
 1

Abstract—High-speed networks with large delays present a
unique environment where TCP may have a problem utilizing the
full bandwidth. Several congestion control proposals have been
suggested to remedy this problem. The protocols consider mainly
two properties: TCP friendliness and bandwidth scalability. That
is, a protocol should not take away too much bandwidth from TCP
while utilizing the full bandwidth of high-speed networks. This
paper presents another important constraint, namely, RTT (round
trip time) unfairness where competing flows with different RTTs
may consume vastly unfair bandwidth shares. Existing schemes
have a severe RTT unfairness problem because the window
increase rate gets larger as window grows – ironically the very
reason that makes them more scalable. RTT unfairness for high
speed networks occurs distinctly with drop tail routers where
packet loss can be highly synchronized. After recognizing the RTT
unfairness problem of existing protocols, this paper presents a new
congestion control protocol that ensures linear RTT fairness
under large windows while offering both scalability and
TCP-friendliness. The protocol combines two schemes called
additive increase and binary search increase. When the congestion
window is large, additive increase with a large increment ensures
linear RTT fairness as well as good scalability. Under small
congestion windows, binary search increase is designed to provide
TCP friendliness. The paper presents a performance study of the
new protocol.

Key words – Congestion control, High speed networks, RTT

fairness, TCP friendliness, Scalability, Simulation, Protocol
Design.

I. INTRODUCTION

he Internet is evolving. The networks, such as Abilene
and ESNet, provisioned with a large amount of

bandwidth ranging from 1 to 10Gbps are now sprawling to
connect many research organizations around the world. As
these networks run over a long distance, their round trip
delays can rise beyond 200ms.

The deployment of high-speed networks has helped
push the frontiers of high performance computing that
requires access to a vast amount of data as well as high
computing power. Applications like scientific
collaboration, telemedicine, and real-time environment
monitoring benefit from this deployment. Typically they
require transmission of high-bandwidth real time data,
images, and video captured from remote sensors such as

1 Authors are with the Department of Computer Science, North Carolina

State University, Raleigh, NC 27699 (email: lxu2@cs.ncsu.edu,
Harfoush@cs.ncsu.edu, rhee@cs.ncsu.edu). The work reported in this paper is
sponsored in part by NSF CAREER ANI-9875651, NSF ANI- 0074012

satellite, radars, and echocardiography. These
applications require not only high bandwidth, but also real
time predictable, low latency data transfer.

TCP has been widely adopted as a data transfer
protocol for these networks. However, it is reported [1, 2,
4, 7] that TCP substantially underutilizes network
bandwidth over high-speed connections. TCP increases
its congestion window by one at every round trip time
(RTT) and reduces it by half at a loss event. In order for
TCP to increase its window for full utilization of 10Gbps
with 1500-byte packets, it requires over 83,333 RTTs.
With 100ms RTT, it takes approximately 1.5 hours, and
for full utilization in steady state, the loss rate cannot be
more than 1 loss event per 5,000,000,000 packets which is
less than the theoretical limit of the network’s bit error
rates.

Fine-tuning TCP parameters such as receiver windows
and network interface buffers [9, 10, 11, 12] may mitigate
this problem. One straightforward solution is to increase
the packet size by using the Jumbo packet option (up to
8KB) and use multiple TCP connections [13, 14, 15].
Although these approaches enhance utilization, they do
not ensure TCP friendliness when running in the TCP’s
“well-behaving” operating range (between loss rates of
10-2 to 10-4) because the window increase rate is fixed to
be always larger than TCP. Guaranteeing both TCP
friendliness and bandwidth scalability with one fixed
increase rate of window is challenging. It calls for
adaptive schemes that vary the window growth rate
depending on network conditions.

After recognizing TCP’s limitation, the networking
research community responded quickly. Several
promising new protocols have been put forward: High
Speed TCP (HSTCP) [1, 2, 3], Scalable TCP (STCP) [4],
FAST [7], XCP [5], and SABUL [6]. Except XCP (a
router assisted protocol), these protocols adaptively adjust
their increase rates based on the current window size. So
the larger the congestion window is, the faster it grows.
These protocols are claimed to be TCP friendly under
high loss rate environments as well as highly scalable
under low loss environments.

In this paper, we evaluate some of these protocols, in
particular, window-based, self-clocking protocols known
for safer incremental deployment [16]. We don’t consider
SABUL because it is a rate-based protocol. Further, since

 Binary Increase Congestion Control for Fast,
Long Distance Networks

Lisong Xu, Khaled Harfoush, and Injong Rhee1

T

 2

the detailed description of FAST is not yet available, we
consider only HSTCP and STCP in this paper.

Our study reveals that notwithstanding their scalability
and TCP friendliness properties, HSTCP and STCP have
a serious RTT unfairness problem when multiple flows
with different RTT delays are competing for the same
bottleneck bandwidth. We define the RTT unfairness of
two competing flows to be the ratio of windows in terms
of their RTT ratio.2 Under a completely synchronized loss
model, STCP does not even find a convergence point such
that shorter RTT flows eventually starve off longer RTT
flows. We also find that in HSTCP, two flows with RTT1
and RTT2 has RTT unfairness in proportion
to () 56.4

12 RTTRTT . This problem commonly appears
for drop tail routers while the severity reduces for RED,
and therefore, greatly impairs the ability to incrementally
deploy the protocols, without adequate support from
active queue management (such as RED and XCP).

RTT unfairness stems from the adaptability of these
protocols – ironically the very reason that makes them
more scalable to large bandwidth; in these protocols, a
larger window increases faster than a smaller window.
Compounded with a delay difference, RTT unfairness
gets worse as the window of a shorter RTT flow grows
faster than that of a longer RTT flow.

Another source of the problem is synchronized loss
where packet loss occurs across multiple competing flows
simultaneously. When the congestion window gets larger,
the probability that a window loses at least one packet (i.e.,
loss event) increases exponentially. Assuming uniform
distribution of random loss probability p, the probability
of a loss event is (1- (1-))wp . Even a small packet loss
rate at a router can cause loss events across multiple flows
of large windows. Although a long-term packet loss rate
could be low in high-speed connections, a short-term loss
rate during the period when packet loss occurs (due to
buffer overflow) can be high.

Synchronized loss encourages RTT unfairness; since
loss events are more uniform across different window
sizes if the size is larger than a certain limit, large
windows with a short RTT can always grow faster than
small windows with a long RTT. Furthermore,
synchronization can prolong convergence and cause a
long-term oscillation of data rates, thereby hurting
fairness in short-term scales. In our simulation, we
observe the short-term unfairness of STCP and HSTCP
over both drop-tail and RED routers.

It is challenging to design a protocol that can scale up to
10Gbps in a reasonable range of loss rates (from 10-7 to
10-8); at the same time, can be RTT fair for the large

2 RTT unfairness is often defined in terms of the ratio of throughout. The

window ratio can be converted into throughput ratio by multiplying one RTT
ratio to the window ratio.

window regime where synchronized loss can occur more
frequently; and is TCP friendly for higher loss rates
(between 10-1 to 10-3). For instance, while AIMD can
scale its bandwidth share by increasing its additive
increase factor, and also provide linear RTT fairness, it is
not TCP friendly. HSTCP and STCP are extremely
scalable under low loss rates and TCP friendly under high
loss rates. But they are not RTT fair.

 In this paper, we consider a new protocol that may
satisfy all these criteria, called Binary Increase TCP
(BI-TCP). BI-TCP has the following features:

1. Scalability: it can scale its bandwidth share to 10

Gbps around 3.5e-8 loss rates (comparable to
HSTCP which reaches 10Gbps at 1e-7).

2. RTT fairness: for large windows, its RTT
unfairness is proportional to the RTT ratio as in
AIMD.

3. TCP friendliness: it achieves a bounded TCP
fairness for all window sizes. Around high loss
rates where TCP performs well, its TCP
friendliness is comparable to STCP’s.

4. Fairness and convergence: compared to HSTCP
and STCP, it achieves better bandwidth fairness
over various time scales and faster convergence to
a fair share.

This paper reports a performance study of BI-TCP. The
paper organized as follows: Section II describes our
simulation setup and Section III discusses evidence for
synchronized loss. In Sections IV and V, we discuss the
behavior of HSTCP and STCP. In Section VI, we describe
BI-TCP and its properties. Section VII gives details on
simulation results. Related work and conclusion can be
found in Sections VIII and IX.

II. SIMULATION SETUP

 Fig. 1 shows the NS simulation setup that we use
throughout the paper. Various bottleneck capacity and
delays are tested. The buffer space at the bottleneck router
is set to 100% of the bandwidth and delay products of the
bottleneck link. Every traffic passes through the

N1 N2

Bottleneck Link

forward

S1

S2

Sn

backward

D1

D2

S3 D3

Dn

Fig. 1. Simulation network topology

x ms

x1 ms X2 ms

 3

bottleneck link; each link is configured to have different
RTTs and different starting times and end times to reduce
the phase effect [17]. A significant amount of web traffic
(20% up to 50% of bottleneck bandwidth when no other
flows are present) is generated both for both directions to
remove synchronization in feedback. 25 small TCP flows
with their congestion window size limited to be under 64
are added in both directions whose starting and finishing
times are set randomly. Two to four long-lived TCP flows
are created for both directions. The background traffic
(long-lived TCP, small TCP flows, and web traffic)
consumes at the minimum 20% of the backward
bandwidth.

The simulation topology does not deviate too much
from that of the real high-speed networks. High-speed
networks of our interest are different from the general
Internet where a majority of bottlenecks are located at the
edges. In the high-speed networks, edges can still be
high-speed and the bottleneck could be at the locations
where much high-speed traffic meets such as Startlight in
Chicago that connects CERN (Geneva) and Abilene.

We make no claim about how realistic our background
traffic is. However, we believe that the amount of
background traffic in both directions, and randomized
RTTs and starting and finishing times are sufficient to
reduce the phase effect and synchronized feedback. We
also paced TCP packets so that no more than two packets
are sent in burst. A random delay between packet
transmissions is inserted to avoid the phase effect
(overhead = 0.000008).We test both RED and drop tail
routers at the bottleneck link. For RED, we use adaptive
RED with the bottom of max_p set to 0.001.3

III. SYNCHRONIZED PACKET LOSS
In this paper, we use a synchronized loss model for the
analysis of RTT fairness. Before delving into the analysis,
we provide some evidence that synchronized loss can
happen quite frequently in high speed networks.

To measure the extent of synchronization, we run a
simulation experiment involving 20 high-speed
connections of HSTCP with RTTs varying from 40ms to
150ms. The bottleneck bandwidth is 2.5Gbps.
Background traffic takes about 7% of the forward path
bandwidth and about 35% of the backward path
bandwidth. The reason why the forward path background
traffic takes less bandwidth is that the forward path
high-speed connections steal the bandwidth from the TCP
connections. We define a loss epoch to be one-second
period that contains at least one loss event by a high-speed
flow. We count the number of unique high-speed flows
that have at least one loss event in the same epoch, and

3 It is recommended by [1] to reduce synchronized loss – normally this value

is set to 0.01.

then add the number of epochs that have the same number
of flows.

Figure 2 shows the accumulative percentage of loss
epochs that contain at the minimum a given number of
high-speed flows. In drop tail, the percentage of loss
epochs that involve more than half of the total high-speed
flows (20 in this experiment) is around 70%. This implies
that whenever a flow has a loss event in the drop tail router,
the probability that at least half of the total flows
experience loss events at the same time is around 70%. On
the other hand, RED does not incur as much synchronized
loss. However, there still exists some amount of
synchronization; the probability that more than a quarter
of the total flows have synchronized loss events is around
30%.

Fig. 2: Accumulative percentage of loss epoch containing at
least a given number of unique flows.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19
Number of flows

Pe
rc

en
ta

ge
 o

f l
os

s e
po

ch

DROP TAIL
RED

The result implies that the number of synchronized loss

can be quite substantial in drop tail. Although it requires
real network tests to confirm this finding, we believe that
our simulation result is not difficult to recreate in real
networks. We leave that to future study. Synchronized
loss has several detrimental effects such as RTT
unfairness, slower convergence, under-utilization, and
degraded fairness.

IV. RTT FAIRNESS OF HSTCP AND STCP
In this section, we analyze the effect of synchronized loss
on the RTT fairness of HSTCP and STCP. We use a
synchronized loss model where all high-speed flows
competing on a bottleneck link experience loss events at
the same time. By no means, we claim that this model
characterizes all the aspects of high-speed networks. We
use this model to study the effect of synchronized loss on
RTT unfairness and to gain insight to RTT unfairness we
observe in our simulation experiment.

Let wi and RTTi denote the window size just before a
loss event and the RTT of flow i (i=1, 2) respectively. Let
t denote the interval between two consecutive loss events
during steady state.

 4

HSTCP employs an additive increase and
multiplicative decrease window control protocol, but their
increase and decrease factors α and β are functions of
window size.

1 1 1 1
1

2 2 2 2
2

(1 ()) ()

(1 ()) ()

t
w w w w

RTT

t
w w w w

RTT

β α

β α

= − +

= − +

By substituting
22 () ()

()
2 ()

w w p w
w

w
β

α
β

=
−

, and
0.82

0.15
()

w
p w

=

which is given by [1], we get
56.4

1

2

1

2

2

1

)(2
)(2

−
−

=
RTT
RTT

w
w

w
w

β
β

STCP uses multiplicative increase and multiplicative
decrease (MIMD) with factors α and β.

1

2

1 1

2 2

(1)(1)

(1)(1)

t
RTT

t
RTT

w w

w w

β α

β α

= − +

 = − +

The above equations do not have a solution. That is,
there is no convergence point for STCP. The shorter RTT
flow consumes all the bandwidth while the longer RTT
flow drops down to zero.

Table 1 presents a simulation result that shows the
bandwidth shares of two high-speed flows with different
ratios of RTTs running in drop tail (RED does not show
significant RTT unfairness). The ratio of RTTs is varied to
be 1 to 6 with base RTT 40ms.

AIMD shows a quadratic increase in the throughput
ratio as the RTT ratio increases (i.e., linear RTT
unfairness). STCP shows over 300 times throughput ratio
for RTT ratio 6. HSTCP shows about 131 times
throughput ratio for RTT ratio 6. Clearly the results
indicate extremely unfair use of bandwidth by a short
RTT flow in drop tail.

The result shows better RTT unfairness than predicted
by the analysis. This is because while the analysis is based
on a completely synchronized loss model, the simulation
may involve loss events that are not synchronized. Also
when the window size becomes less than 500, the

occurrence of synchronized loss is substantially low.
Long RTT flows continue to reduce their windows up to a
limit where synchronized loss does not occur much. Thus,
the window ratio does not get worse.

Figure 3 shows a sample simulation run with ten STCP
flows in drop tail. All flows are started at different times.
Eight flows have 80 ms RTT, and two flows have 160 ms
RTT. It exhibits a typical case of RTT unfairness. The two
longer RTT flows slowly reduce their window down to
almost zero while the other flows merge into a single point.
Note that STCP does not converge in a completely
synchronized model because of MIMD window control
[20]. However, in this simulation, 8 flows with the same
RTT do converge (despite high oscillation). This indicates
that there exists enough asynchrony in packet loss to make
the same RTT flows converge, but not enough to correct
RTT unfairness.

V. RESPONSE FUNCTION
The response function of a congestion control protocol is
its sending rate in a function of packet loss rate. It can give
much information about the protocol, especially, its TCP
friendliness, RTT fairness, convergence, and scalability.
Figure 4 draws the response functions of HSTCP, STCP,
AIMD, and TCP in a log-log scale. AIMD uses the
increase factor 32 and the decrease factor 0.125.

It can be shown that for a protocol with a response
function / dc p where c and d are constants, and p is a loss
event rate, RTT unfairness is roughly proportional to

/(1)
2 1(/)d dRTT RTT − [8]. The values for TCP, AIMD,

HSTCP, and STCP are 0.5, 0.5, 0.82, and 1, respectively.
As d increases, the slope of the response function and
RTT unfairness increase. A slope of a response function in
a log-log scale determines its RTT unfairness. Since TCP
and AIMD have the same slope, the RTT unfairness of
AIMD is the same as TCP – linear RTT unfairness. The
RTT unfairness of STCP is infinite while that of HSTCP

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350 400 450

W
in

do
w

 S
iz

e
(p

ac
ke

ts
/R

TT
))

Time (sec)

STCP0
STCP1
STCP2
STCP3
STCP4
STCP5
STCP6
STCP7
STCP8
STCP9

Fig. 3: 10 scalable TCP flows; 2.4 Gbps, Drop tail.

RTT Ratio 1 3 6
AIMD 1.05 6.56 22.55
HSTCP 0.99 47.42 131.03
STCP 0.92 140.52 300.32

Table 1: The throughput ratio of two high speed flows

over various RTT ratios in 2.5Gbps networks.

 5

falls somewhere between TCP’s and STCP’s. Any slope
higher than STCP would get infinite RTT unfairness.

The TCP friendliness of a protocol can be inferred by
the point where the response function of the protocol
crosses that of TCP. HSTCP and STCP work the same as
the normal TCP operation below the point where their
response functions cross TCP’s. Since TCP does not
consume all the bandwidth at lower loss rates, a scalable
protocol does not have to follow TCP over lower loss rates.
Above the point, HSTCP and STCP run their own
“scalable” protocols, ideally consuming what’s left by
TCP flows. Under this strategy, it becomes more TCP
friendly if a protocol crosses TCP as low a loss rate as
possible (to the left of the X axis) since the protocol
follows TCP below that point. However, moving the cross
point to the left increases the slope of the response
function if scalability has to be maintained at the same
time, hurting RTT fairness.

An ideal protocol would be that (1) its response

function crosses TCP’s as low a rate as possible, and at the
same time (2) under lower loss rates, its slope is as close as
that of AIMD. Note that the function need not be a
straight line, i.e., the slope can vary depending on loss
rates. But its slope at any loss rates should not exceed that
of STCP although it can be much more forgiving under a
high loss rate where window size is small enough to avoid
frequent synchronized loss.

VI. BINARY INCREASE CONGESTION CONTROL.
It is challenging to design a protocol that can satisfy all
three criteria: RTT fairness, TCP friendliness, and
scalability. As noted in Section V, these criteria may not
be satisfied simultaneously for all loss rates. A protocol
should adapt its window control depending on the size of
windows. Below, we present such a protocol, called

Binary Increase TCP (BI-TCP). BI-TCP consists of two
parts: binary search increase and additive increase.

Binary search increase: We view congestion control
as a searching problem in which the system can give
yes/no feedback through packet loss as to whether the
current sending rate (or window) is larger than the
network capacity. The current minimum window can be
estimated as the window size at which the flow does not
see any packet loss. If the maximum window size is
known, we can apply a binary search technique to set the
target window size to the midpoint of the maximum and
minimum. As increasing to the target, if it gives any
packet loss, the current window can be treated as a new
maximum and the reduced window size after the packet
loss can be the new minimum. The midpoint between
these new values becomes a new target.

The rationale for this approach is that since the network
incurs loss around the new maximum but did not do so
around the new minimum, the target window size must be
in the middle of the two values. After reaching the target
and if it gives no packet loss, then the current window size
becomes a new minimum, and a new target is calculated.
This process is repeated with the updated minimum and
maximum until the difference between the maximum and
the minimum falls below a preset threshold, called the
minimum increment (Smin). We call this technique binary
search increase.

Binary search increase allows bandwidth probing to be
more aggressive initially when the difference from the
current window size to the target window size is large, and
become less aggressive as the current window size gets
closer to the target window size. A unique feature of the
protocol is that its increase function is logarithmic; it
reduces its increase rate as the window size gets closer to
the saturation point. The other scalable protocols tend to
increase its rates so that the increment at the saturation
point is the maximum in the current epoch (defined to be a
period between two consecutive loss events). Typically,
the number of lost packets is proportional to the size of the
last increment before the loss. Thus binary search increase
can reduce packet loss. As we shall see, the main benefit
of binary search is that it gives a concave response
function, which meshes well with that of additive increase
described below. We discuss the response function of
BI-TCP in Section VI-B.

Additive Increase: In order to ensure faster
convergence and RTT-fairness, we combine binary search
increase with an additive increase strategy. When the
distance to the midpoint from the current minimum is too
large, increasing the window size directly to that midpoint
might add too much stress to the network. When the
distance from the current window size to the target in
binary search increase is larger than a prescribed
maximum step, called the maximum increment (Smax)

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
e

n
d

in
g

 R
a

te
 R

 (
P

a
ck

e
t/

R
T

T
)

Loss Event Rate Pevent

Regular TCP
HSTCP

Scalable TCP
AIMD(32, 0.125)

More Scalable

More TCP Friendly

Fig. 4: Response Functions of various protocols.

 6

instead of increasing window directly to that midpoint in
the next RTT, we increase it by Smax until the distance
becomes less than Smax, at which time window increases
directly to the target. Thus, after a large window reduction,
the strategy initially increases the window linearly, and
then increases logarithmically. We call this combination
of binary search increase and additive increase binary
increase.

Combined with a multiplicative decrease strategy,
binary increase becomes close to pure additive increase
under large windows. This is because a larger window
results in a larger reduction by multiplicative decrease,
and therefore, a longer additive increase period. When the
window size is small, it becomes close to pure binary
search increase – a shorter additive increase period.

Slow Start: After the window grows past the current
maximum, the maximum is unknown. At this time, binary
search sets its maximum to be a default maximum (a large
constant) and the current window size to be the minimum.
So the target midpoint can be very far. According to
binary increase, if the target midpoint is very large, it
increases linearly by the maximum increment. Instead, we
run a “slow start” strategy to probe for a new maximum up
to Smax. So if cwnd is the current window and the
maximum increment is Smax, then it increases in each RTT
round in steps cwnd+1, cwnd+2, cwnd+4,…, cwnd+Smax.
The rationale is that since it is likely to be at the saturation
point and also the maximum is unknown, it probes for
available bandwidth in a “slow start” until it is safe to
increase the window by Smax. After slow start, it switches
to binary increase.

Fast convergence: It can be shown that under a
completely synchronized loss model, binary search
increase combined with multiplicative decrease converges
to a fair share [8]. Suppose there are two flows with
different window sizes, but with the same RTT. Since the
larger window reduces more in multiplicative decrease
(with a fixed factor β), the time to reach the target is
longer for a larger window. However, its convergence
time can be very long. In binary search increase, it takes
log(d)-log(Smin) RTT rounds to reach the maximum
window after a window reduction of d. Since the window
increases in a log step, the larger window and smaller
window can reach back to their respective maxima very
fast almost at the same time (although the smaller window
flow gets to its maximum slightly faster). Thus, the
smaller window flow ends up taking away only a small
amount of bandwidth from the larger flow before the next
window reduction. To remedy this behavior, we modify
the binary search increase as follows.

In binary search increase, after a window reduction,
new maximum and minimum are set. Suppose these
values are max_wini and min_wini for flow i (i=1, 2). If the
new maximum is less than the previous, this window is in

a downward trend (so likely to have a window larger than
the fair share). Then, we readjust the new maximum to be
the same as the new target window (i.e.,
max_wini=(max_wini-min_wini)/2), and then readjust the
target. After then we apply the normal binary increase.
We call this strategy fast convergence.

Suppose that flow 1 has a window twice as large as
flow 2. Since the window increases in a log step,
convergent search (reducing the maximum of the larger
window by half) allows the two flows to reach their
maxima approximately at the same time; after passing
their maxima, both flows go into slow start and then
additive increase, during which their increase rates are the
same and they equally share bandwidth of
max_win1-(max_win1-min_win1)/2. This allows the two
flows to converge faster than pure binary increase.

Figure 5 shows a sample run of two BI-TCP flows.
Their operating modes are marked by circles and arrows.

A. Protocol Implementation
Below, we present the pseudo-code of BI-TCP
implemented in TCP-SACK.

The following preset parameters are used:
low_window: if the window size is larger than this

threshold, BI-TCP engages; otherwise
normal TCP increase/decrease.

 Smax: the maximum increment.
 Smin: the minimum increment.
 β: multiplicative window decrease factor.
default_max_win: default maximum (a large integer)

The following variables are used:
 max_win: the maximum window size; initially default

maximum.
 min_win: the minimum window size
 prev_win: the maximum window just before the current

maximum is set.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

W
in

d
o
w

 (
p
a
ck

e
ts

/R
T

T
)

Time (sec)

Binary Increase, Drop Tail

BI-TCP0
BI-TCP1Binary Search Increase

Fast convergence

Slow start

Additive
Increase

Fig. 5: BI-TCP in working.

 7

 target_win: the midpoint between maximum and
minimum

 cwnd: congestion window size;
is_BITCP_ss: Boolean indicating whether the protocol is

in the slow start. Initially false.
 ss_cwnd: a variable to keep track of cwnd increase

during the BI-TCP slow start.
 ss_target: the value of cwnd after one RTT in BI-TCP

slow start.

When entering faster recovery:
if (low_window <= cwnd){

prev_max = max_win;
max_win = cwnd;
cwnd = cwnd * (1-β);
min_win = cwnd;
if (prev_max > max_win) //Fast. Conv.

 max_win = (max_win + min_win)/2;
target_win = (max_win + min_win)/2;

} else {
cwnd = cwnd *0.5; // normal TCP

}

When not in fast recovery and an acknowledgment for a new
packet arrives:

if (low_window > cwnd){
cwnd = cwnd + 1/cwnd; // normal TCP
return

}
if (is_BITCP_ss is false){// bin. increase

if (target_win – cwnd < Smax)// bin.
search

cwnd += (target_win-cwnd)/cwnd;
else

cwnd += Smax/cwnd; // additive incre. if (max_win > cwnd){
min_win = cwnd;
target_win =(max_win+min_win)/2;

} else {
is_BITCP_ss = true;
ss_cwnd = 1;
ss_target = cwnd+1;
max_win = default_max_win;

 }
} else { // slow start

cwnd = cwnd + ss_cwnd/cwnd;
if(cwnd >= ss_target){
 ss_cwnd = 2*ss_cwnd;
 ss_target = cwnd+ss_cwnd;
}
if(ss_cwnd >= Smax)
 is_BITCP_ss = false;

}

B. Characteristics of BI-TCP
In this section, we analyze the response function and RTT
fairness of BI-TCP. An analysis on the convergence and
smoothness of the protocol can be found in [8].

1) Response function of BI-TCP

In this section, we present a deterministic analysis on the
response function of BI-TCP.

We assume that a loss event happens at every 1/p
packets. We define a congestion epoch to be the time
period between two consecutive loss events. Let Wmax
denote the window size just before a loss event. After a
loss event, the window size decreases to Wmax(1-β).

BI-TCP switches from additive increase to binary
search increase when the distance from the current
window size to the target window is less than Smax. Since
the target window is the midpoint between Wmax and the
current window size, it can be said that BI-TCP switches
between those two increases when the distance from the
current window size to Wmax is less than 2Smax. Let N1 and
N2 be the numbers of RTT rounds of additive increase and
binary search increase, respectively. We have

)0,2max(1 −

=

max

max

S
WN β

Then the total amount of window increase during
binary search increase can be expressed as Wmaxβ-N1Smax.
Assuming that this quantity is divisible by Smin, then N2
can be obtained as follows.

2log 1
22 +

 −
=

min

maxmax

S
SNWN β

During additive increase, the window grows linearly
with slope 1/Smax. So, the total number of packets during
additive increase, Y1, can be obtained as follows.

11 1

1
((1) (1) (1))

2 max max maxY W W N S Nβ β= − + − + − (1.1)

During binary search increase, the window grows
logarithmically. So, the total number of packets during
binary search increase, Y2, can be expressed as follows.

 minmaxmax SSNWNWY +−−=)(2 12max2 β (1.2)
The total number of RTTs in an epoch is N = N1 + N2,

and the total number of packets in an epoch is Y = Y1 + Y2.
Since a loss event happens at every 1/p packets, Y can be
expressed as follows: Y = 1/p. Solving it using Eqns. (1.1)
and (1.2), we may express Wmax as a function of p. Below,
we give the closed-form expression of Wmax for two
special cases.

First, we assume that Wmaxβ > 2Smax, and Wmaxβ is
divisible by Smax. Then N1= Wmaxβ/Smax -2. Now we can get

2 1
4 ()

2max

b b a c
p

W
a

− + + +

=

 8

where a = β (2-β)/(2Smax), b = log2(Smax/Smin)+(2-β)/2,
and c = Smax - Smin. The average sending rate, R, is then
given as follows.

2

1
(2)

1 (2)
4 () (1)

2

Y pR
N

b a c b
p

β

β β
β

−
= =

−
+ + + − +

 (1.3)

In case that Wmaxβ >> 2Smax, for a fixed Smin, N1>>N2.
Therefore, the sending rate of BI-TCP mainly depends on
the linear increase part, and for small values of p, the
sending rate can be approximated as follows:

2 1

2
maxS

R
p

β
β
−

≈ when Wmaxβ >> Smax (1.4)

Note that for a very large window, the sending rate

becomes independent of Smin. Eqn. (1.4) is very similar to
the response function of AIMD [18] denoted as follows.

2 1
2AIMDR

p
α β

β
−

≈

For a very large window, the sending rate of BI-TCP is

close to the sending rate of AIMD with increase parameter
α = Smax

Next, we consider the case when Wmaxβ ≤ 2Smax, then
N1=0, Assuming 1/p>>Smin, we get Wmax as follows.

max

max
2

min

1

log 2(1)
W

W
p

S
β

β
≈

+ −

By solving the above equation using function
LambertW(y) [21], which is the only real solution of

xx e y⋅ = , we can get a closed-form expression for Wmax.

2 ln(2)

ln(2)
4 ln(2)max

min

W
e

LambertW p
pS

ββ −
=

then,

max

max max
2 2

min min

1
2

1

log 2 log 2

Y p
R W

W WN

S S

β

β β
= = ≈ −

+ +

When 2β <<log(Wmaxβ / Smin)+2,

 maxWR ≈ (1.5)
Note that when Wmaxβ ≤ 2Smax, the sending rate becomes

independent of Smax.

In summary, the sending rate of BI-TCP is proportional
to 1/pd, with 1/2 < d <1. As the window size increases, d
decreases from 1 to 1/2. For a fixed β, when the window
size is small, the sending rate is a function of Smin and,
when the window size is large, a function of Smax. Our
objective is that when window is small, the protocol is
TCP-friendly, and when the window is large, it is more
RTT fair and gives a higher sending rate than TCP. We
can now achieve this objective by adjusting Smin and Smax.
Before we give details on how to set these parameters, let
us examine the RTT fairness of BI-TCP.

2) RTT fairness of BI-TCP

As in Section IV, we consider the RTT fairness of a
protocol under the synchronized loss model. Suppose
RTTi be the RTT of flow i (i=1,2). Let wi denote Wmax of
flow i, and ni denote the number of RTT rounds in a
congestion epoch of flow i. As described in the previous
section, ni is a function of wi. Let t denote the length of an
epoch during steady state. Since both flows have the same
epoch, we have

=
=

tRTTn
tRTTn

22

11

Solving the above equations, we can express w1/w2 as a
function of RTT2/RTT1. As before, we consider special
cases to get a closed-form expression.

First, when Wmaxβ > 2Smax, we can obtain w1/w2 as
follows.

2

11

2
2

2

2

1

1 1
log ()

1 1
log ()

max

min

max

min

S

RTT t Sw
Sw

RTT t S

RTT
RTT

−

=
−

≈ when t is large.

Next, when Wmaxβ ≤ 2Smax, w1/w2 can be expressed as
follows.

)2ln()
2

1

1

1(

2

1
t

RTTRTTe
w
w −

=

Note that t increases with the total bandwidth.
Therefore, as the total bandwidth increases, the ratio first
exponentially increases reaching its peak when Wmaxβ =
2Smax, and then becomes roughly linearly proportional to
RTT2/RTT1. This exponential RTT fairness can be
problematic under larger windows. However, since under
small windows, synchronized loss is less frequent, we
believe that this unfairness can be managed to be low. We
verify this in Section VII.

3) Setting the parameters

 9

In this section, we discuss a guideline to determine the
preset parameters of BI-TCP: β, Smin, Smax and
low_window in Section VI-A.

From Eqns.(1.4) and (1.5), we observe that reducing β
increases the sending rate. Reducing β also improves
utilization. However it hurts convergence since larger
window flows give up their bandwidth slowly. From the
equations, we can infer that β has a much less impact on
the sending rate than Smax. So it is easier to fix β and then
adjust Smin and Smax. We choose 0.125 for β . Under steady
state, this can give approximately 94% utilization of the
network. STCP chooses the same value for β .

For a fixed β = 0.125, we plot the response function as
we vary Smax and Smin. Figure 6 shows the response
function for different values of Smax. As Smax increases, the
sending rate increases only for low loss rates using 1e-4 as
a pivot. Smax allows us to control the scalability of BI-TCP
for large windows. We cannot increase Smax arbitrarily
high since it effectively increases the area of RTT
unfairness (the area where the slope is larger than TCP’s).
Recall that when Wmaxβ ≤ 2Smax, the protocol is less RTT
fair. This area needs to be kept small to reduce the RTT
unfairness of the protocol.

Figure 7 plots the response function for various values
of Smin. As we reduce Smin, the sending rate reduces around
high loss rates (i.e., small windows) and the cross point
between TCP and BI-TCP moves toward a lower loss rate.
Since we can set low_window to the window size at the
point where the protocol switches from TCP to BI-TCP,
reducing Smin improves TCP friendliness. However, we
cannot reduce Smin arbitrarily low because it makes the
slope of the response function steeper before merging into
the linear growth area, worsening RTT unfairness.
HSTCP crosses TCP at window size of 31, and STCP at
16.

For a fixed β = 0.125, we plot the response function of

BI-TCP with Smax = 32 and Smin = 0.01 in Figure 8. For
comparison, we plot those of AIMD (α = 32, β = 0.125),
HSTCP, STCP, and TCP. We observe that BI-TCP
crosses TCP around p = 1e-2 and it also meets AIMD
around p=1e-5 and stays with AIMD. Clearly, BI-TCP
sets an upper bounds on TCP friendliness since the
response functions of BI-TCP and TCP run in parallel
after some point (at p=1e-5). BI-TCP’s TCP-friendliness
under high loss rates is comparable to STCP’s, but less
than HSTCP’s. BI-TCP crosses TCP at the window size of
14 (lower than STCP and HSTCP). The sending rate of
BI-TCP over extremely low loss rates (1e-8) is less than
that of STCP and HSTCP.

Smin

Fig 7: Response functions of BI-TCP for different values of Smin.

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
e

n
d

in
g

 R
a

te
 R

 (
P

a
ck

e
t/

R
T

T
)

Loss Event Rate P

BI-TCP Smax=32 beta=0.125

Regular TCP
BI-TCP with Smin=1

BI-TCP with Smin=0.1
BI-TCP with Smin=0.01

BI-TCP with Smin=0.001

1

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

S
e
n
d
in

g
 R

a
te

 R
 (

P
a
ck

e
t/
R

T
T

)

Loss Event Rate P

BI-TCP Smin=0.01 beta=0.125

Regular TCP
BI-TCP with Smax=8

BI-TCP with Smax=16
BI-TCP with Smax=32
BI-TCP with Smax=64

Fig. 6: Response functions of BI-TCP for different values of Smax.

Smax

Linear Growth

Logarithmic Growth

 10

VII. EXPERIMENTAL STUDY

In this section, we compare the performance of BI-TCP
using simulation with that of HSTCP, STCP, and AIMD.
Every experiment uses the same simulation setup
described in Section II. Unless explicitly stated, the same
amount of background traffic is used for all the
experimental runs. In order to remove noise in data
sampling, we take measurement only in the second half of
each run. We evaluate BI-TCP, AIMD, HSTCP, and
STCP for the following properties: bandwidth utilization,
TCP friendliness, RTT unfairness, and convergence to
fairness. For BI-TCP, we use Smax=32, Smin =0.01, and
β = 0.125, and for AIMD, α = 32 and β = 0.125.

Utilization: In order to determine whether a
high-speed protocol uses available bandwidth effectively
under high-bandwidth environments, we measure
bandwidth utilization for 2.5Gbps bottleneck. Each test
consists of two high-speed flows of the same type and two
long-lived TCP flows. In each test, we measure the total
utilization of all the flows including background traffic. In
drop tail, all protocols give approximately 100%
utilization, and in RED, AIMD and BI-TCP consume
about 99% of the total bandwidth while HSTCP and
STCP consume about 96%. The drop tail experiment
consumes more bandwidth because drop tail allows flows
to fill up the network buffers.

RTT Fairness: In this experiment, two high-speed
flows with a different RTT share the bottleneck. The RTT
of flow 1 is 40ms. We vary the RTT of flow 2 among
40ms, 120ms, and 240ms. The bottleneck link delay is
10ms. We run two groups of simulation, each with
different bottleneck bandwidth: 2.5Gbps, and 100Mbps.
This setup allows the protocols to be tested for RTT
fairness for different window sizes. According to our

analysis in Section VI, around small window sizes,
BI-TCP shows the worst RTT unfairness. BI-TCP has
window sizes about 7000 (loss rate 0.0003) for 2.5Gbps
and 300 (loss rate 0.006) for 100Mbps. We show only the
results of drop tail. The RTT unfairness under RED is
close to the inverse of RTT ratio for every protocol. We
omit the RED figure.

Tables 2 and 3 show the results for the runs in 2.5Gbps
and 100Mbps respectively. It can be seen that the RTT
unfairness of BI-TCP is relatively comparable to AIMD.
This result verifies our analysis in Section VI. In Table 3,
the performance of BI-TCP does not deteriorate much
while HSTCP and STCP have improved RTT unfairness.
This is because in 100 Mbps, the window size of all the
flows is much smaller than in 2.5Gbps run. Therefore, the
degree of synchronized loss is very low. Although the
RTT unfairness of BI-TCP gets worse around this window
size, it gets compensated by lack of synchronized loss so
that it did not have much performance degradation.
Nonetheless, its RTT unfairness is much better than
HSTCP and STCP. HSTCP and STCP tend to starve long
RTT flows under high bandwidth environments.

TCP-friendliness: We run four groups of tests, each

with different bottleneck bandwidth. Each group consists
of four independent runs of simulation, each with a
different type of high speed flows. In every run, the same
number of network flows (including background) is used.

Figure 9 shows the percentage of bandwidth share by
each flow type under drop tail. (RED gives approximately
similar results as drop tail.) Three flow types are present:
background (web traffic and small TCP flows), long-lived
TCP flows, and high-speed flows.

Under bandwidth below 500Mbps, the TCP
friendliness of BI-TCP is comparable to that of STCP. At
20Mbps, TCP consumes approximately the same
bandwidth in the runs involving HSTCP and STCP. In

RTT Ratio 1 3 6
AIMD 0.99 7.31 26.12
BI-TCP 0.94 13.06 33.81
HSTCP 1.13 10.42 51.09
STCP 1.12 27.84 72.74

Table 3: The throughput ratio of protocols under 100 Mbps

RTT Ratio 1 3 6
AIMD 1.05 6.56 22.55
BI-TCP 0.96 9.18 35.76
HSTCP 0.99 47.42 131.03
STCP 0.92 140.52 300.32

Table 2: The throughput ratio of protocols under 2.5Gbps

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2

S
en

di
ng

 R
at

e
R

 (
P

ac
ke

t/R
T

T
)

Loss Event Rate Pevent

Regular TCP
HSTCP

Scalable TCP
AIMD(32, 0.125)

BI-TCP(32, 0.125, 0.01)

Fig. 8: Response function

 11

BI-TCP run, TCP uses slightly less bandwidth than other
runs with HSTC and STCP. However, in HSTCP and
STCP simulation, the unused bandwidth is almost twice as
much as in AIMD and BI-TCP. The main reason for this
interesting phenomenon is that BI-TCP and AIMD have a
smaller β than HSTCP under low bandwidth. Thus, as
noted earlier, a smaller β contributes to higher utilization.
Although STCP has the same β as BI-TCP, it also has a
higher value of low_window so its algorithm engages
when the window size is larger. So under this bandwidth,
it operates in the normal TCP mode (which has β = 0.5).
This can be verified in the run of 100Mbps where STCP’s
window is larger than low_window, its utilization is on par
with BI-TCP. HSTCP still has a higher β under 100Mbps.

At 20Mbps, the increase in BI-TCP bandwidth shares

can be accounted by the reduction in unused bandwidth.
That is, while BI-TCP consumes more bandwidth than
TCP, it does not take much bandwidth from TCP, but
instead from the unused bandwidth – a nice feature of
BI-TCP.

For 500Mbps and 2.5Gbps, the amount of shares by
background and long-lived TCP flows substantially
reduce due to TCP’s limitation to scale its bandwidth
usage in high-bandwidth. Under 500Mbps, STCP,
BI-TCP, and AIMD use approximately the same share of
bandwidth. Under 2.5Gbps, the bandwidth share of
background traffic is very small. STCP becomes most
aggressive, followed by HSTCP. BI-TCP becomes
friendlier to TCP.

To sum up, BI-TCP gives good TCP friendliness
relatively to STCP for all bandwidth while consuming
bandwidth left unused by TCP flows. The result closely
follows our analysis in Section VI-B.

Fairness: Synchronized loss has impact also on
bandwidth fairness and convergence time to the fair

bandwidth share. In this experiment, we run 4 high-speed
flows with RTT 100ms. Two flows start randomly in
[0:20] seconds, and the other two start randomly in
[50:70] seconds. Drop tail is used, and the bottleneck link
bandwidth is 2.5Gbps. For this experiment, we measured
the fairness index [20] at various time scales. In each time
scale, we rank fairness index samples by values and use
only 20% of samples that show the worst case fairness
indices. We take samples only after 300 seconds; the total
run time is 600 seconds. This result gives an indication on
(1) how fast it converges to a fair share, and (2) even after
convergence to a fair share, how much it oscillates around
the fair share. Figure 10 shows the result.

BI-TCP and AIMD give the best results; their fairness
indices for all time scales are close to one. STCP’s indices
are always below 0.8 for all scales due to its slow
convergence to fairness. HSTCP gives much better
convergence than STCP, but it is still worse than BI-TCP.

We run the same test again, but under RED this time.
We observed much better convergence for HSTCP and
STCP than in drop tail. Since all converge fast to fairness,
we use 1% of worst case samples. Figure 11 shows the
result. Over short-term scales, HSTCP and STCP show
much deviation from index 1. This is because after they
get fast convergence, they oscillate around the fairness
line even at 25 second intervals. As shown in Section III,
RED still has some amount of synchronized loss
(although much less than drop tail). This causes HSTCP
and STCP to oscillate over a long-term time scale.

TCP-Friendliness, Drop Tail

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AI
M

D

BI
-T

C
P

H
ST

C
P

ST
C

P

AI
M

D

BI
-T

C
P

H
ST

C
P

ST
C

P

AI
M

D

BI
-T

C
P

H
ST

C
P

ST
C

P

AI
M

D

BI
-T

C
P

H
ST

C
P

ST
C

P
Long-lived TCP High-speed
Background Unused

20Mbps 100Mbps 500Mbps 2.5Gbps

Fig 9: TCP friendliness for various bandwidth networks

(DROPTAIL)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300

80
%

 F
ai

rn
es

s

Measurement Interval (seconds)

AIMD
BI-TCP
HSTCP

STCP

Fig. 10: Fairness index over various time scales
(DROP TAIL)

 12

VIII. RELATED WORK
As HSTCP and STCP have been discussed in detail in this
paper, we examine other high-speed protocols that are not
covered by this paper.

Recent experiment [9] indicates that TCP can provide
good utilization even under 10Gbps when the network is
provisioned with a large buffer and drop tail. However,
the queue size of high-speed routers is very expensive and
often limited to less than 20% of the bandwidth and delay
products. Thus, generally, TCP is not suitable for
applications requiring high bandwidth. FAST [7]
modifies TCP-Vegas to provide a stable protocol for
high-speed networks. It was proven that TCP can be
instable as delay and network bandwidth increase. Using
delay as an additional cue to adjust the window, the
protocol is shown to give very high utilization of network
bandwidth and stability. It fairness property is still under
investigation. XCP [5] is a router-assisted protocol. It
gives excellent fairness, responsiveness, and high
utilization. However, since it requires XCP routers to be
deployed, it cannot be incrementally deployed. Lakshman
and Madhow[19] study RTT unfairness of TCP in
networks with high bandwidth delay products. It was
reported that under a FIFO queue (i.e., drop tail) that TCP
throughput is inversely proportional to aRTT where
1 2a≤ ≤ . This paper extends the work by investigating
RTT fairness for new high-speed protocols.

IX. CONCLUSION
The significance of this paper is twofold. First, it presents
RTT fairness as an important safety condition for
high-speed congestion control and raise an issue that
existing protocols may have a severe problem in
deployment due to lack of RTT fairness under drop tail.
RTT fairness has been largely ignored in designing
high-speed congestion control. Second, this paper

presents a new protocol that can support RTT fairness,
TCP friendliness, and scalability. Our performance study
indicates that it gives good performance on all three
metrics.

We note that the response function of BI-TCP may not
be the only one that can satisfy the three constraints. It is
possible that there exists a better function that utilizes the
tradeoff among the three conditions in a better way. This
is an area where we can use more research. Another point
of discussion is that high-speed networks can greatly
benefit from the deployment of AQM. Our work supports
this case since a well designed AQM can relieve the
protocol from the burden of various fairness constraints
caused by synchronized loss.

One possible limitation of BI-TCP is that as the loss
rate reduces further below 1e-8, its sending rate does not
grow as fast as HSTCP and STCP. This is because of the
lower slope of its response function. Hence, it may seem
that there is a fundamental tradeoff between RTT fairness
and scalability. We argue it is not the case. Under such a
low loss rate, most of loss is due to signal or
“self-inflicted”, i.e., loss is created because of the
aggressiveness of the protocol. As a protocol gets more
aggressive, it creates more loss and thus, needs to send at a
higher rate for a given loss rate. The utilization of the
network capacity is more important under such low loss
rates, which is determined mostly by the decrease factor
of congestion control. For TCP, the utilization is 75% and
for STCP and BI-TCP, around 94% (these numbers are
determined from β). In addition, we believe that by the
time that much higher bandwidth (in the order of
100Gbps) becomes available, the network must have
more advanced AQM schemes deployed so that we can
use a higher slope response function.

A less aggressive (i.e., lower slope) protocol, however,
is less responsive to available bandwidth; so short file
transfers will suffer. We believe that fast convergence to
efficiency requires a separate mechanism that detects the
availability of unused bandwidth which has been an active
research area lately ([22, 23]). We foresee that advance in
this field greatly benefits the congestion control research.

REFERENCES
[1] S. Floyd, S. Ratnasamy, and S. Shenker, “Modifying TCP’s Congestyion

Control for High Speeds”, http://www.icir.org/floyd/hstcp.html, May
2002

[2] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, IETF,
INTERNET DRAFT, draft-floyd-tcp-highspeed-02.txt, 2002

[3] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Windows”,
IETF, INTERNET DRAFT, draft-floyd-tcp-slowstart-01.txt, 2001

[4] T. Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks”, Submitted for publication, December 2002

[5] Dina Katabi, M. Handley, and C. Rohrs, "Internet Congestion Control for
High Bandwidth-Delay Product Networks." ACM SIGCOMM 2002,
Pittsburgh, August, 2002

[6] Y. Gu, X. Hong, M. Mazzucco, and R. L. Grossman, “SABUL: A High
Performance Data Transport Protocol”, Submitted for publication, 2002

0.8

0.85

0.9

0.95

1

1 5 25 125

99
%

 F
ai

rn
es

s

Measurement Interval (seconds)

AIMD
BI-TCP
HSTCP

STCP

Fig. 11: Fairness index over various time scale
(RED)

 13

[7] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, H. Newman, F. Paganini, S. Ravot, and S. Singh,
"FAST Kernel: Background Theory and Experimental Results",
Presented at the First International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet 2003), February 3-4, 2003, CERN,
Geneva, Switzerland

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control for
Fast, Long Distance Networks”, Tech. Report, Computer Science
Department, NC State University, 2003

[9] S. Ravot, "TCP transfers over high latency/bandwidth networks & Grid
DT", Presented at First International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet 2003), February 3-4, 2003, CERN,
Geneva, Switzerland

[10] T. Dunigan, M. Mathis, and B. Tierney, “A TCP Tuning Daemon”, in
Proceedings of SuperComputing: High-Performance Networking and
Computing, Nov. 2002

[11] M. Jain, R. Prasad, C. Dovrolis, “Socket Buffer Auto-Sizing for Maximum
TCP Throughput”, Submitted for publication, 2003

[12] J. Semke, J. Madhavi, and M. Mathis, “Automatic TCP Buffer Tuning”, in
Proceedings of ACM SIGCOMM, Aug. 1998

[13] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S.
Tuecke., “GridFTP Protocol Specification”. GGF GridFTP Working
Group Document, September 2002.

[14] PFTP : http://www.indiana.edu/~rats/research/hsi/index.shtml
[15] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The Case for

Application-level Network Striping for Data Intensive Applications using
High Speed Wide Area Networks”, in Proceedings of SuperComputing:
High-Performance Networking and Computing, Nov 2000

[16] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, "Dynamic Behavior
of Slowly Responsive Congestion Controls", In Proceedings of
SIGCOMM 2001, San Diego, California.

[17] S. Floyd, and E. Kohler, “Internet Research Needs Better Models”,
http://www.icir.org/models/bettermodels.html, October, 2002

[18] S. Floyd, M. Handley, and J. Padhye, “A Comparison of Equation-Based
and AIMD Congestion Control”, http://www.icir.org/tfrc/, May 2000

[19] T. V. Lakshman, and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss”,
IEEE/ACM Transactions on Networking, vol. 5 no 3, pp. 336-350, July
1997

[20] D. Chiu, and R. Jain, “Analysis of the Increase and Decrease Algorithms
for Congestion Avoidance in Computer Networks”, Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14

[21] R. M. Corless, G. H. Gonnet, D.E.G. Hare, D. J. Jeffrey, and Knuth, "On
the LambertW Function", Advances in Computational Mathematics
5(4):329-359, 1996

[22] C. Dovrolis, and M.Jain, ``End-to-End Available Bandwidth:
Measurement methodology, Dynamics, and Relation with TCP
Throughput''. In Proceedings of ACM SIGCOMM 2002, August 2002.

[23] K. Harfoush, A. Bestavros, and J. Byers, "Measuring Bottleneck
Bandwidth of Targeted Path Segments", In Proceedings of IEEE
INFOCOM '03, April 2003.

