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Abstract—High-speed networks with large delays present a 
unique environment where TCP may have a problem utilizing the 
full bandwidth. Several congestion control proposals have been 
suggested to remedy this problem. The protocols consider mainly 
two properties: TCP friendliness and bandwidth scalability. That 
is, a protocol should not take away too much bandwidth from TCP 
while utilizing the full bandwidth of high-speed networks.  This 
paper presents another important constraint, namely, RTT (round 
trip time) unfairness where competing flows with different RTTs 
may consume vastly unfair bandwidth shares.  Existing schemes 
have a severe RTT unfairness problem because the window 
increase rate gets larger as window grows – ironically the very 
reason that makes them more scalable.  RTT unfairness for high 
speed networks occurs distinctly with drop tail routers where 
packet loss can be highly synchronized. After recognizing the RTT 
unfairness problem of existing protocols, this paper presents a new 
congestion control protocol that ensures linear RTT fairness 
under large windows while offering both scalability and 
TCP-friendliness. The protocol combines two schemes called 
additive increase and binary search increase. When the congestion 
window is large, additive increase with a large increment ensures 
linear RTT fairness as well as good scalability. Under small 
congestion windows, binary search increase is designed to provide 
TCP friendliness.  The paper presents a performance study of the 
new protocol. 
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I. INTRODUCTION 

he Internet is evolving. The networks, such as Abilene 
and ESNet, provisioned with a large amount of 

bandwidth ranging from 1 to 10Gbps are now sprawling to 
connect many research organizations around the world. As 
these networks run over a long distance, their round trip 
delays can rise beyond 200ms.  

The deployment of high-speed networks has helped 
push the frontiers of high performance computing that 
requires access to a vast amount of data as well as high 
computing power. Applications like scientific 
collaboration, telemedicine, and real-time environment 
monitoring benefit from this deployment. Typically they 
require transmission of high-bandwidth real time data, 
images, and video captured from remote sensors such as 
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satellite, radars, and echocardiography. These 
applications require not only high bandwidth, but also real 
time predictable, low latency data transfer. 

TCP has been widely adopted as a data transfer 
protocol for these networks. However, it is reported [1, 2, 
4, 7] that TCP substantially underutilizes network 
bandwidth over high-speed connections. TCP increases 
its congestion window by one at every round trip time 
(RTT) and reduces it by half at a loss event. In order for 
TCP to increase its window for full utilization of 10Gbps 
with 1500-byte packets, it requires over 83,333 RTTs. 
With 100ms RTT, it takes approximately 1.5 hours, and 
for full utilization in steady state, the loss rate cannot be 
more than 1 loss event per 5,000,000,000 packets which is 
less than the theoretical limit of the network’s bit error 
rates.   

Fine-tuning TCP parameters such as receiver windows 
and network interface buffers [9, 10, 11, 12] may mitigate 
this problem. One straightforward solution is to increase 
the packet size by using the Jumbo packet option (up to 
8KB) and use multiple TCP connections [13, 14, 15]. 
Although these approaches enhance utilization, they do 
not ensure TCP friendliness when running in the TCP’s 
“well-behaving” operating range (between loss rates of 
10-2 to 10-4) because the window increase rate is fixed to 
be always larger than TCP. Guaranteeing both TCP 
friendliness and bandwidth scalability with one fixed 
increase rate of window is challenging. It calls for 
adaptive schemes that vary the window growth rate 
depending on network conditions.  

After recognizing TCP’s limitation, the networking 
research community responded quickly. Several 
promising new protocols have been put forward: High 
Speed TCP (HSTCP) [1, 2, 3], Scalable TCP (STCP) [4], 
FAST [7], XCP [5], and SABUL [6]. Except XCP (a 
router assisted protocol), these protocols adaptively adjust 
their increase rates based on the current window size. So 
the larger the congestion window is, the faster it grows. 
These protocols are claimed to be TCP friendly under 
high loss rate environments as well as highly scalable 
under low loss environments. 

In this paper, we evaluate some of these protocols, in 
particular, window-based, self-clocking protocols known 
for safer incremental deployment [16]. We don’t consider 
SABUL because it is a rate-based protocol. Further, since 
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the detailed description of FAST is not yet available, we 
consider only HSTCP and STCP in this paper.   

Our study reveals that notwithstanding their scalability 
and TCP friendliness properties, HSTCP and STCP have 
a serious RTT unfairness problem when multiple flows 
with different RTT delays are competing for the same 
bottleneck bandwidth. We define the RTT unfairness of 
two competing flows to be the ratio of windows in terms 
of their RTT ratio.2 Under a completely synchronized loss 
model, STCP does not even find a convergence point such 
that shorter RTT flows eventually starve off longer RTT 
flows. We also find that in HSTCP, two flows with RTT1 
and RTT2 has RTT unfairness in proportion 
to ( ) 56.4

12 RTTRTT .  This problem commonly appears 
for drop tail routers while the severity reduces for RED, 
and therefore, greatly impairs the ability to incrementally 
deploy the protocols, without adequate support from 
active queue management (such as RED and XCP). 

RTT unfairness stems from the adaptability of these 
protocols – ironically the very reason that makes them 
more scalable to large bandwidth; in these protocols, a 
larger window increases faster than a smaller window. 
Compounded with a delay difference, RTT unfairness 
gets worse as the window of a shorter RTT flow grows 
faster than that of a longer RTT flow.  

Another source of the problem is synchronized loss 
where packet loss occurs across multiple competing flows 
simultaneously. When the congestion window gets larger, 
the probability that a window loses at least one packet (i.e., 
loss event) increases exponentially. Assuming uniform 
distribution of random loss probability p, the probability 
of a loss event is (1-  (1- ) )wp . Even a small packet loss 
rate at a router can cause loss events across multiple flows 
of large windows. Although a long-term packet loss rate 
could be low in high-speed connections, a short-term loss 
rate during the period when packet loss occurs (due to 
buffer overflow) can be high. 

Synchronized loss encourages RTT unfairness; since 
loss events are more uniform across different window 
sizes if the size is larger than a certain limit, large 
windows with a short RTT can always grow faster than 
small windows with a long RTT. Furthermore, 
synchronization can prolong convergence and cause a 
long-term oscillation of data rates, thereby hurting 
fairness in short-term scales.  In our simulation, we 
observe the short-term unfairness of STCP and HSTCP 
over both drop-tail and RED routers.  

It is challenging to design a protocol that can scale up to 
10Gbps in a reasonable range of loss rates (from 10-7 to 
10-8); at the same time, can be RTT fair for the large 
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window regime where synchronized loss can occur more 
frequently; and is TCP friendly for higher loss rates 
(between 10-1 to 10-3). For instance, while AIMD can 
scale its bandwidth share by increasing its additive 
increase factor, and also provide linear RTT fairness, it is 
not TCP friendly. HSTCP and STCP are extremely 
scalable under low loss rates and TCP friendly under high 
loss rates. But they are not RTT fair.  

 In this paper, we consider a new protocol that may 
satisfy all these criteria, called Binary Increase TCP 
(BI-TCP). BI-TCP has the following features: 

 
1. Scalability: it can scale its bandwidth share to 10 

Gbps around 3.5e-8 loss rates (comparable to 
HSTCP which reaches 10Gbps at 1e-7).  

2. RTT fairness: for large windows, its RTT 
unfairness is proportional to the RTT ratio as in 
AIMD. 

3. TCP friendliness: it achieves a bounded TCP 
fairness for all window sizes. Around high loss 
rates where TCP performs well, its TCP 
friendliness is comparable to STCP’s. 

4. Fairness and convergence:  compared to HSTCP 
and STCP, it achieves better bandwidth fairness 
over various time scales and faster convergence to 
a fair share. 
 

This paper reports a performance study of BI-TCP. The 
paper organized as follows: Section II describes our 
simulation setup and Section III discusses evidence for 
synchronized loss.  In Sections IV and V, we discuss the 
behavior of HSTCP and STCP. In Section VI, we describe 
BI-TCP and its properties. Section VII gives details on 
simulation results. Related work and conclusion can be 
found in Sections VIII and IX. 

II.  SIMULATION SETUP  

 Fig. 1 shows the NS simulation setup that we use 
throughout the paper. Various bottleneck capacity and 
delays are tested. The buffer space at the bottleneck router 
is set to 100% of the bandwidth and delay products of the 
bottleneck link. Every traffic passes through the 
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bottleneck link; each link is configured to have different 
RTTs and different starting times and end times to reduce 
the phase effect [17]. A significant amount of web traffic 
(20% up to 50% of bottleneck bandwidth when no other 
flows are present) is generated both for both directions to 
remove synchronization in feedback. 25 small TCP flows 
with their congestion window size limited to be under 64 
are added in both directions whose starting and finishing 
times are set randomly. Two to four long-lived TCP flows 
are created for both directions. The background traffic 
(long-lived TCP, small TCP flows, and web traffic) 
consumes at the minimum 20% of the backward 
bandwidth.  

The simulation topology does not deviate too much 
from that of the real high-speed networks. High-speed 
networks of our interest are different from the general 
Internet where a majority of bottlenecks are located at the 
edges. In the high-speed networks, edges can still be 
high-speed and the bottleneck could be at the locations 
where much high-speed traffic meets such as Startlight in 
Chicago that connects CERN (Geneva) and Abilene.  

We make no claim about how realistic our background 
traffic is. However, we believe that the amount of 
background traffic in both directions, and randomized 
RTTs and starting and finishing times are sufficient to 
reduce the phase effect and synchronized feedback. We 
also paced TCP packets so that no more than two packets 
are sent in burst. A random delay between packet 
transmissions is inserted to avoid the phase effect 
(overhead = 0.000008).We test both RED and drop tail 
routers at the bottleneck link. For RED, we use adaptive 
RED with the bottom of max_p set to 0.001.3 

III. SYNCHRONIZED PACKET LOSS 
In this paper, we use a synchronized loss model for the 
analysis of RTT fairness. Before delving into the analysis, 
we provide some evidence that synchronized loss can 
happen quite frequently in high speed networks.  

To measure the extent of synchronization, we run a 
simulation experiment involving 20 high-speed 
connections of HSTCP with RTTs varying from 40ms to 
150ms. The bottleneck bandwidth is 2.5Gbps. 
Background traffic takes about 7% of the forward path 
bandwidth and about 35% of the backward path 
bandwidth. The reason why the forward path background 
traffic takes less bandwidth is that the forward path 
high-speed connections steal the bandwidth from the TCP 
connections.  We define a loss epoch to be one-second 
period that contains at least one loss event by a high-speed 
flow. We count the number of unique high-speed flows 
that have at least one loss event in the same epoch, and 

 
3 It is recommended by [1] to reduce synchronized loss – normally this value 

is set to 0.01. 

then add the number of epochs that have the same number 
of flows.  

Figure 2 shows the accumulative percentage of loss 
epochs that contain at the minimum a given number of 
high-speed flows. In drop tail, the percentage of loss 
epochs that involve more than half of the total high-speed 
flows (20 in this experiment) is around 70%. This implies 
that whenever a flow has a loss event in the drop tail router, 
the probability that at least half of the total flows 
experience loss events at the same time is around 70%. On 
the other hand, RED does not incur as much synchronized 
loss. However, there still exists some amount of 
synchronization; the probability that more than a quarter 
of the total flows have synchronized loss events is around 
30%. 

Fig. 2: Accumulative percentage of loss epoch containing at
least a given number of unique flows.
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The result implies that the number of synchronized loss 

can be quite substantial in drop tail. Although it requires 
real network tests to confirm this finding, we believe that 
our simulation result is not difficult to recreate in real 
networks. We leave that to future study. Synchronized 
loss has several detrimental effects such as RTT 
unfairness, slower convergence, under-utilization, and 
degraded fairness. 

IV. RTT FAIRNESS OF HSTCP AND STCP 
In this section, we analyze the effect of synchronized loss 
on the RTT fairness of HSTCP and STCP. We use a 
synchronized loss model where all high-speed flows 
competing on a bottleneck link experience loss events at 
the same time. By no means, we claim that this model 
characterizes all the aspects of high-speed networks. We 
use this model to study the effect of synchronized loss on 
RTT unfairness and to gain insight to RTT unfairness we 
observe in our simulation experiment.  

Let wi and RTTi denote the window size just before a 
loss event and the RTT of flow i (i=1, 2) respectively. Let 
t denote the interval between two consecutive loss events 
during steady state. 
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HSTCP employs an additive increase and 
multiplicative decrease window control protocol, but their 
increase and decrease factors α and β are functions of 
window size.  
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STCP uses multiplicative increase and multiplicative 
decrease (MIMD) with factors α and β. 
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The above equations do not have a solution. That is, 
there is no convergence point for STCP. The shorter RTT 
flow consumes all the bandwidth while the longer RTT 
flow drops down to zero.  

Table 1 presents a simulation result that shows the 
bandwidth shares of two high-speed flows with different 
ratios of RTTs running in drop tail (RED does not show 
significant RTT unfairness). The ratio of RTTs is varied to 
be 1 to 6 with base RTT 40ms.  

AIMD shows a quadratic increase in the throughput 
ratio as the RTT ratio increases (i.e., linear RTT 
unfairness). STCP shows over 300 times throughput ratio 
for RTT ratio 6. HSTCP shows about 131 times 
throughput ratio for RTT ratio 6. Clearly the results 
indicate extremely unfair use of bandwidth by a short 
RTT flow in drop tail.  

The result shows better RTT unfairness than predicted 
by the analysis. This is because while the analysis is based 
on a completely synchronized loss model, the simulation 
may involve loss events that are not synchronized. Also 
when the window size becomes less than 500, the 

occurrence of synchronized loss is substantially low. 
Long RTT flows continue to reduce their windows up to a 
limit where synchronized loss does not occur much. Thus, 
the window ratio does not get worse.  

Figure 3 shows a sample simulation run with ten STCP 
flows in drop tail. All flows are started at different times. 
Eight flows have 80 ms RTT, and two flows have 160 ms 
RTT. It exhibits a typical case of RTT unfairness. The two 
longer RTT flows slowly reduce their window down to 
almost zero while the other flows merge into a single point. 
Note that STCP does not converge in a completely 
synchronized model because of MIMD window control 
[20]. However, in this simulation, 8 flows with the same 
RTT do converge (despite high oscillation). This indicates 
that there exists enough asynchrony in packet loss to make 
the same RTT flows converge, but not enough to correct 
RTT unfairness.  

 

V. RESPONSE FUNCTION 
The response function of a congestion control protocol is 
its sending rate in a function of packet loss rate. It can give 
much information about the protocol, especially, its TCP 
friendliness, RTT fairness, convergence, and scalability. 
Figure 4 draws the response functions of HSTCP, STCP, 
AIMD, and TCP in a log-log scale. AIMD uses the 
increase factor 32 and the decrease factor 0.125. 

It can be shown that for a protocol with a response 
function / dc p where c and d are constants, and p is a loss 
event rate, RTT unfairness is roughly proportional to 

/(1 )
2 1( / )d dRTT RTT −  [8]. The values for TCP, AIMD, 

HSTCP, and STCP are 0.5, 0.5, 0.82, and 1, respectively. 
As d increases, the slope of the response function and 
RTT unfairness increase. A slope of a response function in 
a log-log scale determines its RTT unfairness. Since TCP 
and AIMD have the same slope, the RTT unfairness of 
AIMD is the same as TCP – linear RTT unfairness. The 
RTT unfairness of STCP is infinite while that of HSTCP 
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RTT Ratio 1 3 6 
AIMD 1.05 6.56 22.55 
HSTCP 0.99 47.42 131.03 
STCP 0.92 140.52 300.32 

 
Table 1: The throughput ratio of two high speed flows 

over various RTT ratios in 2.5Gbps networks. 
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falls somewhere between TCP’s and STCP’s. Any slope 
higher than STCP would get infinite RTT unfairness.  

The TCP friendliness of a protocol can be inferred by 
the point where the response function of the protocol 
crosses that of TCP. HSTCP and STCP work the same as 
the normal TCP operation below the point where their 
response functions cross TCP’s. Since TCP does not 
consume all the bandwidth at lower loss rates, a scalable 
protocol does not have to follow TCP over lower loss rates. 
Above the point, HSTCP and STCP run their own 
“scalable” protocols, ideally consuming what’s left by 
TCP flows. Under this strategy, it becomes more TCP 
friendly if a protocol crosses TCP as low a loss rate as 
possible (to the left of the X axis) since the protocol 
follows TCP below that point. However, moving the cross 
point to the left increases the slope of the response 
function if scalability has to be maintained at the same 
time, hurting RTT fairness.  

 

 
An ideal protocol would be that (1) its response 

function crosses TCP’s as low a rate as possible, and at the 
same time (2) under lower loss rates, its slope is as close as 
that of AIMD.  Note that the function need not be a 
straight line, i.e., the slope can vary depending on loss 
rates. But its slope at any loss rates should not exceed that 
of STCP although it can be much more forgiving under a 
high loss rate where window size is small enough to avoid 
frequent synchronized loss. 

VI. BINARY INCREASE CONGESTION CONTROL. 
It is challenging to design a protocol that can satisfy all 
three criteria: RTT fairness, TCP friendliness, and 
scalability. As noted in Section V, these criteria may not 
be satisfied simultaneously for all loss rates. A protocol 
should adapt its window control depending on the size of 
windows. Below, we present such a protocol, called 

Binary Increase TCP (BI-TCP). BI-TCP consists of two 
parts: binary search increase and additive increase.  

Binary search increase: We view congestion control 
as a searching problem in which the system can give 
yes/no feedback through packet loss as to whether the 
current sending rate (or window) is larger than the 
network capacity. The current minimum window can be 
estimated as the window size at which the flow does not 
see any packet loss. If the maximum window size is 
known, we can apply a binary search technique to set the 
target window size to the midpoint of the maximum and 
minimum. As increasing to the target, if it gives any 
packet loss, the current window can be treated as a new 
maximum and the reduced window size after the packet 
loss can be the new minimum. The midpoint between 
these new values becomes a new target.  

The rationale for this approach is that since the network 
incurs loss around the new maximum but did not do so 
around the new minimum, the target window size must be 
in the middle of the two values. After reaching the target 
and if it gives no packet loss, then the current window size 
becomes a new minimum, and a new target is calculated. 
This process is repeated with the updated minimum and 
maximum until the difference between the maximum and 
the minimum falls below a preset threshold, called the 
minimum increment (Smin). We call this technique binary 
search increase. 

Binary search increase allows bandwidth probing to be 
more aggressive initially when the difference from the 
current window size to the target window size is large, and 
become less aggressive as the current window size gets 
closer to the target window size. A unique feature of the 
protocol is that its increase function is logarithmic; it 
reduces its increase rate as the window size gets closer to 
the saturation point. The other scalable protocols tend to 
increase its rates so that the increment at the saturation 
point is the maximum in the current epoch (defined to be a 
period between two consecutive loss events). Typically, 
the number of lost packets is proportional to the size of the 
last increment before the loss. Thus binary search increase 
can reduce packet loss.  As we shall see, the main benefit 
of binary search is that it gives a concave response 
function, which meshes well with that of additive increase 
described below. We discuss the response function of 
BI-TCP in Section VI-B. 

Additive Increase: In order to ensure faster 
convergence and RTT-fairness, we combine binary search 
increase with an additive increase strategy. When the 
distance to the midpoint from the current minimum is too 
large, increasing the window size directly to that midpoint 
might add too much stress to the network. When the 
distance from the current window size to the target in 
binary search increase is larger than a prescribed 
maximum step, called the maximum increment (Smax) 
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instead of increasing window directly to that midpoint in 
the next RTT, we increase it by Smax until the distance 
becomes less than Smax, at which time window increases 
directly to the target. Thus, after a large window reduction, 
the strategy initially increases the window linearly, and 
then increases logarithmically. We call this combination 
of binary search increase and additive increase binary 
increase. 

Combined with a multiplicative decrease strategy, 
binary increase becomes close to pure additive increase 
under large windows. This is because a larger window 
results in a larger reduction by multiplicative decrease, 
and therefore, a longer additive increase period. When the 
window size is small, it becomes close to pure binary 
search increase – a shorter additive increase period.  

Slow Start: After the window grows past the current 
maximum, the maximum is unknown. At this time, binary 
search sets its maximum to be a default maximum (a large 
constant) and the current window size to be the minimum. 
So the target midpoint can be very far. According to 
binary increase, if the target midpoint is very large, it 
increases linearly by the maximum increment. Instead, we 
run a “slow start” strategy to probe for a new maximum up 
to Smax. So if cwnd is the current window and the 
maximum increment is Smax, then it increases in each RTT 
round in steps cwnd+1, cwnd+2, cwnd+4,…, cwnd+Smax. 
The rationale is that since it is likely to be at the saturation 
point and also the maximum is unknown, it probes for 
available bandwidth in a “slow start” until it is safe to 
increase the window by Smax. After slow start, it switches 
to binary increase.  

Fast convergence: It can be shown that under a 
completely synchronized loss model, binary search 
increase combined with multiplicative decrease converges 
to a fair share [8].  Suppose there are two flows with 
different window sizes, but with the same RTT. Since the 
larger window reduces more in multiplicative decrease 
(with a fixed factor β), the time to reach the target is 
longer for a larger window. However, its convergence 
time can be very long. In binary search increase, it takes 
log(d)-log(Smin) RTT rounds to reach the maximum 
window after a window reduction of d.  Since the window 
increases in a log step, the larger window and smaller 
window can reach back to their respective maxima very 
fast almost at the same time (although the smaller window 
flow gets to its maximum slightly faster). Thus, the 
smaller window flow ends up taking away only a small 
amount of bandwidth from the larger flow before the next 
window reduction. To remedy this behavior, we modify 
the binary search increase as follows. 

In binary search increase, after a window reduction, 
new maximum and minimum are set. Suppose these 
values are max_wini and min_wini for flow i (i=1, 2). If the 
new maximum is less than the previous, this window is in 

a downward trend (so likely to have a window larger than 
the fair share). Then, we readjust the new maximum to be 
the same as the new target window (i.e., 
max_wini=(max_wini-min_wini)/2), and then readjust the 
target. After then we apply the normal binary increase. 
We call this strategy fast convergence.  

Suppose that flow 1 has a window twice as large as 
flow 2. Since the window increases in a log step, 
convergent search (reducing the maximum of the larger 
window by half) allows the two flows to reach their 
maxima approximately at the same time; after passing 
their maxima, both flows go into slow start and then 
additive increase, during which their increase rates are the 
same and they equally share bandwidth of 
max_win1-(max_win1-min_win1)/2. This allows the two 
flows to converge faster than pure binary increase. 

Figure 5 shows a sample run of two BI-TCP flows. 
Their operating modes are marked by circles and arrows.  

 
A. Protocol Implementation 
Below, we present the pseudo-code of BI-TCP 
implemented in TCP-SACK. 

 
The following preset parameters are used: 
low_window: if the window size is larger than this 

threshold, BI-TCP engages; otherwise 
normal TCP increase/decrease. 

        Smax: the maximum increment. 
        Smin: the minimum increment. 
                       β:  multiplicative window decrease factor. 
default_max_win: default maximum (a large integer) 

 
The following variables are used: 
       max_win: the maximum window size; initially default 

maximum. 
    min_win: the minimum window size 
   prev_win: the maximum window just before the current 

maximum is set. 
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 target_win: the midpoint between maximum and 
minimum  

       cwnd: congestion window size; 
is_BITCP_ss: Boolean indicating whether the protocol is 

in the slow start. Initially false. 
    ss_cwnd: a variable to keep track of cwnd increase 

during the BI-TCP slow start. 
 ss_target: the value of cwnd after one RTT in BI-TCP 

slow start. 
 

When entering faster recovery: 
if (low_window <= cwnd){ 

prev_max = max_win; 
max_win = cwnd; 
cwnd = cwnd * (1-β); 
min_win = cwnd; 
if (prev_max > max_win) //Fast. Conv. 

       max_win = (max_win + min_win)/2; 
target_win = (max_win  + min_win)/2; 

} else { 
cwnd = cwnd *0.5; // normal TCP 

} 
 

When not in fast recovery and an acknowledgment for a new 
packet arrives: 

if (low_window > cwnd){ 
cwnd = cwnd + 1/cwnd; // normal TCP 
return 

} 
if (is_BITCP_ss is false){// bin. increase 

if (target_win – cwnd < Smax)// bin. 
search 

cwnd += (target_win-cwnd)/cwnd; 
else 

cwnd += Smax/cwnd; // additive incre. if (max_win > cwnd){  
min_win = cwnd; 
target_win =(max_win+min_win)/2; 

} else { 
is_BITCP_ss = true; 
ss_cwnd = 1; 
ss_target = cwnd+1; 
max_win = default_max_win; 

   } 
} else { // slow start 

cwnd = cwnd + ss_cwnd/cwnd; 
if(cwnd >= ss_target){ 
   ss_cwnd = 2*ss_cwnd; 
   ss_target = cwnd+ss_cwnd; 
} 
if(ss_cwnd >= Smax) 
   is_BITCP_ss = false; 

} 

B.  Characteristics of BI-TCP 
In this section, we analyze the response function and RTT 
fairness of BI-TCP. An analysis on the convergence and 
smoothness of the protocol can be found in [8]. 
 

1) Response function of BI-TCP 
 
In this section, we present a deterministic analysis on the 
response function of BI-TCP. 

We assume that a loss event happens at every 1/p 
packets. We define a congestion epoch to be the time 
period between two consecutive loss events.  Let Wmax 
denote the window size just before a loss event. After a 
loss event, the window size decreases to Wmax(1-β). 

BI-TCP switches from additive increase to binary 
search increase when the distance from the current 
window size to the target window is less than Smax. Since 
the target window is the midpoint between Wmax and the 
current window size, it can be said that BI-TCP switches 
between those two increases when the distance from the 
current window size to Wmax is less than 2Smax. Let N1 and 
N2 be the numbers of RTT rounds of additive increase and 
binary search increase, respectively. We have 

)0,2max(1 −







=
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S
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Then the total amount of window increase during 
binary search increase can be expressed as Wmaxβ-N1Smax. 
Assuming that this quantity is divisible by Smin, then N2 
can be obtained as follows. 

2log 1
22 +







 −
=
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maxmax

S
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During additive increase, the window grows linearly 
with slope 1/Smax. So, the total number of packets during 
additive increase, Y1, can be obtained as follows. 

11 1

1
( (1 ) (1 ) ( 1) )

2 max max maxY W W N S Nβ β= − + − + −  (1.1) 

During binary search increase, the window grows 
logarithmically. So, the total number of packets during 
binary search increase, Y2, can be expressed as follows. 

 
 minmaxmax SSNWNWY +−−= )(2 12max2 β  (1.2) 
The total number of RTTs in an epoch is N = N1 + N2, 

and the total number of packets in an epoch is Y = Y1 + Y2. 
Since a loss event happens at every 1/p packets, Y can be 
expressed as follows: Y =  1/p. Solving it using Eqns. (1.1)
and (1.2), we may express Wmax as a function of p. Below, 
we give the closed-form expression of Wmax for two 
special cases. 

First, we assume that Wmaxβ > 2Smax, and Wmaxβ is 
divisible by Smax. Then N1= Wmaxβ/Smax -2. Now we can get 

 

2 1
4 ( )
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b b a c
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where a = β (2-β)/(2Smax), b = log2(Smax/Smin)+(2-β)/2, 
and c = Smax - Smin.  The average sending rate, R, is then 
given as follows.  

2

1
(2 )

1 (2 )
4 ( ) (1 )

2

Y pR
N

b a c b
p

β

β β
β

−
= =

−
+ + + − +

  (1.3) 

In case that Wmaxβ >> 2Smax, for a fixed Smin, N1>>N2. 
Therefore, the sending rate of BI-TCP mainly depends on 
the linear increase part, and for small values of p, the 
sending rate can be approximated as follows: 

 
2 1

2
maxS

R
p

β
β
−

≈  when Wmaxβ >> Smax (1.4) 

 
Note that for a very large window, the sending rate 

becomes independent of Smin. Eqn. (1.4) is very similar to 
the response function of AIMD [18] denoted as follows. 

2 1
2AIMDR

p
α β

β
−

≈  

 
For a very large window, the sending rate of BI-TCP is 

close to the sending rate of AIMD with increase parameter 
α = Smax 

Next, we consider the case when Wmaxβ ≤ 2Smax, then 
N1=0, Assuming 1/p>>Smin, we get Wmax  as follows. 

max
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By solving the above equation using function 
LambertW(y) [21], which is the only real solution of 

xx e y⋅ = , we can get a closed-form expression for Wmax. 
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When 2β <<log(Wmaxβ / Smin)+2,  
 
 maxWR ≈  (1.5) 
Note that when Wmaxβ ≤ 2Smax, the sending rate becomes 

independent of Smax.  

In summary, the sending rate of BI-TCP is proportional 
to 1/pd, with 1/2 < d <1. As the window size increases, d 
decreases from 1 to 1/2. For a fixed β, when the window 
size is small, the sending rate is a function of Smin and, 
when the window size is large, a function of Smax. Our 
objective is that when window is small, the protocol is 
TCP-friendly, and when the window is large, it is more 
RTT fair and gives a higher sending rate than TCP. We 
can now achieve this objective by adjusting Smin and Smax. 
Before we give details on how to set these parameters, let 
us examine the RTT fairness of BI-TCP. 

 
2)  RTT fairness of BI-TCP 

 
As in Section IV, we consider the RTT fairness of a 
protocol under the synchronized loss model. Suppose 
RTTi be the RTT of flow i (i=1,2). Let wi denote Wmax of 
flow i, and ni denote the number of RTT rounds in a 
congestion epoch of flow i. As described in the previous 
section, ni is a function of wi. Let t denote the length of an 
epoch during steady state. Since both flows have the same 
epoch, we have 





=
=

tRTTn
tRTTn
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11  

Solving the above equations, we can express w1/w2 as a 
function of RTT2/RTT1. As before, we consider special 
cases to get a closed-form expression. 

First, when Wmaxβ > 2Smax, we can obtain w1/w2 as 
follows.  

2

11

2
2

2

2

1

1 1
log ( )

1 1
log ( )

max

min

max

min

S

RTT t Sw
Sw

RTT t S

RTT
RTT

−

=
−

≈      when t is large. 

Next, when Wmaxβ ≤ 2Smax, w1/w2 can be expressed as 
follows. 

)2ln()
2

1

1

1(

2

1
t

RTTRTTe
w
w −

=  

Note that t increases with the total bandwidth. 
Therefore, as the total bandwidth increases, the ratio first 
exponentially increases reaching its peak when Wmaxβ = 
2Smax, and then becomes roughly linearly proportional to 
RTT2/RTT1. This exponential RTT fairness can be 
problematic under larger windows. However, since under 
small windows, synchronized loss is less frequent, we 
believe that this unfairness can be managed to be low. We 
verify this in Section VII. 
 
3) Setting the parameters 
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In this section, we discuss a guideline to determine the 
preset parameters of BI-TCP: β, Smin, Smax and 
low_window in Section VI-A. 

From Eqns.(1.4) and (1.5), we observe that reducing β 
increases the sending rate. Reducing β also improves 
utilization. However it hurts convergence since larger 
window flows give up their bandwidth slowly. From the 
equations, we can infer that β  has a much less impact on 
the sending rate than Smax. So it is easier to fix β and then 
adjust Smin and Smax. We choose 0.125 for β . Under steady 
state, this can give approximately 94% utilization of the 
network. STCP chooses the same value for β .  

For a fixed β = 0.125, we plot the response function as 
we vary Smax and Smin. Figure 6 shows the response 
function for different values of Smax. As Smax increases, the 
sending rate increases only for low loss rates using 1e-4 as 
a pivot. Smax allows us to control the scalability of BI-TCP 
for large windows. We cannot increase Smax arbitrarily 
high since it effectively increases the area of RTT 
unfairness (the area where the slope is larger than TCP’s). 
Recall that when Wmaxβ ≤ 2Smax, the protocol is less RTT 
fair. This area needs to be kept small to reduce the RTT 
unfairness of the protocol. 

Figure 7 plots the response function for various values 
of Smin. As we reduce Smin, the sending rate reduces around 
high loss rates (i.e., small windows) and the cross point 
between TCP and BI-TCP moves toward a lower loss rate. 
Since we can set low_window to the window size at the 
point where the protocol switches from TCP to BI-TCP, 
reducing Smin improves TCP friendliness.  However, we 
cannot reduce Smin arbitrarily low because it makes the 
slope of the response function steeper before merging into 
the linear growth area, worsening RTT unfairness. 
HSTCP crosses TCP at window size of 31, and STCP at 
16. 

 

 

  
For a fixed β = 0.125, we plot the response function of 

BI-TCP with Smax = 32 and Smin = 0.01 in Figure 8. For 
comparison, we plot those of AIMD (α = 32, β = 0.125), 
HSTCP, STCP, and TCP. We observe that BI-TCP 
crosses TCP around p = 1e-2 and it also meets AIMD 
around p=1e-5 and stays with AIMD. Clearly, BI-TCP 
sets an upper bounds on TCP friendliness since the 
response functions of BI-TCP and TCP run in parallel 
after some point (at p=1e-5). BI-TCP’s TCP-friendliness 
under high loss rates is comparable to STCP’s, but less 
than HSTCP’s. BI-TCP crosses TCP at the window size of 
14 (lower than STCP and HSTCP). The sending rate of 
BI-TCP over extremely low loss rates (1e-8) is less than 
that of STCP and HSTCP. 

 

Smin 

Fig 7: Response functions of BI-TCP for different values of Smin. 
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VII. EXPERIMENTAL STUDY 
 
In this section, we compare the performance of BI-TCP 
using simulation with that of HSTCP, STCP, and AIMD. 
Every experiment uses the same simulation setup 
described in Section II. Unless explicitly stated, the same 
amount of background traffic is used for all the 
experimental runs. In order to remove noise in data 
sampling, we take measurement only in the second half of 
each run. We evaluate BI-TCP, AIMD, HSTCP, and 
STCP for the following properties: bandwidth utilization, 
TCP friendliness, RTT unfairness, and convergence to 
fairness. For BI-TCP,  we use Smax=32,  Smin =0.01, and 
β = 0.125, and for AIMD, α = 32 and β = 0.125. 

Utilization: In order to determine whether a 
high-speed protocol uses available bandwidth effectively 
under high-bandwidth environments, we measure 
bandwidth utilization for 2.5Gbps bottleneck. Each test 
consists of two high-speed flows of the same type and two 
long-lived TCP flows. In each test, we measure the total 
utilization of all the flows including background traffic. In 
drop tail, all protocols give approximately 100% 
utilization, and in RED, AIMD and BI-TCP consume 
about 99% of the total bandwidth while HSTCP and 
STCP consume about 96%. The drop tail experiment 
consumes more bandwidth because drop tail allows flows 
to fill up the network buffers.  

RTT Fairness: In this experiment, two high-speed 
flows with a different RTT share the bottleneck. The RTT 
of flow 1 is 40ms. We vary the RTT of flow 2 among 
40ms, 120ms, and 240ms. The bottleneck link delay is 
10ms. We run two groups of simulation, each with 
different bottleneck bandwidth: 2.5Gbps, and 100Mbps. 
This setup allows the protocols to be tested for RTT 
fairness for different window sizes. According to our 

analysis in Section VI, around small window sizes, 
BI-TCP shows the worst RTT unfairness. BI-TCP has 
window sizes about 7000 (loss rate 0.0003) for 2.5Gbps 
and 300 (loss rate 0.006) for 100Mbps. We show only the 
results of drop tail. The RTT unfairness under RED is 
close to the inverse of RTT ratio for every protocol. We 
omit the RED figure. 

Tables 2 and 3 show the results for the runs in 2.5Gbps 
and 100Mbps respectively. It can be seen that the RTT 
unfairness of BI-TCP is relatively comparable to AIMD. 
This result verifies our analysis in Section VI. In Table 3, 
the performance of BI-TCP does not deteriorate much 
while HSTCP and STCP have improved RTT unfairness. 
This is because in 100 Mbps, the window size of all the 
flows is much smaller than in 2.5Gbps run. Therefore, the 
degree of synchronized loss is very low. Although the 
RTT unfairness of BI-TCP gets worse around this window 
size, it gets compensated by lack of synchronized loss so 
that it did not have much performance degradation. 
Nonetheless, its RTT unfairness is much better than 
HSTCP and STCP. HSTCP and STCP tend to starve long 
RTT flows under high bandwidth environments. 

 
TCP-friendliness: We run four groups of tests, each 

with different bottleneck bandwidth. Each group consists 
of four independent runs of simulation, each with a 
different type of high speed flows. In every run, the same 
number of network flows (including background) is used.  

Figure 9 shows the percentage of bandwidth share by 
each flow type under drop tail. (RED gives approximately 
similar results as drop tail.) Three flow types are present: 
background (web traffic and small TCP flows), long-lived 
TCP flows, and high-speed flows. 

Under bandwidth below 500Mbps, the TCP 
friendliness of BI-TCP is comparable to that of STCP. At 
20Mbps, TCP consumes approximately the same 
bandwidth in the runs involving HSTCP and STCP. In 

RTT Ratio 1 3 6 
AIMD 0.99 7.31 26.12 
BI-TCP 0.94 13.06 33.81 
HSTCP 1.13 10.42 51.09 
STCP 1.12 27.84 72.74 

 
Table 3: The throughput ratio of protocols under 100 Mbps

RTT Ratio 1 3 6 
AIMD 1.05 6.56 22.55 
BI-TCP 0.96 9.18 35.76 
HSTCP 0.99 47.42 131.03 
STCP 0.92 140.52 300.32 

 
Table 2: The throughput ratio of protocols under 2.5Gbps 
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BI-TCP run, TCP uses slightly less bandwidth than other 
runs with HSTC and STCP. However, in HSTCP and 
STCP simulation, the unused bandwidth is almost twice as 
much as in AIMD and BI-TCP. The main reason for this 
interesting phenomenon is that BI-TCP and AIMD have a 
smaller β than HSTCP under low bandwidth. Thus, as 
noted earlier, a smaller β contributes to higher utilization. 
Although STCP has the same β as BI-TCP, it also has a 
higher value of low_window so its algorithm engages 
when the window size is larger. So under this bandwidth, 
it operates in the normal TCP mode (which has β = 0.5). 
This can be verified in the run of 100Mbps where STCP’s 
window is larger than low_window, its utilization is on par 
with BI-TCP. HSTCP still has a higher β under 100Mbps.  

 
At 20Mbps, the increase in BI-TCP bandwidth shares 

can be accounted by the reduction in unused bandwidth. 
That is, while BI-TCP consumes more bandwidth than 
TCP, it does not take much bandwidth from TCP, but 
instead from the unused bandwidth – a nice feature of 
BI-TCP.  

For 500Mbps and 2.5Gbps, the amount of shares by 
background and long-lived TCP flows substantially 
reduce due to TCP’s limitation to scale its bandwidth 
usage in high-bandwidth. Under 500Mbps, STCP, 
BI-TCP, and AIMD use approximately the same share of 
bandwidth. Under 2.5Gbps, the bandwidth share of 
background traffic is very small. STCP becomes most 
aggressive, followed by HSTCP. BI-TCP becomes 
friendlier to TCP.  

To sum up, BI-TCP gives good TCP friendliness 
relatively to STCP for all bandwidth while consuming 
bandwidth left unused by TCP flows. The result closely 
follows our analysis in Section VI-B. 

Fairness:  Synchronized loss has impact also on 
bandwidth fairness and convergence time to the fair 

bandwidth share. In this experiment, we run 4 high-speed 
flows with RTT 100ms. Two flows start randomly in 
[0:20] seconds, and the other two start randomly in 
[50:70] seconds. Drop tail is used, and the bottleneck link 
bandwidth is 2.5Gbps. For this experiment, we measured 
the fairness index [20] at various time scales. In each time 
scale, we rank fairness index samples by values and use 
only 20% of samples that show the worst case fairness 
indices. We take samples only after 300 seconds; the total 
run time is 600 seconds. This result gives an indication on 
(1) how fast it converges to a fair share, and (2) even after 
convergence to a fair share, how much it oscillates around 
the fair share. Figure 10 shows the result.  

BI-TCP and AIMD give the best results; their fairness 
indices for all time scales are close to one. STCP’s indices 
are always below 0.8 for all scales due to its slow 
convergence to fairness. HSTCP gives much better 
convergence than STCP, but it is still worse than BI-TCP. 

We run the same test again, but under RED this time. 
We observed much better convergence for HSTCP and 
STCP than in drop tail. Since all converge fast to fairness, 
we use 1% of worst case samples. Figure 11 shows the 
result. Over short-term scales, HSTCP and STCP show 
much deviation from index 1. This is because after they 
get fast convergence, they oscillate around the fairness 
line even at 25 second intervals. As shown in Section III, 
RED still has some amount of synchronized loss 
(although much less than drop tail). This causes HSTCP 
and STCP to oscillate over a long-term time scale. 
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VIII. RELATED WORK 
As HSTCP and STCP have been discussed in detail in this 
paper, we examine other high-speed protocols that are not 
covered by this paper. 

Recent experiment [9] indicates that TCP can provide 
good utilization even under 10Gbps when the network is 
provisioned with a large buffer and drop tail. However, 
the queue size of high-speed routers is very expensive and 
often limited to less than 20% of the bandwidth and delay 
products. Thus, generally, TCP is not suitable for 
applications requiring high bandwidth. FAST [7] 
modifies TCP-Vegas to provide a stable protocol for 
high-speed networks. It was proven that TCP can be 
instable as delay and network bandwidth increase. Using 
delay as an additional cue to adjust the window, the 
protocol is shown to give very high utilization of network 
bandwidth and stability. It fairness property is still under 
investigation. XCP [5] is a router-assisted protocol. It 
gives excellent fairness, responsiveness, and high 
utilization. However, since it requires XCP routers to be 
deployed, it cannot be incrementally deployed. Lakshman 
and Madhow[19] study RTT unfairness of TCP in 
networks with high bandwidth delay products. It was 
reported that under a FIFO queue (i.e., drop tail) that TCP 
throughput is inversely proportional to aRTT where 
1 2a≤ ≤ . This paper extends the work by investigating 
RTT fairness for new high-speed protocols. 

IX. CONCLUSION 
The significance of this paper is twofold. First, it presents 
RTT fairness as an important safety condition for 
high-speed congestion control and raise an issue that 
existing protocols may have a severe problem in 
deployment due to lack of RTT fairness under drop tail. 
RTT fairness has been largely ignored in designing 
high-speed congestion control. Second, this paper 

presents a new protocol that can support RTT fairness, 
TCP friendliness, and scalability. Our performance study 
indicates that it gives good performance on all three 
metrics. 

We note that the response function of BI-TCP may not 
be the only one that can satisfy the three constraints. It is 
possible that there exists a better function that utilizes the 
tradeoff among the three conditions in a better way.  This 
is an area where we can use more research. Another point 
of discussion is that high-speed networks can greatly 
benefit from the deployment of AQM. Our work supports 
this case since a well designed AQM can relieve the 
protocol from the burden of various fairness constraints 
caused by synchronized loss. 

One possible limitation of BI-TCP is that as the loss 
rate reduces further below 1e-8, its sending rate does not 
grow as fast as HSTCP and STCP. This is because of the 
lower slope of its response function. Hence, it may seem 
that there is a fundamental tradeoff between RTT fairness 
and scalability. We argue it is not the case. Under such a 
low loss rate, most of loss is due to signal or 
“self-inflicted”, i.e., loss is created because of the 
aggressiveness of the protocol. As a protocol gets more 
aggressive, it creates more loss and thus, needs to send at a 
higher rate for a given loss rate. The utilization of the 
network capacity is more important under such low loss 
rates, which is determined mostly by the decrease factor 
of congestion control. For TCP, the utilization is 75% and 
for STCP and BI-TCP, around 94% (these numbers are 
determined from β).  In addition, we believe that by the 
time that much higher bandwidth (in the order of 
100Gbps) becomes available, the network must have 
more advanced AQM schemes deployed so that we can 
use a higher slope response function. 

A less aggressive (i.e., lower slope) protocol, however, 
is less responsive to available bandwidth; so short file 
transfers will suffer. We believe that fast convergence to 
efficiency requires a separate mechanism that detects the 
availability of unused bandwidth which has been an active 
research area lately ( [22, 23]). We foresee that advance in 
this field greatly benefits the congestion control research. 
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