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Abstract— The Internet is evolving, and this evolution occurs
at the physical, network and transport layers, promoted mainly
by the advent of photonics networks. However, the nature of
TCP Reno, the widely used transport layer protocol, leads to
several drawbacks in photonics backbones with large bandwidth
delay product (BDP) characteristic. TCP Reno suffers more from
random losses whenever the BDP increases to higher values.
Furthermore, the congestion avoidance mechanism takes a long
time to converge to the appropriate full bandwidth utilization
level. In order to address these problems, some new protocols
have been proposed like HSTCP, FAST and also TCP Westwood.
In this paper, we will present some measurements and evaluation
of TCP Westwood in the context of two in-production large BDP
links; UCLA to University of Alabama and UCLA to CalTech.
We will see that on one hand, TCP Westwood works as well as
the others in many criteria like stability and fairness, and on
the other hand it achieves better utilization of the link whenever
there are high amount of random losses.

I. I NTRODUCTION

The demands of data networks, especially the Internet,
have changed over the years. A few years ago, we had
mostly email and web-pages as the basic information transfer
unit. In contrast, nowadays much more information is being
transferred, ranging from real-time multimedia to large
scientific data sharing [1]. Thus, in order to support such
demand, an underlying upgrade at the physical level has
occurred using new technologies such as wavelength division
multiplexing [2] resulting in higher capacity links, which
often span long distances. However, it is well known that the
upper layer, represented by the widely used TCP NewReno
(NR), needs a long time to obtain full advantage of this
additional bandwidth [3].

These improved network links which have large bandwidth-
delay products (BDP) imposes a real challenge for TCP
algorithms. The challenge is that the sending rate is directly
related to the packet loss rate. For example, in order for TCP
NR to be able to work efficiently over a 10Gbps link, there
can be no more than 1 packet loss in every 5 million packets
sent [4]. Nevertheless, the error rate in this type of networks
can be much higher. It has been reported that packets are
not only dropped due to physical media errors, but are also
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dropped due to transient fluctuations caused by real-time
traffic when the network is congested [5]. In addition, we can
mention machine/software restrictions as another source of
random errors [6]. In summary, a transport protocol should
be robust such that losses have a minimal influence on its
performance.

Another problem related to large BDP links is that
unfairness can be observed between TCP NR flows with
different round-trip times (RTT). Indeed, this is directly
related to the algorithmic mechanism of TCP that relies on
feedback to regulate the sending rate; faster feedback often
results in higher throughput. It has been argued in [7][8][9]
that RTT fairness is an important property of a transport layer
protocol. However, we can highlight two scenarios where
the requirements are very different: (1) a task distributed
over multiple computers, in which RTT fairness is the key
to correctly distribute the load over the grid and then join
the results; (2) everyday user scenario where an end-user
is trying to browse local information which is concurrently
being accessed by a distant agent. In the latter case a certain
level of RTT unfairness could be desired, because locality
should matter. In brief, total RTT fairness could be considered
relative to the application domain, but total omission of this
issue could harm globalization. Thus, transport protocols
should give the opportunity to distant connections to share a
fraction of the local bottleneck link.

Despite the requirement on TCP to be able to fully
utilize large BDP links, it still has to support heterogeneity.
This is a result of the Internet’s infrastructure which has
become ubiquitous, ranging from satellite-based backbones to
wireless communications as one of the last-mile technologies
[3]. Therefore, another TCP requirement is that it should
be adaptive to these different environments. TCP should
provide optimal end-to-end utilization performance and in the
meantime remain fair, friendly and scalable.

All these concerns have been discussed and addressed
by the network community, further many new advanced
transport protocols have been proposed like HSTCP [10],
FAST [11], and BIC [7]. In some recent work, it has been



shown that TCP Westwood (TCPW) [12] also has most
of the desired features. For instance, [12] demonstrated
how the protocol enhances communication over wireless
links, including satellite links. Additionally, [13] exploited
the trade-off between throughput and friendliness and how
TCPW deal with Bandwidth Estimation and Rate Estimation
to adapt to the current network conditions. Finally, [14] [15]
discussed the performance of TCP over high speed networks,
and include necessary modification to solve these issues. In
the case of RTT unfairness, [13] showed how the intelligent
back-off strategy used in TCPW results in good fairness even
when different connections differ in end-to-end propagation
times.

In spite of all these advanced features, TCPW has not
been extensively tested over the specific ”‘in production”’
scenarios with large BDP. Consequently, in this paper, we will
explore the behavior of TCPW over these types of networks.
In addition, we will compare it to other advanced TCP stacks
that have been proposed.

The paper is organized as follows: we will discuss the nature
of our experiments and the setup used, in sections 2 and 3.
In section 4, we will present the experimental results and
provide a proper discussion of the measurements. Finally we
will conclude this paper in section 5.

II. EXPERIMENTAL SETUP

In this section, we present the experimental setup used to
perform the measurements of TCPW over large BDP links.
The measures of interest were the overall utilization of the
link as well as fairness, friendliness and the impact of errors.
We started by choosing the protocols to which we would like
benchmark against. We chose the following protocols:

• TCP NewReno: It is used as a standard benchmark to
compare the different protocols, and it is present in most
of today’s operating systems

• HSTCP: It has a parameter modification of TCP
NewReno to make it scalable to large BDP networks

• FAST: It does not use the classical additive-increase
multiplicative-decrease (AIMD) algorithms of NewReno;
instead, it was designed with control theory to handle
very efficiently large BDP links.

Beside the mentioned protocols above there are many others
that handle large BDP. Some are based on NewReno; however,
we chose HSTCP only, since it is a standard proposal of
IETF [10]. There are also other protocols which are not based
on NewReno, for instance BIC, whose source code was not
available at the time of our experiments. In addition, we did
not compare TCPW with protocols that require modifications
at both the sender and receiver, such as XCP [16], SABUL
[8] and UDT [9], because the nature of these protocols is very
different.

A. Testbed Setup

In order to perform these measurements, we installed the
protocols (HSTCP, FAST and TCPW) on a local computer
which has a Xeon 3.06GHz processor with 1 MB cache, 1GB
RAM and an Intel PRO/1000 Gigabit NIC. HSTCP and FAST
were implemented under Linux, and TCPW under FreeBSD.
For this reason, we installed the appropriate OSs (Linux
2.4.22 for FAST, 2.4.20 for HSTCP, and FreeBSD 4.5 for
Westwood) on the machine, and recompile the kernels with
the appropriate TCP stacks patches. A second computer was
allocated to perform friendliness tests using TCP NewReno
and error emulation. In addition, on the remote side, two
machines were setup as receivers; one at CalTech (dual Xeon
2.66GHz, 2GB RAM) and another one at the University of
Alabama (UA) (Pentium 4 - 1.88Ghz, 512 MB RAM).

Fig. 1. Advanced TCP Stacks Testbed

Figure 1 above presents the two scenarios used in our
experiments. Setup (a) was used to test utilization, fairness
and friendliness. In order to generate errors on the link, we
used setup (b) where the middle machine was running Nistnet
[17]. One important observation is that Nistnet did not cause
any performance degradation in our experiments.

To generate the traffic, we used the well-know iperf
[18] traffic generator and collected the throughput from the
receiver side as reported every second, which accurately
measures the achieved throughput. When multiple flows were
required we used iperf to start multiple threads. Additionally
we also used tcpdump [19] in parallel, on the sender side
to obtain finer granularity measurements such as window
behavior, advertised window and retransmissions. Before
starting the experiments, we verified that the tcpdump usage
did not impede the performance of the protocols. In certain
cases some degradation was noticeable, for those experiments
it was not used. Finally, we collected some extra information
about the machines like CPU and RAM utilization, page
faults and interrupts by using vmstat during the experiments.

We configured both the sender and receiver to have a
maximum window of 2 MB which is larger than the BDP
of the links. In order to fairly compare FAST and HSTCP
against TCPW we disabled the SACK and D-SACK options
in the Linux kernel since these options are not available in
FreeBSD 4.5. Please see Tables I and II for the kernel settings
used in these experiments.



B. Link Characteristics

We used two Internet2 paths in the experiments, one path
to CalTech and another to University of Alabama, both of
them had the same order of magnitude with respect to BDP,
otherwise very different characteristics.

In the case of CalTech, there was only one hop between
the UCLA backbone and the receiver. The bottleneck on this
link was the connection between UCLA and the Internet2,
which is limited to 1 Gbps. Moreover, the utilization of this
”‘in production”’ link was very low as can be seen in Figure
2. Even though the RTT is only 4 ms, the BDP is still large
due to the capacity of the link.

Fig. 2. MRTG Graph UCLA-Internet2

The second link that goes between UCLA and UA passes
through the Internet2 (Gigabit links), but the bottleneck in
this case is between UA and Atlanta. A key point that should
be mentioned is that the connection between Atlanta and UA
is a 155 Mbps ATM cloud. The RTT of this link is around
65 ms, and therefore results in a large BDP, which is on
the same order of magnitude as the CalTech link. Another
characteristic of this link that we notice is that a large number
of reordered ACKs are received (1.3% of the ACKs).

The results, as we will see, over these two links (Figure
3) are very interesting because the BDP is almost the same;
however, the RTT and capacity of the links are very different.
Hence, the influence of high RTT and high capacity can be
assessed separately.

sysctl kern.ipc.maxsockbuf=4194304
sysctl net.inet.tcp.sendspace=2097152
sysctl net.inet.tcp.recvspace=2097152

TABLE I

FREEBSD KERNEL SETTINGS

sysctl -w net.ipv4.tcp rmem="2097152 2097152 2097152"
sysctl -w net.ipv4.tcp wmem="2097152 2097152 2097152"
sysctl -w net.ipv4.tcp mem="2097152 2097152 2097152"
sysctl -w net.core.rmem default=2097152
sysctl -w net.core.wmem default=2097152
sysctl -w net.core.rmem max=2097152
sysctl -w net.core.wmem max=2097152
sysctl -w net.ipv4.tcp dsack=0
sysctl -w net.ipv4.tcp sack=0

TABLE II

L INUX KERNEL SETTINGS

Fig. 3. Links Characteristics

III. E XPERIMENTSOUTLINE

As mentioned earlier, in these experiments we measured
the utilization, fairness, friendliness and robustness of the
protocols with respect to errors. For each interest measure
we ran the experiment 10 times such that an accurate average
could be calculated. To be able to maximize the possible
utilization of the links we conducted all our experiments at
night and on weekends, during which the traffic was low.

The length of each experiment is relative to the site used,
so we tuned it so that each protocol would have time to
converge. In the case of CalTech, 20 seconds was enough,
however, UA required 60 seconds in order to reach a reliable
stable state. Our performance metrics for these experiments
were:

1) Average throughput and standard deviation for each
second:
xi = Instantaneous Throughput at time ”sec”

Average Throughput= x̄(sec) = 1
nruns

∑nruns
k=1 xi(sec)

Standard Deviation=√√√√ 1
nruns

nruns∑
i=1

(xi(sec)− x̄(sec))2

2) Intra-protocol Fairness as calculated by Jain’s fair-
ness index [20]:
Intra-protocol Fairness=

(
∑n

i=1 x̄i)
n

∑n
i=1 x̄i

2

3) Robustness in terms of error using aggregated
throughput of a sample:
Aggregate Throughput=

∑n
i=1 x̄i given an uniform

error probability

In terms of fairness we used 2 and 10 flows so that we could
observe the behavior of the protocols in two border cases. For
the friendliness experiments we ran one advanced TCP stack
against NR. Table III summarizes the outline of the tests.

IV. RESULTS AND ANALYSIS

We will consider the measurements on a per site basis, such
the behavior of the protocols can be easily compared so that



we can see the trends of a given protocol in different network
conditions.

A. UCLA to University of Alabama

First we would like to compare the utilization of all the
protocols, using a single flow, so that we can see how fast
they converge and how much throughput they can achieve.
In order to do that, we built up a graph plotting the average
throughput during each second for all our runs (line). Also,
we plotted the standard deviation of the average throughput
for the runs (columns). The standard deviation can help us to
get a sense of the overall stability for a given protocol.

The results (all in the same scale) are shown in Figure 4
on page 7.

From these results it can observed that both FAST and
TCPW are able to obtain the full bandwidth quickly. In the
case of NR it takes around 40 seconds to reach the same level
of utilization. Moreover, it can be inferred that both HSTCP
and NewReno (with high-performance extensions) oscillates
much more than both TCPW and FAST, resulting a more
unstable behavior.

Our next step was to compute the Intra-Fairness Index
for the advanced protocols for each type of fairness tests
we had: 2 flows and 10 flows. The results are shown in
Table IV below. From this fairness index we can see that
all protocols when using 2 flows and 10 flows were equally
fair, as expected. Moreover, FAST presented a slightly better
performance.

After the fairness experiments, we performed Friendliness
Tests to see how well the advanced TCP stacks interacts with
TCP NewReno. We generated three graphs using samples of
”‘2 flows friendliness”’ to show how the protocols behave
in their runs (Figure 5 on page 7). It is important to notice
that both flows (Adv. TCP and NewReno) start almost
simultaneously, since we are executing concurrently a local
and remote iperf clients.

1 Flow 2 Flows 10 Flows
U. of Alabama

Utilization 10 runs / 60 sec 10 runs / 60 sec 10 runs / 60 sec
Fairness - 10 runs / 60 sec 10 runs / 60 sec

Friendliness 10 runs / 60 sec 10 runs / 60 sec 10 runs / 60 sec
0.10% Errors 10 runs / 60 sec - -
0.25% Errors 10 runs / 60 sec - -
0.50% Errors 10 runs / 60 sec - -

CalTech
Utilization 10 runs / 60 sec 10 runs / 60 sec 10 runs / 60 sec
Fairness - 10 runs / 60 sec 10 runs / 60 sec

Friendliness 10 runs / 60 sec 10 runs / 60 sec 10 runs / 60 sec

TABLE III

OUTLINE OF THE TCP MEASUREMENTS

TCP Westwood FAST HSTCP
2 Flows 0.97±0.03 0.99±0.001 0.99±0.001
10 Flows 0.92±0.03 0.99±0.001 0.98±0.03

TABLE IV

FAIRNESS INDEX (UCLA-UA)

Fig. 6. TCPTrace of the first 20 sec of referred connection (FAST)

We observed from figure 5 on page 7 that FAST decreases
its rate whenever the TCP NR starts to fill the pipe too.
In fact, this is normal, since FAST is very sensitive to
the variation of the RTT, an indication of congestion. This
assumption can be checked by using the RTT graph generated
by TCPTrace [21] of the sender (FAST) on that particular
connection (Figure 6 above).

In the case of TCPW, we can see that even though there
is an initial period of unfriendliness it quickly converges to
equally fair share of the link. However, FAST continues to
oscillate throughout the whole period.

Finally, in order to evaluate the robustness of the protocols
against errors, we performed throughput measurement at
three different error levels: 0.10, 0.25 and 0.50 percent. In
each case, the errors were distributed uniformly and injected
by Nistnet. By performing these measurements, we can verify
that TCPW is able to deal even with unpredictable network
conditions which include higher error rates. Furthermore, as
we will see in Table V, TCPW sustains a higher throughput
for each error injected by Nistnet.

U0.10 (Mbps) U0.15 (Mbps) U0.50 (Mbps)
TCP Westwood 49.43±10.15 22.83±2.68 12.92± 1.09

FAST 30.25±6.67 12.14±5.85 8.6±0.45
HSTCP 4.71±0.67 3.03± 0.33 2.26± 0.2

TABLE V

AGGREGATETHROUGHPUT OVERLOSSYL INKS

This table presents one important point: TCP Westwood
provides much better performance over unexpected scenarios
than the others. Such behavior can be explained by the
way that TCPW algorithm adjusts the threshold variable,
according to the bandwidth and rate estimation, maintaining
a value suitable for the link in lossy scenarios [12].



B. UCLA to CalTech

Replicating the measurements over the UCLA to CalTech
link, we can see that all protocol perform equally well, since
the short distance scenario helps the feedback mechanisms
(Note that the delay of this link is only 4ms).

The utilization of the link was again stable for FAST and
TCPW as can be observed from the Figure 7 on page 8.

However, for TCPW, it took additionally 1-2 seconds to
converge to the maximum throughput. This fact is explained
because TCPW uses a feature called Astart to adapt initially
[15]. Astart enable the end-system to perform the tuning,
adjusting slow start threshold, continuously but it can have
short periods of linear increases between bandwidth estimation
samples. The other protocols like HSTCP and NewReno rely
on a cached value of threshold for that particular connection,
which can helps them to achieve the maximum throughput
instantaneously. In contrast, if a protocol starts with this
cached value high, it can be very aggressive initially, and it
will be difficult to adapt to dynamic network behavior. FAST
achieves the best performance relying on the control theory
optimization.

The evaluation of the fairness index is reported below:

TCP Westwood FAST HSTCP
2 Flows 1.00± 0.00 0.99±0.01 0.99±0.01
10 Flows 0.99±0.01 0.94±0.03 0.99±0.002

TABLE VI

FAIRNESS INDEX (UCLA-CALTECH)

From the results, it is straightforward to verify that all
protocol perform fairly on a link with a short range distance.

In term of friendliness, TCPW and HSTCP protocols pre-
sented very similar behavior in the 2 flows experiment (one
Adv. TCP and one NewReno). The Figure 8 on page 8 presents
three graphs that help us to visualize such behavior. Once
the NewReno protocol starts, it took all the bandwidth, and
after a while the advanced protocol starts and they both
smoothly converge 10-12 seconds later. In contrast, FAST
behaves exactly as the Alabama scenario presenting some
unfriendliness and doesn’t converge.

C. Cross Comparison

All advanced TCP protocols design focus on high BDP
networks, but as shown in our experiments these high BDP
networks can have very different characteristics. On one hand,
networks with high bandwidth but small delay does not pose
much of a challenge to the TCP algorithms since the feedback
is very fast, and as we have seen in our experiments, even
NewReno is able to quickly utilize the available bandwidth

when the threshold is cached. In addition, it is the hardware
and OS that are stressed in these scenarios, for example, it
is well know that FreeBSD has performance bottlenecks at
gigabit speeds and higher than 4 ms delay??.

The challenge for TCP is to successfully handle the delayed
feedback, which comes as a result of high RTT. A protocol
should be able to quickly utilize the available bandwidth since
most connections are short-lived, but doing so while still
remaining friendly to other TCP flows. In our experiments,
the first goal is accomplished by both FAST and TCPW who
both converge after a couple of seconds in the UA scenario,
while for HSTCP and NR it takes longer. The latter goal
is not fully met by FAST, which could be explained by the
protocol’s parameters not being perfectly tuned to the current
implementation.

V. CONCLUSION

In this paper, we have assessed TCP Westwood over
large BDP networks, and we compared it against other
advanced TCP stacks. We found that TCPW performs equally
well in terms of utilization as FAST, and that it is equally
stable. We also evaluated the fairness index of TCPW, FAST
and HSTCP, and the experiments showed that TCPW was fair.

In terms of friendliness we found that even thought TCPW
might experience an initial period in which it is slightly
unfriendly, it converges quickly to equilibrium. This is
different than the behavior of FAST for which an equilibrium
point does not seem to be reached easily.

Once errors were introduced on the UA link, the utilization
of the different protocols, FAST and HSTCP, dropped. From
the results it is clear that TCPW is able to handle errors better
than the other advanced protocols in this scenario, suggesting
that it is indeed adaptive to different link characteristics.

As a future work, we intend to compare using both the
fine-level detail information from the tcpdump files and also
the evolution of CPU and memory utilization, the internal
dynamics of the different TCP protocols compared to TCP
Westwood. We also intend to investigate the OS bottlenecks
related to FreeBSD.
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(a) (b)

(c) (d)

Fig. 4. Single Flow Link Utilization (in order (a) FAST, (b) HSTCP, (c) NewReno and (d) TCPW)

(a) (b) (c)

Fig. 5. Friendliness Tests (UCLA-UA) - (a) FAST, (b) HSTCP and (c) TCPW
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(c) (d)

Fig. 7. Single Flow Link Utilization (in order (a) FAST, (b) HSTCP, (c) NewReno and (d) TCPW)

(a) (b) (c)

Fig. 8. Friendliness Tests (UCLA-CalTech) - (a) FAST, (b) HSTCP and (c) TCPW


