
356 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

Delay-Based Congestion Avoidance for TCP
Jim Martin, Member, IEEE, Arne Nilsson, Member, IEEE, and Injong Rhee, Senior Member, IEEE

Abstract—The set of TCP congestion control algorithms
associated with TCP/Reno (e.g., slow-start and congestion avoid-
ance) have been crucial to ensuring the stability of the Internet.
Algorithms such as TCP/NewReno (which has been deployed)
and TCP/Vegas (which has not been deployed) represent incre-
mentally deployable enhancements to TCP as they have been
shown to improve a TCP connection’s throughput without de-
grading performance to competing flows. Our research focuses
on delay-based congestion avoidance algorithms (DCA), like
TCP/Vegas, which attempt to utilize the congestion information
contained in packet round-trip time (RTT) samples. Through
measurement and simulation, we show evidence suggesting that
a single deployment of DCA (i.e., a TCP connection enhanced
with a DCA algorithm) is not a viable enhancement to TCP over
high-speed paths. We define several performance metrics that
quantify the level of correlation between packet loss and RTT.
Based on our measurement analysis we find that although there is
useful congestion information contained within RTT samples, the
level of correlation between an increase in RTT and packet loss
is not strong enough to allow a TCP/Sender to reliably improve
throughput. While DCA is able to reduce the packet loss rate
experienced by a connection, in its attempts to avoid packet loss,
the algorithm will react unnecessarily to RTT variation that is not
associated with packet loss. The result is degraded throughput as
compared to a similar flow that does not support DCA.

Index Terms—TCP congestion control, delay-based congestion
avoidance (DCA), TCP/Vegas, loss and round-trip time (RTT) cor-
relation patterns.

I. INTRODUCTION

T HE foundation of TCP’s congestion control is the principle
of conservation of packets [1]. New packets are admitted

into the network as packets are confirmed to be removed
from the network via the arrival of acknowledgments (ACKs).
Other aspects of TCP’s congestion control include the slow-start
and the congestion avoidance algorithms which utilize packet
loss as an indicator of network congestion [2], [3]. As TCP
was designed for a best-effort packet switched network, even
moderate levels of packet loss are acceptable. However, paths
over the Internet can experience very high packet loss rates,
well beyond the optimal operating range of TCP. Improvements
such as TCP/NewReno and TCP/SACK have been deployed
to enhance the efficiency of TCP’s loss recovery [4], [5]. The
limited transmit enhancement is a further proposed incremental

Manuscript received February 6, 2000; revised October 15, 2002; approved
by IEEE/ACM TRANSACTIONS ONNETWORKING Editor C. Diot.

J. Martin is with the Department of Computer Science, Clemson University,
Clemson, SC 29634-0974 USA (e-mail: jim.martin@cs.clemson.edu).

A. A. Nilsson is with the Department of Electrical and Computer Engi-
neering, North Carolina State University, Raleigh, NC 27695-7914 USA
(e-mail: nilsson@eos.ncsu.edu).

I. Rhee is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695-7534 USA (e-mail: rhee@eos.ncsu.edu).

Digital Object Identifier 10.1109/TNET.2003.813038

enhancement for TCP [6]. While these algorithms can improve
TCP throughput by reducing the frequency of TCP timeouts,
they still rely on packet loss as an implicit congestion signal.

An alternative congestion control technique for TCP,
one which is preventive rather than reactive, is end-to-end
delay-based congestion avoidance algorithms (DCA). Orig-
inally described by Jain [7], DCA is best represented by
TCP/Vegas and Dual [8], [9]. DCA algorithms monitor packet
round-trip times (RTTs) and react to increases in RTT in
an attempt to avoid network congestion before it becomes
significant. Previous studies of TCP/Vegas have shown that the
algorithm increases TCP throughput by reducing the frequency
of packet loss and timeouts. Furthermore, the improvement
does not come at the expense of competing TCP flows. Because
Vegas provides a benefit with a single deployment and because
the algorithm operates at the TCP/Sender, one can argue that
Vegas is a viable incrementally deployable improvement to
TCP.

Previous studies of DCA have concentrated either on low-
speed networks or on networks where DCA flows consume a
significant percentage of the total traffic [10]–[12]. In this paper,
we focus on the performance of DCA algorithms in a high-
speed network where DCA flows constitute only a fraction of
the total traffic. Further, our goal is to utilize a methodology
such that the conclusions we derive can be generalized to any
DCA algorithm.

Any change proposed for a mature and widely deployed pro-
tocol such as TCP will be met with much resistance. Alternative
congestion control algorithms must be TCP-compatible, which
means that they must result in the same throughput as achieved
by a similarly situated host (i.e., over the same path with the
same TCP parameters) [13]. An incremental enhancement to
TCP that meets the following requirements will have the best
chance for deployment.

• It must improve the throughput of the TCP connection that
employs the enhancement.

• It must not reduce the performance of other competing
TCP flows on the same path where the “enhanced” TCP
flow travels. The objective is to make better use of avail-
able bandwidth without penalizing other TCP flows.

• Ideally, it requires changes only to a TCP sender.
Furthermore, the above properties must hold regardless of the

number of “enhanced” TCP flows on the same end-to-end path.
This implies that the properties must hold even if there is only
one “enhanced” flow in the path. In today’s Internet, to sup-
port a wide deployment of TCP enhancements, there must exist
sufficient economic incentives for adopting them. When these
incentives are weak or even if they result in temporary sacri-
fice of resources for users at least for a while before its wider
deployment, the eventual wide deployment of such protocols

1063-6692/03$17.00 © 2003 IEEE

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 357

becomes unlikely. Therefore, our research assesses the benefits
associated with the incremental deployment of DCA where the
“enhanced” flows constitute only a fraction of the total traffic in
the bottleneck link.

The following describes the attributes of DCA.

• DCA augments the TCP/Reno protocol.
• DCA monitors TCP packet RTTs, allowing the algorithm

to reside entirely within the TCP sender.
• RTT variations are assumed to be caused by changes in

queueing delays experienced by packets being timed.
• Based on RTT variations, DCA makes congestion deci-

sions that reduce the transmission rate by some percentage
by adjusting the TCP congestion window (cwnd).

We limit the scope of our study of DCA to Internet environ-
ments where the lowest link capacity along the path is 10 Mb/s.
Measurement studies have shown that Internet backbone
switches, many of which now support multigigabit link speeds,
are subject to tens or even hundreds of thousands of low-band-
width ON/OFF TCP flows [14]–[16]. One recent measurement
study of a tier one provider’s backbone network found that
in the worst case, there are on the order of 30 000 flows per
100 Mb/s of traffic [17]. Thus, we study the performance of
DCA under realistic Internet environments where thousands of
TCP flows may come and go over short time periods.

In this paper, we present evidence suggesting that RTT-based
congestion avoidance may not be reliably incrementally
deployed over high-speed Internet paths. Based on a measure-
ment study conducted in 1999 over seven high-speed Internet
paths, we find that congestion information contained in TCP
RTT samples cannot be reliably used to predict packet loss.1

The success of DCA highly depends on a strong correlation
between packet loss events and increases in RTT prior to the
loss. By tracing TCP connections along each path, we are able
to extract a time series of packet RTTs along with an indication
of packet loss events. Depending on the path, we find that only
7%–18% (on average) of observed loss events were preceded
by a significant increase in RTT. With the data, we are able
to evaluate the ability of a DCA algorithm to “predict” a loss
event based on an observed increase in packet RTT. Even if
we assume that every loss predicted by DCA is avoided, our
analysis indicates that noise in RTT samples leads to degraded
throughput by guiding TCP to reduce at wrong times (when
there is no loss). We modify an analytic TCP throughput model
given by Padhyeet al. [18] to assess the impact of DCA’s
congestion reactions (both right and wrong ones) [19]. Based
on measured data, the throughput model predicts that DCA
would degrade TCP throughput in the range of 7%–58%.

We conjecture that the level of correlation between packet
loss and TCP RTT samples is weak due to the following reasons.

1) A TCP constrained RTT congestion probe is too coarse
to accurately track the bursty congestion associated with
packet loss over high-speed paths.

2) A DCA algorithm cannot reliably assess the conges-
tion level at the router. Short-term queue fluctuations
which are not associated with loss at a router, persis-

1Even though the measurement data was collected in 1999, we believe that the
observed dynamics are still representative of current public Internet behavior.

tent queueing, and congestion at multiple bottlenecks
(especially when the congested routers are provisioned
differently) make it difficult for a DCA algorithm to
make accurate congestion decisions.

To verify this conjecture, we must be able to observe the
queue levels at the bottleneck links over the path. We resort to
simulation using the ns simulation tool [20]. We construct two
ns models that emulate the end-to-end traffic characteristics of
two of the seven Internet paths being measured. These models
closely match the loss behaviors and burstiness of RTT varia-
tions of the two paths. Under these models, we confirm the re-
sult we found from the Internet measurement data: a DCA flow
suffers from throughput degradation.

This paper is organized as follows. First, we overview related
work in Section II. Then we present the measurement analysis
and throughput analysis followed by the simulation analysis in
Sections III and IV. We end the paper with conclusions and a
discussion of future work in Sections V and VI.

II. RELATED WORK

Jain first coined the termdelay-based congestion avoidance
in [7]. While Jain admits that his proposed algorithm was not
sufficient for a practical network, his work provided the foun-
dation for future research of DCA. The work described in [8]
and [21] shows that TCP/Vegas can improve TCP throughput
over the Internet by avoiding packet loss. However, these studies
were based on Internet paths that existed in the early 1990s
which generally involved at least one T1 speed link and con-
sequently allows any given flow to consume a significant frac-
tion of available bandwidth. These studies also did not isolate
the impact of the congestion avoidance algorithm (i.e., CAM)
from the non-DCA aspects of Vegas (i.e., the loss recovery en-
hancement). More recent studies, however, have recognized that
Vegas has several very different algorithms and that the conges-
tion avoidance algorithm must be studied independently [11],
[10]. The work in [10] correctly points out that the benefit asso-
ciated with the original Vegas algorithm is in fact due to the en-
hanced loss recovery algorithms rather than the Vegas DCA al-
gorithm. However, [11] also points out that the Vegas enhanced
recovery algorithm was designed to be more aggressive than
Reno and that the congestion avoidance algorithm was designed
to compensate to reduce loss (by being less aggressive in the
sending rate increase) to provide a balance. While the work of
[11] is an interesting analysis of the Vegas DCA algorithm from
a “global network” perspective, it is very different from our “in-
cremental enhancement” analysis of DCA.

A key aspect of our research focuses on assessing the ability
of a TCP constrained RTT-based congestion sampling algo-
rithm in predicting future packet loss events. Several previous
studies are relevant [22]–[25]. End-to-end packet delay and
loss behavior over the Internet was studied in [22] and [24]. A
common result was that packet loss events were observed to be
correlated over timescales of up to 200 ms. The work in [25]
found loss correlation up to timescales of 1 s. However, the
authors did not focus on the correlation between an increase in
RTT with packet loss. Moonet al. did look at the correlation
that exists between a loss conditioned delay (i.e., a packet
delay immediately preceding a loss event) and packet loss.
Their motivations were similar to ours in that they wanted

358 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

to see if an endpoint could predict loss. They found a higher
level of correlation than we did. There are several differences.
First, the method used by [23] utilized a finer-grained one-way
delay-based UDP-based probe technique as opposed to a TCP
constrained probe process. Second, and more significantly, we
were interested in the “usable” level of correlation. In other
words, we measured the relative increase in RTT that occurs
prior to the transmission of the segment that is eventually
dropped. If we were to consider the increase in RTT associated
with segments that surround the segment that gets dropped,
we would see a moderate increase in the observed correlation.
However, this implicit congestion signal would not arrive in
time to prevent the TCP sender from transmitting the soon-to-be
dropped segment. Paxson [26] also looked at the correlation
between one-way packet delay variation and loss. He con-
cluded that loss is weakly correlated to rises in packet delay
and conjectured that the linkage between the two is weakened
by routers with large buffer space and because the end-to-end
delay reflects the accruing of a number of smaller variations
into a single, considerably larger, variation. Our measurement
results support this conjecture, but we believe that another
factor is that the delay variation associated with loss is bursty
(in the milliseconds to several hundreds of milliseconds range)
which makes it difficult to accurately assess the fine-grained
correlation that exists between latency and loss events.

More recent work based on measurements from the NIMI
infrastructure focuses on assessing the “constancy” of loss
and delay over a variety of paths [27]. The authors extend
the findings of [22] and [25] by observing that much of the
correlation in the loss process comes from back-to-back loss
episodes as opposed to a series of nearby losses. The authors
conclude that congestion epochs associated with loss are actually
spikes with of timescales of roughly 200 ms or shorter. A
recent measurement study of low-speed streaming flows over
the Internet led the authors to conjecture that the loss process
associated with congested Internet routers might be less than
3 ms [28]. This was based on a relatively large number of
observed single loss events (as opposed to bursts) for traffic with
a peak burst rate metered by a T1 speed link. Our data shows that
the congestion epochs are complex processes that incorporate
timescales spanning very long (hours), medium (minutes), and
very brief (milliseconds) amounts of time. Further, we saw that
more than one congestion process might be active at any given
time. This behavior is nicely described in [29], postulating that
traffic arrival processes have “spikes (that) ride on ripples that
ride on still longer term swells .” Based on our measurements,
we observed that the magnitude of congestion epochs varies
tremendously and, further, that loss is almost equally as likely
during any level of congestion epoch. This can be explained if
we assume that over the observation period (one week), a path
experienced congestion at more than one location and, further,
if we assume that a path might periodically experience multiple
bottlenecks at a given time. However, if we examine specific
loss events, we find that the RTT increase surrounding loss is
usually short lived, which confirms the findings of [27] which
state that “loss processes are better thought of as spikes during
which there is a short-term outage, rather than epochs over
which congested router’s buffer remains perilously full.” This
result is in fact fundamental to our analysis and subsequent

conclusion that DCA is not able to improve TCP performance
and is therefore not incrementally deployable.

In addition to TCP congestion control issues, the Internet
research community has also been vigorously exploring the
development and deployment of TCP-friendly algorithms
for real-time streaming applications. Such algorithms can
be TCP equivalent if they use additive-increase/multiplica-
tive-decrease (AIMD) behavior with the same parameters as
TCP [13]. TCP-friendly algorithms can be further classified
based on steady-state or dynamic behavior. For example, the
TCP-friendly rate control (TFRC) algorithm is an example of a
slowly responsivealgorithm that reacts to a single packet loss
with a send rate reduction smaller than TCP [30]. TCP-friendly
algorithms strive to beTCP compatibleby emulating TCP’s
behavior (i.e., slow start, congestion avoidance, exponential
timeout backoff, and even self-clocking). Rate-based protocols
that adjust their rates based on a computation will generally
include a measured RTT primarily to add an element of
delay-based congestion avoidance to the algorithm [30]–[32].
Although different from our notion of DCA (i.e., as an incre-
mental enhancement to TCP) and while primarily an artifact of
being TCP compatible, these algorithms assume that implicit
congestion feedback based on delay rather than packet loss (or
rather, supplemental to packet loss) can offer global network
improvements as long as the majority of traffic performs the
same algorithm. The benefit is the same as what drives the
alternative best effort (ABE) initiative, namely a network that
provides a service that strives for lower delay possibly at the
cost of reduced throughput [33]. This service would be useful
for multimedia applications with strict delay requirements.

III. M EASUREMENTANALYSIS

The objective of the measurement analysis is to show that an
increase in a per packet RTT sample (i.e., thetcpRTTsamples) is
not a reliable indicator of future packet loss events and cannot be
used to improve TCP throughput. To show this, we trace many
TCP connections over different paths. We then post-process the
trace files to extract thetcpRTTtime series (along with the loss
indication) associated with each traced connection. This data is
the basis of our analysis presented below.

A. Data Collection Methodology

We selected seven high-speed Internet paths. Each path con-
sists of many hops (at least 11) with a minimum link capacity
of 10 Mb/s. The sender of each TCP connection is a host lo-
cated on the campus of North Carolina State University; each
of the seven receivers is located over the Internet. We run a bulk
mode TCP application between the host and each destination.
The TCP sender in our experiments as well as the trace point
(we usetcpdump[2] to trace the TCP connection) is a 333-MHz
PC running freeBSD. The machine is equipped with a 3COM
PCI Ethernet adapter and is attached to a campus network via a
10-Mb/s ethernet connection.

Table I describes each of the seven paths. Of the seven paths,
five are located outside of North America. We did not modify
the window size associated with each receiver as we want to
evaluate the feasibility of an incremental deployment of DCA

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 359

TABLE I
SUMMARY OF TRACED PATHS

TABLE II
SUMMARY OF MEASURED PERFORMANCE. VALUES IN PARENTHESES

REPRESENT THESTANDARD DEVIATION OF THE STATISTIC

on standard TCP/IP host configurations. For three of the paths,
we used thettcp application [34]. For the others, we used the
echopingapplication [35] which sends data to standard TCP
discard servers. The five discard servers were located on Web
servers connected to the Internet. Over the course of five days,
we traced TCP connections at regular intervals (five runs each
day beginning at 9:00 am followed by a run every two hours).
Each run transferred between 6 and 20 MB (depending on the
path) and lasted anywhere from 3 to 45 minutes depending on
the level of congestion over the path.

Table II summarizes the average performance of each path.
Paths 1 and 7 represent the best and worst performing path, re-
spectively. We specifically selected paths that crossed several
provider’s networks, as this is more representative of Internet
connections. Subsequent analysis of time-of-day patterns reveal
that that all paths (except for path 2) experienced their worst per-
formance during the afternoon runs.

We post-processed atcpdumptrace to obtain the round-trip
delay associated with each data packet with a unique acknowl-
edgment. We refer to these RTT samples as thetcpRTTtime se-
ries. ThetcpRTTsamples contain more congestion information
than does the standard TCP RTT algorithm (i.e., that is used for
the retransmit timeout calculation as described in [36]) because
the tcpRTTsamples are more frequent and they are based on a
more precise time measurement.

The algorithm used to generate thetcpRTTtime series is sum-
marized as follows. We describe the algorithm as it would be
implemented by a TCP/Sender even though we actually run the

algorithm on atcpdumptrace. The sender records the departure
time of every packet. To filter out error in RTT samples caused
by the TCP delayed acknowledgment,tcpRTTsamples are gen-
erated only for the highest segment acknowledged by an ACK.
Furthermore, only ACKs that acknowledge more than one seg-
ment of data will generate atcpRTTsample. During periods of
recovery, the algorithm does not take anytcpRTTsamples to
avoid errors.

The tcpRTTtime series consists of the following tuple:

tcpRTT where

When , this implies that the next segment sent after
is dropped and when , the segment is not dropped.

In the event that multiple loss events are associated with the
sametcpRTTsample, rather than having a duplicate entry, we
keep only one. Therefore, our analysis treats a burst of loss as a
single loss event. Also, packets that are retransmitted more than
one time will be considered as separate loss events as long as
they have a uniquetcpRTTsample.

B. Analyzing the Loss Conditioned Delay

We are interested in learning if thetcpRTTsample prior to
loss (or perhaps the average of some small number oftcpRTT
samples prior to loss) is greater than a smoothed average of pre-
cedingtcpRTTsamples. In other words, we want to know how
frequently loss events in a connection might have been predicted
by monitoring RTT. To help assess this, we have developed three
metrics which we apply to thetcpRTTtime series data. The first
and the third metrics provide an indication of how well a DCA
algorithm might predict future loss events based on measured
RTT samples. The second metric assesses the correlation be-
tween loss and increases in RTT and provides insight into the
observed queueing delay that surrounds loss events.

1) Correlation Indication Metric: The correlation indica-
tion metric counts the number of times that thetcpRTTsamples
prior to packet loss are greater than the average of some
previoustcpRTTsamples. The metric is based on occurrences
of the following delay event:

sampledRTT windowAVG

The sampledRTT is the average of the number of
tcpRTTsamples prior to the transmission of a dropped segment.
We refer to this as theloss conditioned delay. For a given
tcpRTTtime series that contains loss events, each loss event
leads to asampledRTT value defined as follows:

sampledRTT
tcpRTT

for all tcpRTTsamples where .
controls the size of the moving window associated with

the sampledRTTand determines the responsiveness of the
algorithm. Similarly,windowAVG is a moving window av-
erage of the previous tcpRTTvalues prior to the transmission
of a segment that is dropped. The is the standard devia-
tion associated withwindowAVG . The sampledRTT

represents an “instantaneous” RTT measurement while the

360 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

windowAVG is a longer term average. The difference,
sampledRTT windowAVG , is reflective of an in-
crease or decrease in queue delays relative to the previous
RTT samples.

For a given run, we calculate thesampledRTT and
windowAVG values that are associated with each loss
event and count the number of times that the delay event is
true. Dividing this count by the total number of packet loss
occurrences estimates the probability that thetcpRTTsamples
prior to a loss are higher than some average and consequently
is an indicator of how well loss events might be predicted in
time to avoid loss. We refer to this as thecorrelation indication
metric (CIM) and define it as follows:

sampledRTT windowAVG

The objective of the CIM metric can be fine tuned with the
selection of the pair. When both parameters are large, the
metric is an indicator of long-term congestion. As an example,
assume the metric is applied to a dataset using an pair
of (10 000, 500 000). For this pair, once the metric value
exceeds 0.5, it can be assumed that the network is experiencing
long-term congestion (i.e., thesampledRTTis based on the most
recent several minutes, and the threshold is based on the most
recent several hours). An pair of (2, 500 000) makes the
CIM more sensitive to any increases in RTT (which will cause
a DCA algorithm to incorrectly react) but the decision is not
relative to the most recent network dynamics. Smaller
values focus the metric to be sensitive to bursty congestion. For
example, an pair of (1, 5) makes the algorithm sensitive
to packet jitter. As the value of moves toward , the metric
value should approach 0 because thewindowAVG values
will be identical to thesampledRTT values.

The CIM metric assesses how effectively packet loss over a
network might be predicted. The prediction might be incorrect
causing a hypothetical DCA algorithm to react to an increase in
RTT that is not associated with loss. The CIM uses a standard
deviation of thewindowAVG statistic to filter incorrect loss
predictions. Based on our analysis, we found that the pair
of (2, 20) along with a threshold of a standard deviation is most
effective in accurately predicting loss events across a range of
path dynamics. Given that DCA must differentiate longer term
congestion swells from short-term queue increases that accom-
pany loss events, an pair of (2, 20) achieves this goal (at
least better than other combinations ofand).

Table III illustrates the results of the metric applied to the
traced data grouped by paths and by time of day (i.e., the time
at which the trace was obtained). The parameters of the analysis
were (2, 20) with a threshold of one standard deviation. Each
data point is the average of five samples of the metric (i.e., the
average of the Monday through Friday samples over a particular
path at a specific time of day) and the standard deviation asso-
ciated with the mean. As an example, on average, at 9:00 am,
18.6% (with a standard deviation of 0.1) of all loss events on
path 1 were preceded by a detectable increase in RTT. Paths 1,
2, and 5 exhibit the highest level of correlation between delay
and loss, while paths 6 and 7 exhibit the lowest level. Taking the

TABLE III
CORRELATION INDICATION METRIC RESULTSOVER THE SEVEN PATHS

average of all values for each path shows that between 7%–18%
of loss events that were observed could potentially be predicted
and avoided.

The loss conditioned delay indication metric is an indicator of
how successful a DCA algorithm could be in avoiding the loss
events found in the measured data. While the results indicate
that some level of correlation exists between loss and increases
in RTT, the results also indicate that loss is typicallynot pre-
ceded by an (observed) increase in RTT. Further, the results do
not convey the accuracy of the loss prediction decision. In Sec-
tion III-C, we apply a DCA algorithm on the traced data and,
using the loss prediction algorithm described above, show that
the frequent incorrect decisions lead to poor performance.

2) Loss Conditioned Delay Correlation Metric:The loss
conditioned delay correlation metric(LCDC) provides a
quantification of the magnitude and time scale associated with
the correlation between increases intcpRTTsamples and loss
events. Our algorithm is essentially identical to that used in
[23], although a significant difference is that the LCDC metric
is constrained by TCP’s congestion control algorithms while
the approach in [23] utilizes more frequent periodic UDP
probes. The LCDC defines the lag to be the firsttcpRTT
sample prior to the transmission of a segment that is lost (and
lag is the secondtcpRTTsample before the transmission of
the lost segment). Likewise, lag is the firsttcpRTTsample
that is associated with the segment transmitted after a dropped
segment is initially transmitted. Theaverage packetdelay
conditioned on a loss at a lag is defined to be the average
of tcpRTTsamples of packets whoseth prior packet is lost.
This value is then normalized with the average RTT of all
samples. The timescale associated with a lag depends on the
connection’s window size (or rather how many segments are in
flight when a packet is dropped by a router) and the path RTT.
Consequently, the time between lags will typically range from
several milliseconds to an RTT. DCA has a much better chance
of being successful if this metric shows a distinct peak in the
loss conditioned delay in the lags immediately prior to packet
loss. Such a peak implies that the delay that is associated with
packet loss is uniquely detectable (i.e., its magnitude is above
the noise of nonloss related RTT variation) and is of duration
of at least one RTT which gives the TCP/Sender time to react.

The LCDC results illustrated in Figs. 1–7 confirm that in-
creases in RTT and loss are weakly correlated. There are inter-
esting details that can be observed in the results.

1) All paths exhibit some level of correlation between RTT
and loss. The previous CIM metric found paths 1, 2, and

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 361

Fig. 1. LCDC metric for path 1.

Fig. 2. LCDC metric for path 2.

5 to be the most correlated, but the LCDC finds that paths
2, 3, 4, 5, and 7 are the most correlated. The difference
is that the CIM applies a filter to its assessment, thereby
ignoring a certain level of correlation that might exist.

2) Each path exhibits a distinct drop in the level of correla-
tion in the lags immediately following the loss event (i.e.,
lag 1 through lag 10). There are two possible explana-
tions. First, the loss episode (i.e., we cannot tell if the loss
episode involves more than one packet being dropped at
the router) has no impact on the aggregate traffic pattern.
Consequently, the drop in RTT that follows loss indicates
that the traffic arrival burst that caused the loss episode
has diminished. Second, the loss episode involves mul-
tiple packets from different flows. The reduction in RTT is
caused by the drop in traffic load as it responds to the con-
gestion indication. This implies that some level of global
synchronization between competing flows exists. Global
synchronization would also explain the oscillations in the
LCDC results (especially path 3, 4, and 5). The authors of

Fig. 3. LCDC metric for path 3.

Fig. 4. LCDC metric for path 4.

Fig. 5. LCDC metric for path 5.

[23] saw similar signs of global synchronization and con-
jectured that multiple TCP connections become synchro-
nized by the loss process (as identified in [37]). Through
additional simulation analysis, we have determined that if
global synchronization were coming into play, all three of
our metrics would indicate a much stronger level of cor-
relation. Although further study is necessary, we conjec-

362 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

Fig. 6. LCDC metric for path 6.

Fig. 7. LCDC metric for path 7.

ture that the drop in RTT following lag 0 simply reflects
the traffic arrival process, and the apparent periodic be-
havior of several of the LCDC results is caused by random
increases and decreases in traffic arrival intensity rather
than by a global synchronization phenomenon.

3) A further observation is that for all paths, lag 1 exhibits a
higher level of correlation than lag . This differs from
the data found in [23] where the authors found a greater
level of correlation in the negative lag region (i.e., lag
through lag). The LCDC metric defines lag as the
tcpRTTsample that was measured prior to the transmis-
sion of the packet that gets dropped. Depending on TCP
dynamics (i.e., the number of packets in flight), the time
between lag 0 (i.e., the time the dropped packet is first
transmitted) and lag might be as large as one RTT.
Because the congestion associated with loss is of dura-
tion less than one RTT, the LCDC is less likely to detect
the queue buildup that occurs prior to loss. The method
used in [23], on the other hand, produces periodic probes
such that the time difference between lags will be 20 ms.
Our method measures the correlation observed by a TCP
constrained sender-based probe algorithm rather than by
a more frequent UDP-based probe which is based on a

one-way packet latency measurement rather than an RTT
measurement. The result is that the LCDC will lead to a
less accurate picture of the congestion process when loss
occurs simply because there are fewer probes surrounding
the loss event. However, the key point is that the LCDC
metric is designed to assesses the “usable” level of con-
gestion information available to a TCP sender.

4) The timescale associated with the delay surrounding the
actual loss process is very brief (1 to 5 lags) which sup-
ports the findings of [27], where the authors find that the
RTT increase surrounding loss is short lived.

5) Several paths (namely, 3 and 4) exhibit correlation over
multiple timescales (large and small). For example, path 3
shows that loss tends to occur when the RTT is elevated
over a time scale of 200 lags. Intuitively, this makes sense
as loss is more likely during periods of long-term conges-
tion. This again suggests that loss is caused by “spikes
that ride on ripples that ride on still longer term swells”
[29].

6) We find that our LCDC values were slightly lower than
that found in [23], but we believe that the difference is
due to the dynamics of each path.

3) Loss Conditioned Delay Cumulative Distribution Func-
tion Metric: The loss conditioned delay cumulative distribu-
tion function(CDF) metric is a visual metric in that it superim-
poses a plot of thetcpRTTdistribution CDF on a plot of the CDF
of thesampledRTTdistribution. If the two distributions appear
identical, this suggests that there is nothing statistically unique
about thetcpRTTsamples prior to loss events, making it diffi-
cult if not impossible for a DCA algorithm to avoid loss. We
apply the CDF metric to the concatenated data for each path.
For brevity, we show the results only for paths 1 and 7 (Figs. 8
and 9). In each figure, the histogram with the black bars rep-
resents thetcpRTTCDF and the histogram with the white bars
represents thesampledRTTCDF. The results from the other five
paths were very similar. We summarize the results as follows.

All paths exhibit a threshold RTT value (i.e.,thresholdRTT)
below which the loss rate is very low. Unfortunately, thethresh-
oldRTTvalue is very close to the minimumtcpRTTvalue for
most paths, which makes it difficult for an algorithm to reliably
predict future loss events. A DCA algorithm requires thethresh-
oldRTTvalue to be well beyond the meantcpRTTvalue, other-
wise, the algorithm will have frequent incorrect prediction de-
cisions. For the paths withsampledRTTdistributions that were
almost identical to thetcpRTTdistributions (i.e., paths 1, 5, 6,
and 7), possible explanations are: 1) the loss occurs at a very
high-speed links such that the queueing delay that surrounds
loss is undetectable by the endpoint or 2) there were multiple
bottlenecks active at any given time such that one bottleneck
produced large queue delays with small loss rates while another
bottleneck contributed higher loss rates with minimal delay.

4) Summary of Metric Results:By applying the three
metrics on traced TCP connections, we further understand the
relationship between a TCP constrained RTT measurement and
loss events and, more importantly, the viability of DCA. The
correlation indication metric suggests that an algorithm that

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 363

Fig. 8. CDF metric for path 1.

Fig. 9. CDF metric for path 7.

predicts loss based on TCP RTT samples will succeed 7%–18%
of the time.2 If a TCP/DCA algorithm is able to reduce its loss
rate by 7%–18%, this would improve performance given that
13%–56% of the loss events results in a TCP timeout (i.e., as
indicated in Table III, line 2). The loss conditioned delay CDF
metric shows that the “instantaneous” RTT samples are not
significantly statistically different from thetcpRTTsamples. In
other words, loss is almost as likely to occur for lower values
of tcpRTTas for higher values oftcpRTTsamples. While a
TCP/DCA algorithm might reduce the packet loss rate, it will
also be reacting frequently to increases intcpRTTthat are not
associated with loss. We quantify the impact of this on TCP
performance in the next section. The second metric (the LCDC
metric) again confirms that loss and delay are correlated.
However, it indicates that the time scale associated with the
queue buildup leading to loss is usually less than one RTT,
which supports our method of incorporating the “usable” level
of correlation into our analysis of DCA.

2This result is based on data from the seven paths which we measured. We
believe that these paths are representative of high-speed Internet paths. Conse-
quently, we generalize the result to apply over high-speed Internet paths.

TABLE IV
AGGREGATE RESULTS OFTRACE THROUGHPUT ANALYSIS.

THROUGHPUTIS DESIGNATED AST (IN KB/s)

C. Throughput Analysis

For each traced TCP connection, we run a simple DCA al-
gorithm over thetcpRTTtime series. In brief, the algorithm
assesses the following congestion decision based on the delay
event defined earlier:

sampledRTT windowAVG

When the delay event is true, TCP/DCA reduces the con-
gestion window (cwnd) by 50%, which is equivalent to the
TCP reaction of a loss event that is recovered using the base
TCP loss recovery algorithm (i.e., via a triple duplicate ac-
knowledgment which we refer to as a TD event). A 50% send
rate reduction is justified for two reasons. First, the RED/ECN
algorithm mandates a 50% cwnd reduction in response to a
congestion indication [38]. Second, a 50% reduction (rather
than a smaller reduction) improves the chances that a loss
event will be avoided. We explore the use of smaller cwnd
reduction values in the simulation analysis in the next section.

We adapt a TCP throughput model [18] to help quantify the
tradeoff involving DCA reactions that are successful and the
DCA reactions which are unnecessary. For a detailed discussion
of the throughput model, refer to [19]. We limit the discussion to
Table IV, which summarizes the results. The second, third, and
fourth columns of the table show the measured results for each
path. The fifth column indicates the predicted throughput based
on the original TCP model (i.e., as defined in [18]). The model’s
prediction is consistently lower than the observed throughput.
One possible explanation for this (as noted in [39]) is that the
loss rate observed by a TCP flow might be higher than the ac-
tual loss rate associated with a path resulting in lower predicted
throughput. The final column of the table shows the predicted
throughput degradation caused by DCA based on our modi-
fied TCP throughput model. In summary, our analysis suggests
that a TCP/DCA application might experience a reduction in
throughput in the range of 7%–58% compared to a similar TCP
application.

The amount of degradation tends to decrease as the loss rate
becomes large (i.e., paths 3 and 7). This is because the penalty
associated with a DCA rate reduction on a low bandwidth con-
nection (i.e., a TCP connection that consumes a small amount
of bandwidth because of a high loss rate) is less severe than the
penalty imposed on a TCP connection consuming a higher band-
width. In other words, a low-bandwidth connection can recover
quickly from a DCA send rate reduction (e.g., possibly within

364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

several RTTs) while it might take the higher bandwidth connec-
tion many RTTs to recover.

IV. SIMULATION ANALYSIS

The objectives of the simulation analysis are to validate our
measurement analysis and to extend it in a manner that was not
possible with measurement. In particular, the objectives are:

• to obtain additional insight into why our measurement
analysis suggests that a DCA congestion probe can pre-
dict at the most (on average) 7%–18% of loss events. We
can only do this by looking at the actual bottleneck link
queue levels along with thetcpRTTtime series;

• to validate our claim that a TCP/DCA algorithm will in-
deed degrade TCP throughput as compared to TCP/Reno;

• to provide additional validation of our result by showing
that TCP/Vegas and TCP/Dual also degrade throughput.

A. Developing the Models

Using the ns simulation package [20], we developed sim-
ulation models based on the two U.S. paths from the set of
high-speed Internet paths that we analyzed in the previous sec-
tion. These two paths, the Emory and ASU paths, were the
best and the worst performing paths, respectively, and conse-
quently represent the two most interesting network scenarios for
our DCA analysis. We usedpathcharandtracerouteto obtain
an estimate of the static attributes of the path. For each path,
we calibrated the simulation parameters so that the end-to-end
characteristics of the simulation models, such as RTT varia-
tions, throughput, and loss dynamics are statistically similar
to the measured results. By usingpathcharand correlating the
RTT samples obtained from concurrent pings to different routers
along the measured paths, we saw evidence that both of the
Internet paths are subject to congestion at multiple hops. We
used this information to help us design the background traffic
levels necessary to emulate the end-to-end dynamics observed
over the measured path.

Fig. 10 illustrates the network diagram associated with
the Emory model. Fromtraceroute, we learned that there are
13 hops along a path that traverses four domains and two ISPs.
Each small circle in the figure represents a router. Within an
ISP, router links are 135 Mb/s (i.e., simulating 155-Mb/s ATM
hops). The interconnection points between ISPs are 45 Mb/s.
The link propagation delays range from 1 to 4 ms. The un-
congested RTT is roughly 27 ms (which reflects the minimum
RTT of the actual Emory path). The 10-Mb/s LANs at both
endpoints are the lowest speed links over the path, however,
they were not the bottlenecks. Based on the measured data
(with some conjecture), we assume that the main congestion
point over the path is located at the peering point between
ISP 1 and ISP 2. Secondary congestion points are located at
emory.net’s Internet access point and within ISP 2. The shaded
flow arrows in Fig. 10 illustrate the congestion points.

Fig. 11 illustrates the network diagram associated with the
ASU model. The measurements indicate that the path is highly
congested (i.e., Table II shows that the average loss rate was
10.8% and the average RTT was 0.179 s). The majority of con-
gestion occurs between ISP 2 and ISP 3 (which represents a

Fig. 10. Simulation model of the Emory path.

Fig. 11. Simulation model of the ASU path.

peering point located at the MAE-EAST exchange). However,
as in the Emory path, we saw evidence of multiple points of
congestion. Therefore, we designed the traffic loads such that
secondary congestion occurs between ISP 1 and ISP2 as well as
within ISP 2 and ISP 3’s backbone networks.

We duplicated the measurement experiments and analysis
methods using the two simulation models. In other words, we
wanted to run a bulk-mode TCP application between a host lo-
cated at the ncsu.edu network (i.e., the sender) and a destination
located at the Emory or Asu networks (i.e., the receiver). We
derivedtcpRTTsamples from the simulated connection using
a method similar to that used in our measurement work. From
this data, in addition to the average loss rate, percentage of loss
that leads to timeouts, and average RTT, we were also able to
obtain the three correlation metric results that were defined in
the previous section.

We designed a set of TCP and UDP flows to create bidi-
rectional background traffic for each model. We adjusted
the details of the background traffic such that the end-to-end
path dynamics resembled the measured results. We found
that even when using thousands of low-bandwidthON/OFF

TCP flows (using a pareto traffic generator configured to
emulate the traffic generated by a “web” user as described in
[40]), we could not duplicate the burstiness associated with
RTT variations observed over the paths. Therefore, we used a
combination of TCP flows (several hundred) along with several
high-bandwidthON/OFF UDP flows.

Figs. 12 and 13 illustrate a portion of the observed behavior
over the real and simulated Emory paths, respectively. Fig. 12 is
based on data that was a part of our measurement analysis (i.e.,
one ttcp transfer between NCSU and Emory). The top curve
in both figures plots thetcpRTTtime series (the “ ” marks
forming the curve are the samples) of an end-to-end TCP/Reno
connection between h1 and d1. The “” marks along the top
border of the graph identify thetcpRTTsamples just prior to the
transmission of a segment that is dropped somewhere along the
path. The lower curve plots the TCP “goodput” (i.e., the rate
that data is acknowledged) averaged over intervals of 0.5 s (the
dark line) and 2 s (the dashed line). The end-to-end TCP/Reno
connection under observation is configured similarly to the TCP
stack used in the measurements. The maximum window size
is limited to 12 packets with the maximum segment size set to
1448 bytes. An ftp application sources the TCP connection (the
sender is located at node h1). The sink (node d1) is configured
to perform delayed acknowledgment. The loss rate at the link

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 365

Fig. 12. Measured results over the Emory path.

Fig. 13. Simulated results over the Emory path.

between ISP 1 and ISP 2 is 1.5%, 0.86% at the congestion point
within ISP 2, and 0.6% at the link between ISP 2 and Emory’s
network.

For the measured connection visualized in Fig. 12, the loss
rate was 1% while the loss rate experienced by the simu-
lated TCP/Reno connection was 0.55%, which explains the
throughput achieved by the simulation model. In spite of the
difference in loss rates, the more important dynamic the simula-
tion model must reproduce is the relationship between RTT and
loss. The top curves in Figs. 12 and 13 show that thetcpRTT
variation of the measured path and of the simulated path are
similar. We applied the three metrics that we have developed
(i.e., the CIM, the LCDC and the CDF metrics) on sets of data
from simulation experiments based on the Emory and the ASU
models and confirmed that the correlation dynamics between
RTT and loss is representative of the measured results. Refer to
[19] for further validation of the simulation models.

Fig. 14. ASU simulation results.

B. Fundamental Problems

Our measurement experiments suggest that DCA might only
be able to correctly predict, on average, 7%–18% of loss events
over high-speed Internet paths. Through simulation, we want to
confirm our intuitive understanding of why a DCA congestion
probe has difficulties predicting future packet loss events. The
fundamental problem is that a TCP constrained RTT sampling
process prevents endpoints from accurately tracking bursty
congestion associated with packet loss. Factors such as bursty
traffic arrival processes at high-speed switches along with
the dynamics of TCP’s congestion control algorithms make
it difficult for TCP endpoints to reliably avoid packet loss.
For example, TCP tends to send packets “clumped” together,
rendering the probe more granular especially over long paths.
In the extreme, the TCP RTT probe granularity is limited to
once per RTT which is not able to track bursty congestion over
high-speed paths. We verify this through simulation.

Fig. 14 illustrates a portion of a run over the ASU model.
The top curve plots thetcpRTTtime series of the end-to-end
TCP/Reno connection under observation. The second curve
plots the queue level at the congested link in ISP 2 and the lower
curve plots the queue level at the congested link connecting
ISP 2 and ISP 3. In the queue plots, the solid line plots the
maximum queue level observed every 0.1 s and the dashed
curve plots the minimum queue level observed. A single loss
event occurs at time 47.15 s and is caused by the bursty traffic
arrival process located at the congested link within ISP 2. Due
to the congestion level, the granularity of the RTT samples is
extremely coarse (i.e., the connection experienced a 7% loss
rate, which reduced the TCP throughput to less than 64 Kb/s.
The tcpRTTsample at 46.95 s is the RTT sample preceding
the transmission of the packet that is dropped and completely
misses the queue buildup that is associated with loss. Although
this scenario depicts the worst case network conditions for
DCA, it illustrates the fundamental problems a DCA algorithm
might experience over high-speed Internet paths: 1) the time
scale associated with queue buildup that precedes loss is less
than one RTT time; 2) congestion at multiple links reduces the

366 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

TABLE V
THROUGHPUT DEGRADATION FOR VARYING LEVELS OF THE

CONGESTIONREDUCTION (% DROP)

chances of being able to accurately predict future loss events;
and 3) TCP’s congestion control makes DCA more difficult
by limiting the number of probes in flight when the algorithm
needs accurate congestion information the most.

C. Simulating the TCP/DCA Protocol

In this section, we present and analyze a TCP/DCA algo-
rithm. We show that because of the fundamental problems
facing DCA (presented in the previous section), a TCP/DCA
connection will experience reduced throughput compared to
TCP/Reno. To further validate the result, we modify the back-
ground traffic generators to increase the level of correlation
between delay and loss. We find that while TCP/DCA is able
to reduce the loss rate experienced by the connection, the
connection performs worse. The analysis supports our claim
that TCP/DCA is not a viable incremental enhancement for
TCP over high-speed Internet paths.

The TCP/DCA protocol augments a TCP/Reno sender with
additional DCA congestion decisions. One of the parameters
associated with the TCP/DCA algorithm is the send rate re-
duction level when DCA reacts to an increase in RTT (i.e.,
the CongestionReductionLevel). While the normal reaction to
a non-loss-based congestion indication is to reduce the cwnd
by 50%; this is not a requirement [38]. A DCA enhanced TCP
sender will compute thetcpRTTsample using the algorithm we
have defined and used in our measurement analysis. After the
normal TCPcwndadjustment (either slow start or congestion
avoidance), the following additional code is performed.

If (tcpRTTis updated) && (if a DCA reduction has not been
performed for at least one RTT time period) {

If (sampledRTT(2) windowAVG(20))
cwnd cwnd (cwnd * CongestionReductionLevel)

}

We ran multiple simulation experiments and compared the
throughput achieved by two TCP connections (one Reno and
one DCA) using the Emory and ASU simulation models. Of
interest is the impact that differentCongestionReductionLevel
values have on the assessment. Each experiment is based on
ten runs, each lasting 500 s of simulation time. Table V shows
the results for three values ofCongestionReductionLevel. The
second column indicates the change in throughput of TCP/DCA
as compared the competing TCP/Reno connection using the
Emory model. The value is the mean of the results from the ten

TABLE VI
THROUGHPUTDEGRADATION WITH THE MODIFIED EMORY MODEL

runs along with the 95th percentile associated with the statistic.
The third column indicates the change in throughput (the mean
and the 95th percentile statistic) when using the ASU model.
When theCongestionReductionLevelis 50%, TCP/DCA expe-
rienced a throughput loss of 37% over the Emory model and a
loss of 13% over the ASU model. At the 50%CongestionReduc-
tionLevel, even though the algorithm is able to reduce the packet
loss rate, the algorithm is frequently reacting to increases in RTT
unnecessarily (i.e., where the increase in RTT is not associated
with packet loss). As theCongestionReductionLeveldecreases,
the penalty caused by incorrect congestion decisions is reduced,
which is why the throughput loss is not as significant. However,
the ability for DCA to successfully avoid a loss event is reduced
as well.

In order to match the measured end-to-end dynamics, the
Emory model relied on a link level traffic model with high-band-
width UDP flows to define the loss dynamics over the path. Al-
though the ASU model relied on a larger percentage of TCP
traffic, it still consists of a fairly significant level of UDP traffic
(8%). To be complete, we also evaluate DCA when the loss
was driven entirely by TCP flows (even though this leads to
dynamics that differ from the dynamics of the traced connec-
tions). We modified the congestion dynamics associated with
the Emory model such that loss was isolated to congested link
within ISP 2 and changed the background traffic to consist of
many low-bandwidthON/OFFTCP flows (rather than by a com-
bination of TCP and UDP flows). We designed two cases: a
heavily congested scenario and a lightly congested scenario. In
both cases, the background traffic consisted of 2200 TCP flows
along with a small amount of low-bandwidth UDP traffic (less
than 5% of the traffic is UDP). The idle time associated with
the pareto traffic generator attached to the TCP flows was 1–4 s
in the highly congested case and 3–5 s in the lightly congested
case. The loss rate in the heavily congested case was in the range
of 0.8%–2% and the link experienced sustained queue delay. In
the lightly congested case, the loss rate was low (less than 0.5%)
and the link experienced periodic epochs of queue delay.

Table VI illustrates the results. Based on a DCAConges-
tionReductionLevelof 50%, the top row shows the average
queue level of the bottleneck link and the throughput degra-
dation for the heavily congested scenario (the bottom row
shows the results for the lightly congested case). Running
the correlation indication metric on thetcpRTT time series
generated by the TCP/DCA connection confirmed that the path
exhibits a significantly higher level of correlation between
loss and increased RTT (as compared to the measured data).
We verified that the queue levels increase at a slower rate,

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 367

giving DCA a better chance at avoiding loss. In both cases, the
throughput degrades significantly. In the less congested case, it
turns out that DCA is somewhat successful at avoiding loss (up
to 30% of loss events were avoided). However, for both cases,
the “unnecessary” reactions by DCA to RTT increases not
associated with loss drove the throughput down (by 42% in the
moderately congested case and by 53% in the more congested
case).

D. Simulating the TCP/Vegas and TCP/DCA Protocols

In this section, we support our claim that DCA will result in
throughput degradation over high-speed Internet paths by exam-
ining two additional DCA algorithms. In particular, we analyze
the performance of TCP/Vegas and TCP/Dual using the simu-
lation models and methods that we have developed. The model
of TCP/Dual is a straightforward extension to TCP/Reno and is
described in [9]. We created a TCP/Dual model for the ns simu-
lator and use the existing TCP/Vegas ns model. As described in
[8], TCP/Vegas represents two enhancements: a DCA algorithm
referred to ascongestion avoidance mechanism(i.e., CAM) and
an enhanced loss recovery algorithm. To evaluate the DCA al-
gorithm of Vegas, we had to isolate the Vegas enhanced loss re-
covery improvement from the CAM algorithm. We created two
versions of Vegas. TCP/Reno-Vegas includes the enhanced loss
recovery algorithm without CAM. TCP/Vegas-CAM includes
the CAM algorithm but without the enhanced loss recovery.

We compared TCP/Reno-Vegas to TCP/Reno and to
TCP/NewReno. We ran three connections (a Reno, Reno-Vegas,
and NewReno connection) over the simulated Emory and ASU
paths (using the background traffic described in Section IV-A
that was based on a mix of TCP and UDP traffic). The ex-
periment consists of five runs, each run being 500 s. For each
run, we found the relative change in TCP throughput between
the two enhanced protocols with respect to the TCP/Reno
connection. We found that the TCP/Reno-Vegas flow is able to
improve TCP throughput by about 70% over the Emory path.
The NewReno algorithm is able to improve throughput by 76%
over the path. Both enhanced loss recovery algorithms improve
throughput by significantly reducing the frequency of timeouts
(on the order of 65% in our example).

It has been observed that the Vegas loss recovery mechanism
makes a greater contribution to performance than CAM [10].
The more general conclusion was articulated in [11] where the
authors stated that the impact of each Vegas enhancement varies
depending on buffer sizes. We extend this conclusion by sug-
gesting that the impact of the different components of Vegas de-
pends on network conditions (i.e., static network parameters as
well as network dynamics). The objective of this section is to ex-
amine the TCP/Vegas-CAM and the TCP/Dual algorithms and
show that these algorithms also lead to TCP throughput degra-
dation over the two simulated high-speed Internet paths.

The simulation analysis is similar to previous experiments.
Using the Emory and ASU models (as illustrated in Figs. 10
and 11), we run three ftp connections between hosts h1 through
h3 and destination d1 through d3. Each connection was con-
figured for TCP/Reno, TCP/Vegas, and TCP/Dual, respectively.
Table VII shows the throughput degradation experienced by a

TABLE VII
THROUGHPUTCHANGE FORTCP/VEGAS-CAM AND TCP/DUAL

Vegas-CAM flow and TCP/Dual over each path. As before, the
table values represent the mean and 95% confidence interval of
the observed change in throughput based on ten simulation runs.
Comparing the results with the equivalent TCP/DCA experi-
ments (Table V), Vegas and Dual experience less of a throughput
reduction than TCP/DCA. This is primarily because both Vegas
and Dual react less aggressively to the delay-based congestion
indication. The throughput reduction caused by Vegas is less
over the congested ASU path. This can be explained by looking
at the details of the Vegas algorithm. In brief, Vegas reacts in-
directly to RTT (i.e., changes in throughput) such that the level
of control by the CAM algorithm decreases as the TCP sending
rate decreases. Another factor is that the path suffers from sus-
tained congestion. Vegas is more likely to underestimate the
state of congestion over a path that exhibits sustained conges-
tion than DCA or Dual.

V. CONCLUSIONS ANDFUTURE WORK

We have studied the performance of a class of TCP
end-to-end congestion avoidance algorithms which use an
increase in packet RTT as an indicator of congestion and future
packet loss. We have provided evidence suggesting that DCA
cannot be incrementally deployed over high-speed Internet
paths. The measurement results we have presented in this paper
suggest that the correlation between loss events and increases in
TCP RTT samples is weak. Using simulation, we have shown
that the fundamental problems involve the bursty nature of
aggregate TCP traffic arriving at high-speed switches and the
coarseness of a TCP constrained RTT probe mechanism. We
have shown that a consequence of this result to DCA is that it
is rare (only 7%–18% of the time on average) for a TCP/DCA
endpoint to detect the queue buildup that precedes packet loss
and react in time to avoid the loss. We have also shown that
DCA will frequently make incorrect congestion decisions as
it reacts to the many increases in RTT that are not associated
with packet loss.

Our work does have several limitations. First, the measure-
ments represent a small sample of Internet dynamics, two of
which exhibited very high loss rates. We believe that the set
of paths chosen reflect the wide variety of path characteristics
an end user might experience over the commercial Internet. We
purposely added two high-loss paths to the set to fully assess the
viability of DCA. Second, the throughput analysis assumes that
the analytic throughput model that we use is accurate (at least to
some degree). Finally, the simulation models, especially the de-
sign of the background traffic, relies in part on conjecture. Some
of our results, especially the conjectures we make that explain
the fundamental problems behind DCA, are dependent on accu-
rately modeled dynamics at the bottleneck links.

368 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 3, JUNE 2003

We plan to evaluate DCA over low-speed paths that utilize
broadband access technology such as xDSL or cable. Wireless
networks (i.e., 3G or 802.11 wireless LANs) represent a pos-
sible application for DCA, as it is useful to know if a loss event
was caused by congestion or channel errors. However, in these
environments that are potentially more suitable for DCA, ex-
plicit congestion notification must also be considered.

A problem that we struggled with was how to accurately
model the dynamics of the Internet. The difficulties surrounding
large-scale Internet simulation are well known [41]. We ob-
tained satisfactory results using a combination of many TCP
flows along with several high-bandwidth UDP flows. To ac-
curately assess the impact of a large deployment of DCA,
the design of the background traffic becomes vital. In our
analysis, when we used primarily TCP flows (i.e., thousands
of flows), we found that we were unable to accurately repro-
duce the characteristics of the measured paths. However, using
too much UDP traffic (i.e., aggregate link-level traffic model)
might interfere with the evaluation. We plan on focusing our
measurement analysis techniques (which has provided us with
interesting clues and insight into congestion dynamics over
the Internet) to further develop simulation models that better
represent Internet behavior.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the editor for their comments and input, which have greatly
contributed to the improvement of the presentation of this paper.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” inProc. ACM SIG-
COMM, 1988, pp. 314–329.

[2] V. Jacobson, C. Leres, and S. McCanne. (1989, June) tcpdump. [Online].
Available: ftp://ftp.ee.lbl.gov

[3] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF,
RFC 2581, Apr. 1999.

[4] S. Floyd, “A report on some recent developments in TCP congestion
control,” IEEE Commun. Mag., vol. 39, pp. 84–90, Apr. 2001.

[5] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgment options,” Network Working Group, RFC 2018, Apr.
1996.

[6] M. Allman and S. Floyd. (2000, Aug.) Enhancing TCP’s loss recovery
using limited transmit. IETF. Internet Draft. [Online]. Available: draft-
ietf-tsvwg-limited-xmit-00.txt

[7] R. Jain, “A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,”Comput. Commun. Rev., vol.
19, no. 5, pp. 56–71, Oct. 1989.

[8] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” inProc. ACM SIG-
COMM, Aug. 1994, pp. 24–35.

[9] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in the
4.3-Tahoe BSD TCP congestion control algorithm,”Comput. Commun.
Rev., vol. 22, no. 2, pp. 9–16, Apr. 1992.

[10] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revisited,” inProc.
IEEE INFOCOM, Mar. 2000, pp. 1546–1555.

[11] S. Low, L. Peterson, and L. Wang, “Understanding TCP Vegas: A duality
model,”J. ACM, vol. 49, no. 2, pp. 207–235, Mar. 2002.

[12] J. Mo et al., “Analysis and comparison of TCP/Reno and Vegas,” in
Proc. IEEE INFOCOM, 1999, pp. 1556–1563.

[13] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic be-
havior of slowly-responsive congestion control algorithms,” inProc.
ACM SIGCOMM, Aug. 2001, pp. 263–274.

[14] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Re-
cent traffic measurements from an internet backbone,” inProc. INET
Conf., 1998, [Online.] Available: http://www.isoc.org/inet98/proceed-
ings/6g/6g_3.htm.

[15] W. Fang and L. Peterson, “Inter-AS traffic patterns and their implica-
tions,” in Proc. IEEE GLOBECOM, 1999, pp. 1859–1868.

[16] K. Thompson, G. Miller, and R. Wilder, “Wide area internet traffic
patterns and characteristics,”IEEE Network, vol. 11, pp. 10–23,
Nov. 1997.

[17] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rock-
well, T. Seely, and C. Diot, “Packet-level traffic measurements from the
Sprint IP backbone,”IEEE Network, to be published.

[18] J. Padhyeet al., “Modeling TCP throughput: A simple model and its
empirical validation,” inProc. ACM SIGCOMM, 1998, pp. 303–314.

[19] J. Martin, “RTT-based congestion avoidance for high speed TCP
Internet connections,” Ph.D. dissertation, North Carolina State Univ.,
Raleigh, Dec. 1999.

[20] The Network Simulator. Univ. California, Berkeley, CA. [Online].
Available: http://www-mash.cs.Berkeley.EDU/ns/

[21] J. Ahn, P. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas: Emu-
lation and experiment,” inProc. ACM SIGCOMM, 1995, pp. 185–195.

[22] J. Bolot, “End-to-end packet delay and loss behavior in the Internet,” in
Proc. ACM SIGCOMM, 1993, pp. 289–298.

[23] S. Moon, J. Kurose, and D. Towsley, “Correlation of packet delay and
loss in the Internet,” Dept. Comput. Sci., Univ. Massachusetts, Amherst,
Tech. Rep. 98–11, 1998.

[24] V. Paxson, “End-to-end internet packet dynamics,”IEEE/ACM Trans.
Networking, vol. 7, pp. 277–292, June 1999.

[25] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and mod-
eling of the temporal dependence in packet loss,” inProc. IEEE IN-
FOCOM, Mar. 1999, pp. 345–352.

[26] V. Paxson, “Measurements and analysis of end-to-end Internet dy-
namics,” Ph.D. dissertation, Univ. California, Berkeley, CA, 1997.

[27] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy of
internet path properties,” inProc. ACM SIGCOMM Internet Measure-
ment Workshop (IMW2001), Nov. 2001, pp. 197–211.

[28] D. Loguinov and H. Radha, “Large-scale experimental study of internet
performance using video traffic,”Comput. Commun. Rev., vol. 32, no.
1, pp. 7–19, Jan. 2002.

[29] W. Lelandet al., “On the self-similar nature of Ethernet traffic,”IEEE
Trans. Networking, vol. 2, pp. 1–15, Feb. 1994.

[30] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” inProc. ACM SIGCOMM,
Aug. 2000, pp. 43–56.

[31] S. Cen, C. Pu, and J. Walpole, “Flow and congestion control for in-
ternet streaming applications,” inProc. Multimedia Computing and Net-
working, Jan. 1998, pp. 250–264.

[32] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the Internet,” in
Proc. IEEE INFOCOM, 1999, pp. 1337–1345.

[33] P. Hurleyet al., “ABE: Providing a low-delay service within best effort,”
IEEE Network, vol. 15, pp. 60–69, May/June 2001.

[34] R. Miles.ttcpmeasurement tool. The FreeBSD Project. [Online]. Avail-
able: http://www.freebsd.org/ports

[35] S. Bortzmeyer. (2002, Oct.) Echoping measurement tool. [Online].
Available: http://echoping.sourceforge.net

[36] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
Network Working Group, RFC 2988, Nov. 2000.

[37] S. Shenker, L. Zhang, and D. Clark, “Some observations on the dynamics
of a congestion control algorithm,” inProc. ACM SIGCOMM, 1990, pp.
30–39.

[38] S. Floyd and K. Ramakrishnan. (1999, Jan.) A Proposal to
add explicit congestion notification to IP. Experimental RFC
2481. Info. Sci. Inst., Los Angeles, CA. [Online]. Available:
ftp://ftp.isi.edu/in-notes/rfc2481.txt

[39] M. Goyal, R. Guerin, and R. Rajan, “Predicting TCP throughput from
noninvasive network sampling,” inProc. IEEE INFOCOM, June 2002,
pp. 180–189.

[40] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” inACM SIGMETRICS,
July 1998, pp. 151–160.

[41] S. Floyd and V. Paxson, “Difficulties in simulating the internet,”
IEEE/ACM Trans. Networking, vol. 9, pp. 392–403, Aug. 2001.

MARTIN et al.: DELAY-BASED CONGESTION AVOIDANCE FOR TCP 369

Jim Martin (M’88) received the B.S degree in
electrical engineering from the University of Illinois,
Urbana-Champaign, in 1983, the M.S. degree from
Arizona State University, Tempe, in 1989, and the
Ph.D. degree from North Carolina State University,
Raleigh, in 1999.

He is currently an Assistant Professor with the De-
partment of Computer Science, Clemson University,
Clemson, SC. He was previously a Senior Consultant
for the Gartner Group, where he provided consulting
in the area of network design and performance man-

agement to service providers and companies. Prior to joining Gartner, he spent
ten years at IBM Network Systems Division where he worked on the research
and development of network and network security products. His research inter-
ests are in communication networks, network performance management, and
Internet transport issues.

Arne A. Nilsson received the Master of Electrical
Engineering degree and the Ph.D. degree in telecom-
munication systems from the Lund University of
Technology, Lund, Sweden, in 1968 and 1976,
respectively.

He is currently a Professor with the Department
of Electrical and Computer Engineering, North
Carolina State University (NCSU), Raleigh. He has
more than 30 years of experience with telecommu-
nication networks. He was a Principal Investigator
for the Swedish Telecommunication Administration

in the effort to build a Nordic packet switched network. He joined the faculty
at NCSU in 1978. In 1986, he was a Professor at the Aeronautics Institute of
Technology (ITA), Sao Jose dos Campos, Brazil. He was on the committee
responsible for the design and architecture of the MCNC data and video
network in North Carolina, and was a Principal Investigator on the VISTAnet,
one of 5-Gb test beds. He has been an active participant in the industry/uni-
versity cooperative research center on communications and signal processing
at NCSU, Center for Communications and Signal Processing (CCSP), and
the Center for Advanced Computing and Communication (CACC). He has
recently become an External Evaluator for some of the European efforts in
high-speed networking. He has also worked for the U.S. Army Research Office
in the wireless network engineering area.

Injong Rhee (SM’89) received the Ph.D. degree
from the University of North Carolina, Chapel Hill.

He is currently an Associate Professor of com-
puter science with North Carolina State University,
Raleigh. In 2000, he founded Togabi Technologies,
Inc., a company that develops and markets mobile
wireless multimedia applications for next-generation
wireless networks. He served as CTO and CEO of
the company until 2002. His research interests are in
computer networks, congestion control, multimedia
streaming, video compression, distributed systems,

and operation systems.
Dr. Rhee is a Member of the Association for Computing Machinery.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

