inefficiency towards the end of the experiment
when it took 30 minutes for a flow to consume the spare capacity
made available by the departure of another flow. HSTCP, STCP,
and BIC-TCP responded more quickly but also exhibited signif-
icant fluctuation in throughput.

From the queue monitor, we obtained average queue size
(packets) shown in Fig. 3 on the right column. The queue

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1251

Fig. 3. Dynamic scenario I: throughput trajectory (left column) and Dummynet
queue trajectory (right column).

under FAST TCP was quite small throughout the experiment
because the number of flows was small. HSTCP, STCP, and
BIC-TCP exhibited strong oscillations that filled the buffer.
Since BIC-TCP tried to maintain an aggregate window to be
just below the point where overflow occurs, it had the highest
average queue length.

From the throughput trajectories of each protocol, we calcu-
late Jain’s fairness indexes (see Section IV-D for definition) for
the rate allocations for each time interval that contains more
than one flow (see Fig. 2). The fairness indexes are shown in
Table III. FAST TCP obtained the best intra-protocol fairness,
very close to 1, followed by HSTCP, Reno, BIC-TCP, and then

TABLE III
DYNAMIC SCENARIO I: INTRA-PROTOCOL FAIRNESS (JAIN’S INDEX)

Fig. 4. Dynamic scenario II (8 flows): active periods.

STCP. It confirms that FAST TCP does not penalize flows with
large propagation delays.

For FAST TCP, each source tries to maintain the same
number of packets in the queue in equilibrium, and thus, in
theory, each competing source should get an equal share of
the bottleneck bandwidth. Even though FAST TCP achieved
the best fairness index, we did not observe the expected equal
sharing of bandwidth (see Fig. 3). Our sender monitor showed
that all the flows measured their propagation delays correctly.
We found that connections with longer RTTs consistently
observed higher queueing delays than those with shorter RTTs.
For example, the connection on the path of 100 ms saw an
average queueing delay of 6 ms, while the connection on the
path of 200 ms saw an average queueing delay of 9 ms. This
caused the connection with longer RTTs to maintain fewer
packets in the queue in equilibrium, thus getting a smaller share
of the bandwidth. We conjecture that a larger window size (due
to longer RTT) produces a more bursty traffic. With bursty
traffic arriving at a queue, each packet would see a delay that
includes the transmission times of all preceding packets in the
burst, leading to a larger average queueing delay and a smaller
throughput.

C. Case Study: Dynamic Scenario II

This experiment was similar to dynamic scenario I, except
that there were a larger number (8) of flows, with different
propagation delays, which joined and departed according to
the schedule in Fig. 4. The qualitative behavior in throughput,
fairness, stability, and responsiveness for each of the protocols
is similar in this case as in scenario I, and in fact is amplified as
the number of flows increases.

Specifically, as the number of competing sources increases,
stability became worse for the loss-based protocols. As shown
in Fig. 5, oscillations in both throughput and queue size are more
severe for loss-base protocols. Packet loss was more severe. The
performance of FAST TCP did not degrade in any significant
way. Connections sharing the link achieved very similar rates.
There was a reasonably stable queue at all times, with little
packet loss and high link utilization. Intra-protocol fairness is
shown in Table IV, with no significant variation in the fairness
of FAST TCP.

D. Overall Evaluation

We have conducted several other experiments, with different
delays, number of flows, and their arrival and departure pat-
terns. In all these experiments, the bottleneck link capacity was

1252 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

TABLE IV
DYNAMIC SCENARIO II: INTRA-PROTOCOL FAIRNESS (JAIN’S INDEX)

800 Mb/s and buffer size 2000 packets. We present here a sum-
mary of protocol performance in terms of some quantitative
measures on throughput, fairness, stability, and responsiveness.

We use the output of for our quantitative evaluation.
Each session in our experiments produced five-second
averages of its throughput. This is the data rate (i.e., goodput)
applications such as receives, and is slightly less than the
bottleneck bandwidth due to packet header overheads.

Let be the average throughput of flow in the five-
second period . Most tests involved dynamic scenarios where
flows joined and departed. For the definitions below, suppose
the composition of flows changes in period , remains
fixed over period , and changes again in period

, so that is the maximum-length interval over
which the same equilibrium holds. Suppose there are active
flows in this interval, indexed by . Let

be the average throughput of flow over this interval. We now
define our performance metrics for this interval using
these throughput measurements.

1) Throughput: The average aggregate throughput for the in-
terval is defined as .

2) Intra-protocol fairness: Jain’s fairness index
for the interval is defined as [22]

. and
is ideal (equal sharing).

3) Stability: The stability index of flow is the sample stan-
dard deviation normalized by the average throughput:

The smaller the stability index, the less oscillation a source
experiences. The stability index for interval is the
average over the active sources .

4) Responsiveness: The responsiveness index measures the
speed of convergence when network equilibrium changes
at , i.e., when flows join or depart. Let

be the running average by period .
Then is the average over the entire interval

.

Fig. 5. Dynamic scenario II: throughput trajectory (left column) and Dum-
mynet queue trajectory (right column).

Responsiveness index measures how fast the running
average of the slowest source converges to :6

6The natural definition of responsiveness index as the earliest period after
which the throughput x (k) (as opposed to the running average x (k) of the
throughput) stays within 10% of its equilibrium value is unsuitable for TCP
protocols that do not stabilize into an equilibrium value. Hence, we define it in
terms of x (k) which, by definition, always converges to x by the end of the
interval k = m. This definition captures the intuitive notion of responsiveness
if x (k) settles into a periodic limit cycle.

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1253

(a) (b) (c)

(d) (e)

Fig. 6. Overall evaluation: (a) throughput; (b) fairness; (c) stability; (d) responsiveness index R ; (e) responsiveness index R .

Responsiveness index measures how fast the aggregate
throughput converges to :

For each TCP protocol, we obtain one set of computed values
for each evaluation criterion for all of our experiments. We plot
the cumulative distribution function (CDF) of each set of values.
These are shown in Fig. 6(a)–(d).

From Fig. 6(a)–(d), FAST has the best performance among
all protocols for three evaluation criteria, fairness, stability
and responsiveness index . It has the second best overall
throughput. More importantly, the variation in each of the dis-
tributions is smaller under FAST than under the other protocols,
suggesting that FAST had fairly consistent performance in our
test scenarios. We also observed that both HSTCP and STCP
achieved higher throughput and improved responsiveness com-
pared with TCP Reno. STCP had worse intra-protocol fairness
compared with TCP Reno, while both BIC-TCP and HSTCP
achieved comparable intra-protocol fairness to Reno. HSTCP,
BIC-TCP, and STCP showed increased oscillations compared
with Reno (Fig. 6(c), Fig. 3), and the oscillations became worse
as the number of sources increased (Fig. 5).

From Fig. 6(d), FAST TCP achieved a much better respon-
siveness index than the other schemes. We caution however
that it can be hard to quantify “responsiveness” for protocols
that do not stabilize into an equilibrium point or a periodic limit
cycle, and hence the unresponsiveness of Reno, HSTCP, and
STCP, as measured by index , should be interpreted with care.
Indeed, from Fig. 6(e), all protocols except TCP Reno perform
well on the responsiveness index which, unlike , is based
on aggregate throughput. This apparent discrepancy reflects the
fact that link utilization traces converge more quickly than in-
dividual throughput traces. It also serves as a justification for
the link model (5): the aggregate input rate to a link converges

more rapidly than individual rates, and hence the queue stabi-
lizes quickly to its new level that tracks changes in windows.

E. ns-2 Simulations

Our dummynet testbed is limited to experiments with single-
bottleneck networks and identical protocol. We conducted ns-2
simulation to study the performance of FAST in more com-
plex environments. The FAST implementation in ns-2 is from
CUBIN Lab [78]. To eliminate possible simulation artifacts,
such as phase effect, we introduced two-way noise traffic in the
simulation, where a certain number of Pareto on–off flows with
shape parameter 1.5 were introduced in each direction.7 When
a noise flow is “on”, it transmits at a constant rate of 4 Mb/s.
Each noise flow has an average burst time of 100 ms and an av-
erage idle time of 100 ms. Hence, the average length of a flow
is 50 KB, similar to web traffic. We repeated each scenario 20
times and report both the average rate and the standard devia-
tion (error bars in the figures).

Three sets of simulations were conducted: FAST with dif-
ferent noise levels, FAST with Reno traffic, and FAST on a mul-
tilink network. We only present a few examples from each set
of simulations; see [79] for complete details.

1) FAST With Noise Traffic: This set of simulations repeated
the scenario in Section IV-B, with different levels of noise
traffic. The noise traffic consists of Pareto on–off flows as
described above. We varied the number of noise flows from 0 to
200, corresponding to an aggregate noise traffic of 0% to 50%
of the bottleneck capacity. Fig. 7(a)–(c) show the throughput
trajectory of three cases: 0%, 10% (40 noise flows) and 30%
(120 noise flows). Each point in the figures represents the
average rate over a 60-second interval.

The ns-2 simulation with 0% noise [Fig. 7(a)] should be com-
pared with dummynet experiment in Section IV-B. Different
from dummynet experiments, the ns-2 simulation was clean,

7We also conducted simulations with exponential on–off traffic. The results
are similar.

1254 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) FAST with 0% mice traffic. (b) FAST with 10% mice traffic. (c) FAST with 30% mice traffic. (d) Three FAST flows versus one Reno flow. (e) Two
FAST flows versus two Reno flows. (f) One FAST flow versus three Reno flows.

and new flows mistook queueing delay due to existing flows as
part of their propagation delays, leading to unfair throughputs.
However, when the noise was 10% of the capacity, such unfair-
ness was eliminated. The queue was frequently emptied and new
flows observed the correct propagation delays and converged to
the correct equilibrium rates, as shown in Fig. 7(b). Fig. 7(c)
shows the throughput when the noise was 30% of the capacity.
FAST throughputs oscillated, adapting to mice that joined and
left frequently. In the period of 720 to 1080 seconds, the mice
traffic generated so much packet loss that the three FAST flows
could not keep packets in the queue and they behaved like an
AIMD algorithm. Such AIMD behavior led to discrimination
against long RTT flows (flow 1 and flow 3).

2) Interaction Between FAST and Reno: In this set of simu-
lations, we used the same set of paths as in Section IV-B, but we
reduced the delay on each path to one-fifth of the original value
since Reno took a very long time to reach congestion avoidance
with the delays in the original setup. On each path, we used four
parallel flows instead of a single flow. We varied the number
Reno flows on each path from zero to four (and the number of
FAST flows was hence varied from four to zero) to examine
FAST’s interaction with Reno. The equilibrium rates of FAST
and Reno sharing a single bottleneck link are predictable; see
[79] for details. Fig. 7(d)–(f) show the aggregate throughputs of
FAST flows and Reno flows when the number of Reno flows on
each path is 1, 2, and 3. We also present the theoretic predictions
on Reno’s throughputs on the same figures for comparison. The
aggregate throughputs in simulations match the model predic-
tions reasonably well. Reno’s throughput is slightly lower than
prediction since the model does not captures Reno’s timeout be-
havior. The simulation results also show that FAST may be more
aggressive, or less aggressive than Reno, depending on the net-
work setup.

Indeed, the behavior of a general multilink network share by
heterogeneous protocols that use different congestion signals,

Fig. 8. Topology with multiple bottlenecks.

Fig. 9. FAST with multiple bottlenecks.

such as FAST (which uses delay) and Reno (which uses loss),
can be very intricate. See [60] and [61] for details and more
comments in Section V.

3) FAST in a Network With Multiple Bottlenecks: We sim-
ulated a network with two LANs connected by a WAN. The
topology is shown in Fig. 8. Three pairs of flows ran simulta-
neously on three different paths. The first pair of flows (WAN
flows) ran on the path . The second pair
(LAN flows) ran on . The third pair (LAN flows)
ran on . All links except had a capacity
of 1 Gb/s. The capacity of was varied from 10 Mb/s
to 1 Gb/s. The noise traffic introduced in each link has an av-
erage rate of 5% of the link capacity. Link and link

were bottlenecks. Link also became a bottle-
neck when its capacity was less than 333 Mb/s. In all scenarios,
FAST converged stably to its equilibrium value, fully utilizing

and . Fig. 9 shows the throughput of the WAN
flow with various capacities on , both

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1255

measured from simulations and calculated by solving the utility
maximization problem in (6). The measured throughputs match
the theoretical predictions very well, validating the theoretical
model and Theorem 2 on the equilibrium behavior of FAST.

V. OPEN ISSUES AND PROPOSED SOLUTIONS

FAST is a new delay-based congestion control algorithm. We
motivate our design carefully and support it with tentative anal-
ysis and experiments. We now summarize some open problems
and potential solutions. More practical experience is needed to
assess conclusively the seriousness of these problems and the
effectiveness of proposed solutions in real networks and appli-
cations.

A. Propagation Delay Measurement

Propagation delay is used in the FAST window
control algorithm (4). In a clean network, the queueing delay
maintained by existing FAST flows may be mistaken as part of
the propagation delay by new flows that join later, as shown in
ns-2 simulations in [59]. The effect of this estimation error is
equivalent to modifying the underlying utility functions to favor
new flows over existing flows; see [44] and [59]. Methods to
eliminate this error are suggested in [44], [49], and [59].

Propagation delay measurement can be affected by route
change from a shorter to a longer path during the lifetime of a
connection. Though route change at the timescale of TCP con-
nections is uncommon, mistaking an increase in propagation
delay as congestion will reduce the connection’s throughput.
A solution is proposed in [49] where the propagation delay is
estimated by the minimum RTT observed in a certain preceding
period, not since the beginning of the connection, so that the
estimate tracks route changes.

B. Queueing Delay Measurement

Queueing delay measurement may be affected by the bursti-
ness of the FAST flows themselves, leading to slight unfairness
among flows with different RTTs, as shown in Section IV-B.
Such error can be greatly reduced by deploying a burstiness con-
trol algorithm in the sender, as shown in [71].

Like Vegas, FAST is affected by queueing delay in reverse
path, as shown in [4]. There are a number of ways that have been
proposed to eliminate the effect of reverse queueing delay for
Vegas without the need for additional supports from receivers,
that are applicable to FAST. The method in [36] utilizes the TCP
timestamp option that is widely implemented in today’s TCP
stacks. The calculation is correct even when the sender and re-
ceiver’s clocks have a constant offset. If the clock drift is sig-
nificant, [54] and [62] provide techniques to accurately synchro-
nize the clocks without GPS (global positioning system). If the
sender and receiver have different clock resolutions, the sender
can estimate the receiver clock period by observing the number
of ticks of receiver’s clock during a fixed time interval. A dif-
ferent method is proposed in [16] that does not directly measure
the queueing delay. Instead, they measure that actual throughput
in the forward direction, and use this measurement in place of

.

C. Heterogeneous Protocols

It turns out that a network with heterogeneous protocols that
react to different congestion signals can behave in a much more

intricate way. In particular, we prove theoretically in [61] that
there are networks that have multiple equilibrium points, and
demonstrate experimentally in [60] this phenomenon using TCP
Reno and Vegas/FAST. We also prove in [61] conditions on net-
work parameters that guarantee global uniqueness of network
equilibrium.

We show in [60] that any desired inter-protocol fairness are in
principle achievable by an appropriate choice of FAST param-
eter, and that intra-protocol fairness among flows within each
protocol is unaffected by the presence of the other protocol ex-
cept for a reduction in effective link capacities. How to design
practical distributed algorithms that use only local information
to achieve a desired inter-protocol fairness is however an open
problem.

APPENDIX

PROOFS

A. Proof of Lemma 1

Fix .8 Define and consider the
following optimization problem:

(9)

Since the objective function is strictly concave and the feasible
set is compact, there exists a unique optimal solution . More-
over, since has full row rank, there exists a unique Lagrange
multiplier for the dual problem. See, e.g., [42] for details. We
claim that is the unique solution of (5) and, for all ,

(10)

Now, (10) can be rewritten as, for all ,

which is the Karush–Kuhn–Tucker condition for (9). Hence,
(10) holds. Then (5) becomes , with equality if

. But this is just the complementary slackness condition
for (9).

B. Proof of Theorem 2

Clearly unique solution for (6) and unique solution for
its dual exist, since the utility functions are strictly
concave and is full rank (see, e.g., [42]). We need to show
that the dual problem of (6) is indeed given by (7). Now the
dual objective function is given by [2]

Since the last term is independent of , minimizing over
is the same as minimizing (7) over . Hence, there

exists a unique solution for (6)–(7).

8cf. the proof of a similar result in [50].

1256 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

We now show that is the equilibrium point of (4)–(5).
In equilibrium, we have . From (4), the
corresponding queueing delays uniquely defined by (5) must
be such that the end-to-end queueing delays are strictly positive,
i.e., for all even though some can be
zero. Then in equilibrium, and, from (4), we
have , where . But
this is the Karush–Kuhn–Tucker condition for (6). Moreover,
(5) is the complementary slackness condition. Hence, the equi-
librium of (4)–(5) coincides with the optimal solution of (6), (7),
i.e., and .

C. Proof of Theorem 3

Let be the number of sources. Let denote the
queueing delay at the single link (omitting the subscripts). It is
more convenient to work with normalized window

(11)

Let be the aggregate normalized window.
Then if and only if .

The window control algorithm (4) can be expressed in terms
of updates on :

(12)

where . Let .
We first prove that the queue is lower bounded by a positive

constant after a finite time.
Theorem 5:

1) For all , we have .
2) Moreover, given any we have

for all sufficiently large .
Proof (Theorem 5): For the first claim, we will prove that

the queue will be nonzero at some , and that once it is
nonzero, it stays nonzero.

Suppose . Summing (12) over , we have
, i.e., grows linearly in time by in each period.

Since , after at most periods. Hence,
there is some such that . We now show that

implies .
Since , we have from (12)

Summing over gives

But if and only if

(13)

Hence

i.e., . This proves the first claim.
For the second claim, we first prove that converges to

its limit point geometrically (and monotonically):

(14)

To prove (14), rewrite (12) as

Summing over and using (13), we have

from which (14) follows.
Noting that is a strictly increasing function of ,

we have from (13)

Hence

(15)

From (14), we have

Hence, (15) becomes

Since , the absolute value of the term in the square
bracket can be made arbitrarily small by taking sufficiently large
. Hence, given any ,

and

for all sufficiently large . This proves the second claim.9

Hence, without loss of generality, we will assume

for all

9When = 1, then the proof shows that we can set � = 0 in the statement of
Theorem 5 after at most c=�̂ periods. Moreover, Y (t) = c + �̂ for all t � 1.
It also implies that, if d = d for all i, then q(t) = �̂d=c for all t � c=�̂, i.e.,
the system converges in finite time.

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1257

This implies that, for all , equality holds in (5), or equiv-
alently, (13) holds.

More generally, for all and , let

(16)

Lemma 1 guarantees that given any , there is a unique
that satisfies (16).

An important implication of Theorem 5–2 is that we can re-
strict our space of to a subset of :

the unique defined implicitly

by is greater than (17)

The key feature of we will need in Lemma 9 is that, for all
, is lower bounded uniformly in . Define

by

(18)

where is implicitly defined by (16). Then the evolution (12)
of the normalized window is . Our main
result is to show that the iteration is locally asymptotically
stable by proving that the spectral radius of is strictly
less than 1 on .

Theorem 6: Fix any . For all , the spectral
radius of is strictly less than 1.

Theorem 6 implies a neighborhood of the unique fixed point
defined by such that given any initial normal-

ized window in this neighborhood,
converges to . This implies Theorem 3.

Sketch of proof (Theorem 6): We will show through
Lemmas 7–9 that the spectral radius is uniformly
bounded away from 1, i.e., given , there exists
such that for all ,

(19)

Let denote the unique solution of (16). Let

(20)

(21)

By Theorem 5 (2), we have

and

Let be the diagonal matrix with
as its nonzero entries. Let for all and

for all be column vectors.
The proof of the following lemma is straightforward and can

be found in [24].
Lemma 7: For ,

where is the identity matrix.
Let the eigenvalues of be denoted by ,

, as a function of . We will show in the next
two lemmas that when ,

for all (22)

Then Lemma 7 implies that, for all ,

for all

and hence (19) holds for any given .
The key observation to proving (22) is that we can explicitly

characterize all the eigenvalues of . These eigenvalues
are functions of even though this is not explicit from the no-
tation. Fix and fix any . Suppose the set
takes distinct values. Without loss of generality sup-
pose take the value take the
value take the value , such that

. The following lemma characterizes completely
the eigenvalues and eigenvectors of the Jacobian, and is proved
in [24].

Lemma 8: Suppose and fix any . Then
1) is an eigenvalue of with corresponding

eigenvector .
2) For , if then is an eigenvalue with

algebraic and geometric multiplicity . There are
such distinct eigenvalues.

3) The remaining eigenvalues are the solutions of

(23)

counting (algebraic) multiplicity, where .
The eigenvectors corresponding to these eigenvalues ,

, are

(24)

The following lemma proves the assertion and is proved in
[24].

Lemma 9: Suppose . Then

where .
This completes the proof of Theorem 6, from which Theorem

3 follows.

D. Proof of Corollary 4

From (12) and (13), the equilibrium windows and
delay satisfy

for all (25)

(26)

Summing (25) over and substituting in (26), we have
, where . Substituting into (25), we have

1258 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 6, DECEMBER 2006

Hence

The second and third claims follow from Theorem 5 and foot-
note 10 at the end of the proof of Theorem 6.

ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions
of the FAST project team and their collaborators, at
http://www.netlab.caltech.edu/FAST/, in particular, G. Almes,
J. Bunn, D. H. Choe, R. L. A. Cottrell, V. Doraiswami, J. C.
Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot,
S. Shalunov, S. Singh, J. Wang, Z. Wang, and S. Yip, and thank
J. Wang for pointing out several errors in an earlier version.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC 2581, Apr. 1999.

[2] D. Bertsekas, Nonlinear Programming. Belmont, MA: Athena, 1995.
[3] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end-to-end congestion

avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[4] H. Bullot, R. L. Cottrell, and R. Hughes-Jones, “Evaluation of ad-
vanced TCP stacks on fast long-distance production networks,” J. Grid
Computing, vol. 1, no. 4, pp. 345–359, Aug. 2004.

[5] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang, “TCP
Westwood: end-to-end congestion control for wired/wireless net-
works,” Wireless Netw. J., vol. 8, pp. 467–479, 2002.

[6] C. S. Chang and Z. Liu, “A bandwidth sharing theory for a large number
of HTTP-like connections,” IEEE/ACM Trans. Netw., vol. 12, no. 5, pp.
952–962, Oct. 2004.

[7] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Comput. Netw., vol.
17, pp. 1–14, 1989.

[8] H. Choe and S. H. Low, “Stabilized Vegas,” in Advances in Commu-
nication Control Networks, Lecture Notes in Control and Information
Sciences, S. Tarbouriech, C. Abdallah, and J. Chiasson, Eds. New
York: Springer Press, 2004.

[9] J.-Y. Choi, K. Koo, J. S. Lee, and S. H. Low, “Global stability of FAST
TCP in single-link single-source network,” in Proc. IEEE Conf. Deci-
sion and Control, Dec. 2005, pp. 1837–1841.

[10] T. Dunigan, Floyd’s TCP Slow-Start and AIMD Mods [Online]. Avail-
able: http://www.csm.ornl.gov/~dunigan/net100/floyd.html

[11] X. Fan, M. Arcak, and J. T. Wen, “Robustness of network flow control
against disturbances and time-delay,” Syst. Contr. Lett., vol. 53, no. 11,
pp. 13–29, 2004.

[12] W. Feng and S. Vanichpun, “Enabling compatibility between TCP
Reno and TCP Vegas,” in IEEE Symp. Applications and the Internet
(SAINT 2003), Jan. 2003, pp. 301–308.

[13] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” presented at the ACM SIG-
COMM 2000, Stockholm, Sweden.

[14] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast
recovery algorithm,” RFC 2582, Apr. 1999.

[15] S. Floyd, High speed TCP for large congestion windows. Internet draft
draft-floyd-tcp-highspeed-02.txt, work in progress, Feb. 2003 [Online].
Available: http://www.icir.org/floyd/hstcp.html

[16] C. P. Fu and S. C. Liew, “A remedy for performance degradation of
TCP Vegas in asymmetric networks,” IEEE Commun. Lett., vol. 7, no.
1, pp. 42–44, Jan. 2003.

[17] S. Hegde, D. Lapsley, J. Lindheim, B. Wydrowski, D. Wei, C. Jin,
and S. H. Low, “FAST TCP in high-speed networks: an experimental
study,” presented at the GridNets 2004, San Jose, CA.

[18] J. Hoe, “Improving the startup behavior of a congestion control scheme
for TCP,” presented at the ACM SIGCOMM’96, Stanford [Online].
Available: http://www.acm.org/sigcomm/sigcomm96/program.html

[19] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “Analysis and
design of controllers for AQM routers supporting TCP flows,” IEEE
Trans. Autom. Contr., vol. 47, no. 6, pp. 945–959, Jun. 2002.

[20] V. Jacobson, “Congestion avoidance and control,” presented
at the ACM SIGCOMM’88, Stanford, CA [Online]. Available:
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[21] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC 1323, May 1992.

[22] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation and Mod-
eling. New York: Wiley, 1991.

[23] ——, “A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,” ACM Comput. Commun.
Rev., vol. 19, no. 5, pp. 56–71, Oct. 1989.

[24] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, architecture,
algorithms, performance,” Caltech, Tech. Rep. CSTR: 2003.010, Dec.
2003 [Online]. Available: http://netlab.caltech.edu/FAST

[25] ——, “TCP FAST: motivation, architecture, algorithms, performance,”
in Proc. IEEE INFOCOM, Mar. 2004, pp. 2490–2501 [Online]. Avail-
able: http://netlab.caltech.edu

[26] C. Jin, D. X. Wei, S. H. Low, J. Bunn, D. H. Choe, J. C. Doyle, H.
Newman, S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, R. L. A.
Cottrell, O. Martin, and W. Feng, “FAST TCP: from theory to experi-
ments,” IEEE Network, vol. 19, no. 1, pp. 4–11, Jan.-Feb. 2005.

[27] S. Jin, L. Guo, I. Matta, and A. Bestavros, “A spectrum of TCP-friendly
window-based congestion control algorithms,” IEEE/ACM Trans.
Netw., vol. 11, no. 3, pp. 341–355, Jun. 2003.

[28] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high-
bandwidth delay product networks,” presented at the ACM SIGCOMM
2002, Pittsburgh, PA [Online]. Available: http://www.ana.lcs.mit.edu/
dina/XCP/

[29] F. P. Kelly, “Mathematical modelling of the internet,” in Mathematics
Unlimited—2001 and Beyond, B. Engquist and W. Schmid, Eds.
Berlin, Germany: Springer-Verlag, 2001, pp. 685–702.

[30] ——, “Fairness and stability of end-to-end congestion control,” Eur. J.
Control, vol. 9, pp. 159–176, 2003.

[31] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, no. 3, pp. 237–252, Mar. 1998.

[32] T. Kelly, “Scalable TCP: improving performance in highspeed wide
area networks,” Comput. Commun. Rev. vol. 32, no. 2, Apr. 2003 [On-
line]. Available: http://www-lce.eng.cam.ac.uk/ctk21/scalable/

[33] S. Kunniyur and R. Srikant, “Designing AVQ parameters for a general
topology network,” presented at the Asian Control Conf. Singapore,
Sep. 2002.

[34] ——, “A time-scale decomposition approach to adaptive explicit con-
gestion notification (ECN) marking,” IEEE Trans. Autom. Contr., vol.
47, no. 6, pp. 882–894, Jun. 2002.

[35] ——, “End-to-end congestion control: utility functions, random losses
and ECN marks,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 689–702,
Oct. 2003.

[36] A. Kuzmanovic and E. Knightly, “TCP-LP: a distributed algorithm
for low priority data transfer,” in Proc. IEEE INFOCOM, 2003, pp.
1691–1701.

[37] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,”
IEEE/ACM Trans. Netw., vol. 5, no. 3, pp. 336–350, Jun. 1997.

[38] Y. Li, Implementing high-speed TCP. [Online]. Available: http://www.
hep.ucl.ac.uk/~ytl/tcpip/hstcp/index.html

[39] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of
TCP/RED and a scalable control,” Comput. Netw. J. vol. 43, no. 5, pp.
633–647, 2003 [Online]. Available: http://netlab.caltech.edu

[40] S. H. Low and R. Srikant, “A mathematical framework for designing
a low-loss, low-delay internet,” Networks and Spatial Economics,
Special Issue on Crossovers Between Transportation Planning and
Telecommunications, vol. 4, pp. 75–101, Mar. 2004.

[41] S. H. Low, “A duality model of TCP and queue management algo-
rithms,” IEEE/ACM Trans. Netw. vol. 11, pp. 525–536, Aug. 2003.

[42] S. H. Low and D. E. Lapsley, “Optimization flow control, I: basic al-
gorithm and convergence,” IEEE/ACM Trans. Netw. vol. 7, no. 6, pp.
861–874, Dec. 1999 [Online]. Available: http://netlab.caltech.edu

[43] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Contr. Syst. Mag., vol. 22, no. 1, pp. 28–43, Feb. 2002.

[44] S. H. Low, L. Peterson, and L. Wang, “Understanding Vegas: a duality
model,” J. ACM, vol. 49, no. 2, pp. 207–235, Mar. 2002 [Online]. Avail-
able: http://netlab.caltech.edu

WEI et al.: FAST TCP: MOTIVATION, ARCHITECTURE, ALGORITHMS, PERFORMANCE 1259

[45] J. Martin, A. Nilsson, and I. Rhee, “Delay-based congestion avoidance
for TCP,” IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 356–369, Jun.
2003.

[46] L. Massoulie and J. Roberts, “Bandwidth sharing: objectives and al-
gorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 3, pp. 320–328, Jun.
2002.

[47] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” RFC 2018, Oct. 1996.

[48] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the TCP congestion avoidance algorithm,” ACM Comput.
Commun. Rev., vol. 27, no. 3, Jul. 1997 [Online]. Available: http://
www.psc.edu/networking/papers/model_ccr97.ps

[49] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis and com-
parison of TCP Reno and Vegas,” in Proc. IEEE INFOCOM’99, pp.
1556–1563.

[50] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-
trol,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[51] F. Paganini, J. C. Doyle, and S. H. Low, “Scalable laws for stable net-
work congestion control,” in Proc. Conf. Decision and Control, Dec.
2001 [Online]. Available: http://www.ee.ucla.edu/~paganini

[52] F. Paganini, Z. Wang, J. C. Doyle, and S. H. Low, “Congestion con-
trol for high performance, stability and fairness in general networks,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 43–56, Feb. 2005.

[53] F. Paganini, Z. Wang, S. H. Low, and J. C. Doyle, “A new TCP/AQM
for stable operation in fast networks,” in Proc. IEEE INFOCOM 2003,
pp. 96–105 [Online]. Available: http://www.ee.ucla.edu/~paganini

[54] A. Pásztor and D. Veitch, “PC based precision timing without GPS,”
presented at the ACM SIGMETRICS 2002 Marina Del Rey, CA.

[55] L. Rizzo, Dummynet. [Online]. Available: http://info.iet.unipi.it/
~luigi/ip_dummynet/

[56] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design
of congestion control in synchronised communication networks,” in
Proc. 12th Yale Workshop on Adaptive and Learning Systems, Yale,
Univ., New Haven, CT, May 2003 [Online]. Available: http://www.
hamilton.ie/doug_leith.htm

[57] R. Srikant, The Mathematics of Internet Congestion Control. Cam-
bridge, MA: Birkhauser, 2004.

[58] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms,” RFC 2001, Jan. 1997.

[59] L. Tan, C. Yuan, and M. Zukerman, “FAST TCP: fairness and queuing
issues,” IEEE Commun. Lett., vol. 9, no. 8, pp. 762–764, Aug. 2005.

[60] A. Tang, J. Wang, S. Hegde, and S. H. Low, “Equilibrium and fairness
of networks shared by TCP Reno and FAST,” Telecommun. Syst., vol.
30, no. 4, pp. 417–439, Dec. 2005.

[61] A. Tang, J. Wang, S. H. Low, and M. Chiang, “Equilibrium of heteroge-
neous congestion control protocols,” in Proc. IEEE INFOCOM 2005,
pp. 1338–1349.

[62] D. Veitch, S. Babu, and A. Pásztor, “Robust remote synchronisation
of a new clock for PCs,” presented at the Internet Measurement Conf.,
Taormina, Italy, Oct. 2004.

[63] G. Vinnicombe, “On the stability of networks operating TCP-like con-
gestion control,” in Proc. IFAC World Congress on Automatic Control,
Barcelona, Spain, 2002.

[64] ——, “Robust congestion control for the Internet”, Tech. Rep., Univ.
Cambridge, 2002.

[65] J. Wang, A. Tang, and S. H. Low, “Local stability of FAST TCP,” in
Proc. IEEE Conf. Decision and Control, Dec. 2004, pp. 1023–1028.

[66] J. Wang, D. X. Wei, and S. H. Low, “Modeling and stability of FAST
TCP,” in Proc. IEEE INFOCOM 2005, pp. 938–948.

[67] J. Wang, D. X. Wei, and S. H. Low, “Modeling and stability of FAST
TCP,” in IMA Volumes in Mathematics and its Applications, Vol. 143,
Wireless Communications, P. Agrawal, M. Andrews, P. J. Fleming, G.
Yin, and L. Zhang, Eds. New York: Springer Science, 2006.

[68] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Using adaptive
rate estimation to provide enhanced and robust transport over hetero-
geneous networks,” in Proc. IEEE ICNP 2002, pp. 206–215.

[69] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm,” ACM Comput.
Commun. Rev., vol. 22, no. 2, pp. 9–16, Apr. 1992.

[70] D. X. Wei, “Congestion control algorithms for high speed long
distance TCP connections” Masters thesis, California Inst. Technol.,
Pasadena, CA, Jun. 2004 [Online]. Available: http://netlab.cal-
tech.edu/pub/projects/FAST/msthesis-dwei

[71] D. X. Wei, S. H. Low, and S. Hegde, “A burstiness control for TCP,”
presented at the Workshop on Protocols for Fast Long-Distance Net-
works (PFLDnet’2005) Lyon, France, Feb. 2005.

[72] E. Weigle and W. Feng, “A case for TCP Vegas in high-performance
computational grids,” in Proc. 9th Int. Symp. High Performance Dis-
tributed Computing (HPDC’01), Aug. 2001, pp. 158–167.

[73] J. T. Wen and M. Arcak, “A unifying passivity framework for network
flow control,” IEEE Trans. Autom. Contr., vol. 49, no. 2, pp. 162–174,
Feb. 2004.

[74] B. Wydrowski, High-resolution one-way delay measurement using
RFC1323, Preprint, Aug. 2004.

[75] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in Proc. IEEE INFOCOM 2004,
pp. 2514–2524.

[76] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic
framework for bandwidth allocation and pricing in broadband net-
works,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct.
2000.

[77] The Network Simulator—ns-2. [Online]. Available: http://www.isi.
edu/nsnam/ns/

[78] FAST TCP Simulator Module for ns-2. CUBIN Lab [Online]. Avail-
able: http://www.cubinlab.ee.mu.oz.au/ns2fasttcp/

[79] Caltech ns-2 Simulation Results of FAST. NetLab [Online]. Available:
http://netlab.caltech.edu/pub/projects/FAST/ns2-test

David X. Wei (S’03) received the B.E. degree from Tsinghua University, China,
and the M.S. degree from the California Institute of Technology (Caltech),
Pasadena, both in computer science. He is currently working toward the Ph.D.
degree at Caltech.

Mr. Wei has been a student member of the ACM since 2000.

Cheng Jin received the B.S. degree in electrical engineering from Case Western
Reserve University, Cleveland, OH, and the Ph.D. degree in computer science
and engineering from the University of Michigan, Ann Arbor. He was a postdoc
at Caltech.

Steven H. Low (M’92–SM’99) received the B.S. degree from Cornell Uni-
versity, Ithaca, NY, and the Ph.D. degree from the University of California at
Berkeley.

He is a Professor of the Computer Science and Electrical Engineering De-
partments at Caltech, Pasadena.

Dr. Low was a co-recipient of the IEEE William R. Bennett Prize Paper
Award in 1997 and the 1996 R&D 100 Award. He was on the editorial board of
IEEE/ACM TRANSACTIONS ON NETWORKING from 1997 to 2006 and of Com-
puter Networks Journal from 2003 to 2005. He is on the editorial boards of ACM
Computing Surveys, NOW Foundations and Trends in Networking. He is a Se-
nior Editor of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

and a Co-Editor of the Springer Book Series on Optimization and Control of
Communication Systems: Theory and Applications. He is a member of the Net-
working and Information Technology Technical Advisory Group for the U.S.
President’s Council of Advisors on Science and Technology (PCAST).

Sanjay Hegde received the M.S. degree from Illinois Institute of Technology,
Chicago.

He was a Research Engineer at the Networking Laboratory, Caltech, and is
now with Akamai Technologies.

