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ABSTRACT
The majority of Internet traffic relies on the Transmission Control
Protocol (TCP1) devised in the early 1970s to provide a reliable
and fair data transfer across the ARPANET. Users that download
large multimedia files from remote servers, say, are expected to
receive the same share of ”bandwidth” (i.e., same transfer rate) if
they share the same bottleneck. Unfortunately, with current TCP,
fairness does not apply when the round trip delay RTT is very dif-
ferent among sessions. For instance, suppose in a popular internet
caf̀e in New York City several users are simultaneously download-
ing multimedia files from various servers. Most of the servers are
local, however, one customer is downloading a large file from a re-
mote server in Australia. All customers share the same 11 MBPS
WiFi bottleneck. The customer connected to Australia will make
no visible progress until all the customers downloading from local
servers are done! One can easily imagine several other applications
where RTT-fairness is a must. Here we propose a new version of
TCP, namely TCP Libra, which guarantees fair sharing regardless
of RTT. ”Libra” in Latin means ”scale”, thus indicating good bal-
ance among competing sessions.
In this paper we describe the design of TCP Libra and prove that it
is indeed RTT-fair. The key element of TCP Libra is the window
adjustment algorithm that compensates for RTT difference. The
algorithm is derived by modeling TCP performance as a ”utility
function” and by optimizing this function such that the result is in-
dependent of RTT. This leads to a solution that provides fairness
among TCP flows that share the same bottleneck link regardless
of RTT. Remarkably, TCP Libra achieves fairness while still main-
taining throughput efficiency and friendliness with respect to TCP
New Reno. Moreover, TCP Libra is a ”sender-side-only” modifi-
cation of TCP, thus greatly simplifying its deployment. In the pa-
per, fairness and stability properties are proved analytically and are
extensively tested via simulation using popular benchmarks. The
sensitivity to various design parameters is carefully analyzed. A
comparison is also carried out with other ”RTT-fair” TCP versions
reported in the literature.

1With TCP, unless specified, we refer to TCP New Reno.

Categories and Subject Descriptors
C.2 [Computer Systems Organisation]: Computer-Communication
Networks; C.2.2 [Computer Systems Organisation]: Computer-
Communication Networks—Network Protocols; C.2.6 [Computer
Systems Organisation]: Computer-Communication Networks—
Internetworking (C.2.2.)

General Terms
TCP, Congestion Control, Optimization, Performance Evaluation

1. INTRODUCTION
The Internet success is based on the ability to provide a reliable
medium for information exchange. In the current Internet the traf-
fic control functionalities are provided by the Transmission Con-
trol Protocol (TCP) in an end-to-end fashion. TCP has been de-
signed to provide a connection oriented, reliable, and fair service
in the ARPANET [48], initially, and in the Internet later. Reliabil-
ity and congestion control embody the two major issues addressed
by TCP [20]. To achieve the second goal, TCP adapts the sending
rate to avoid network overflow or fall into service starvation. TCP
Congestion Control has been studied by the research community
for the last 25 years leading to several TCP variants for congestion
control with and without the explicit intervention of the network
layer (a survey can be found in [11]).

The congestion control scheme implemented by TCP falls in the
AIMD (Additive Increase, Multiplicative Decrease) class of algo-
rithms. The currently deployed scheme considers packet loss as an
indicator of network congestion and reacts with a drastic reduction
of the sending rate [2]. The loss rate experienced over the Inter-
net can be well beyond the optimal operating conditions for TCP
thus leading to poor network utilization [39]. TCP New Reno and
TCP Sack partially correct this problem and improve efficiency in
the loss recovery phase. However, the overall performance is still
far from optimal on large pipe sizes, paths where the bandwidth-
delay product is large. Practical approaches to ”big pipe” scala-
bility are the fine-tuning of New Reno parameters (i.e. receiver
advertised windows and network buffers), the use of jumbo pack-
ets (i.e. 8Kbyte packets) and the opening of multiple TCP sessions
in parallel.

All of these approaches were directed to enhance utilization. None
of them directly addresses the issues of fairness and friendliness -
the latter referring to thebehaviortowards legacy competing flows.
One particular type of unfairness which is intrinsic in legacy TCP
is RTT unfairness. We recall that in congestion avoidance the con-
gestion window increases linearly with RTT. As a consequence,



small RTT sessions, with a faster dynamics in the window increase,
get the lion share of bottleneck bandwidth. The RTT-bias shown
by TCP negatively affects users, content providers and network
providers. In particular, users with a larger RTT will experience a
lower throughput and higher latency and completion time. To over-
come this imbalance, content providers are required to use (for a
price) a content delivery network with a fine-grain geographic dis-
tribution, where content is downloaded off-line to sites relatively
close to users. The RTT-unfairness may also affect decisions on
cache location, CDN deployment, overlay networks topology, and
capacity expansion.

The RTT-unfairness has been recognized since early TCP protocol
enhancement efforts. In [13], the authors of TCP New Reno pro-
posed a solution to the protocol’s RTT-unfairness. Unfortunately,
that solution was shown to be unstable in [19]. The research com-
munity has never lost interest in the RTT-fairness problem, as it
is witnessed by recent schemes that try to address it in their de-
sign [57] [24].

A different, proactive rather than reactive, approach to congestion
control is exploited by Delay-based Congestion Avoidance algo-
rithms (DCA) first introduced by Jain in [21]. DCA algorithms
monitor the RTT experienced by the packets and react to its in-
crease in the attempt to avoid network congestion before it oc-
curs. Two examples of DCA algorithms are TCP Vegas and TCP
DUAL [6] [27]. These schemes introduced a trade off between
RTT fairness and efficiency; fairness can be achieved at the cost of
throughput reduction [39]. DCA algorithms have re-gained popu-
larity in the last couple of years [24]. The limitation of DCA algo-
rithms is that they highly depend on the strong correlation between
packet loss events and RTT increase prior to the loss event. This
dependence has been proven to be weak as shown in [16] [39] [49].
In particular, the RTT probe performed by TCP is too coarse to
correctly foresee congestion events [23].

In this paper we introduce TCP Libra [3], a sender side TCP vari-
ation designed to cope with RTT-unfairness in heterogeneous best-
effort networks. TCP Libra controls the window based on RTT
measurements, like the aforementioned DCA schemes. However,
it is in a class of its own, that can be referred to as Delay-enhanced
Congestion Control (DCC). A DCC algorithm takes into account
the delay information it receives from the network, in the sense that
it limits the aggressiveness of its congestion window increase based
on RTT information, but in a milder way than DCA algorithms. The
key point in the distinction between DCC and DCA algorithms is
that DCC algorithms do not avoid congestion, they rather delay the
point at which congestion will occur, while DCA algorithms try to
avoid congestion in the network. As seen in [39] [49] the delay
information is not consistent to give, by itself, a good prediction of
congestion events. For this reason we believe that a DCC approach
represents a better approach to the congestion reaction problem.

We will here analyze TCP libra in relation to its features of RTT-
Fairness,efficiency and friendliness to TCP New Reno, thus being
an ideal candidate for incremental deployment.

TCP Libra follows a holistic approach and features a modular de-
sign where each component is thought to cope with a single issue.
We here validate TCP Libra top-down approach through analysis
and simulation. In particular we present: (i) a component-wise
analysis to determine how design choices impact the protocol be-

havior, (ii) a capacity sensitivity analysis aimed at the evaluating
the impact of capacity estimation errors to TCP Libra behavior,
(iii) a simulative performance study under realistic traffic scenarios
aimed at determine TCP Libra’s ability to deal with heterogeneous
and changing network conditions.

The reminder of the paper is organized as follows. In Section 2
we briefly present TCP Libra algorithm and architecture while in
Section 3 we formally introduce the network model. The model
validation is outlined by Section 4. Section 5 discusses the tuning
strategies and impact for Libra’s components. Our sensitivity anal-
ysis is described in Section 6. In section 7 we study TCP Libra’s
performance as well as as several competing protocols in a realistic
network conditions. A literature survey is reported in Section 8,
while the paper is finally concluded by section 9.

2. TCP LIBRA: ARCHITECTURE AND AL-
GORITHM

TCP Libra has been designed to achieve the best possible trade-
off among utilization, fairness and friendliness to TCP New Reno.
These objectives have been pursued by designing single compo-
nents studied to perform specific tasks. The main components of
TCP Libra are:

1. Capacity estimation. Thecapacity estimationcomponent es-
timates the capacity of the bottleneck link at the beginning
of a new session. We will not describe in depth the mecha-
nism by which the algorithm performs this task, but we will
analyze what are the consequences of small errors in the es-
timation result on the stable behavior of the protocol.

2. Fairness control. The fairness controlimplements the fair-
ness functionality of Libra, equalizing the throughput of het-
erogeneous round-trip time flows among each other. This
component is mainly based on what was suggested by Floyd
and Jacobsen in [13]. We add a further component to it that
lowers the variance of throughput.

3. Scalability control. Thescalability controlreceives as an in-
put the capacity of the bottleneck link from thecapacity esti-
mationcomponent and sets the slope of the window increase
accordingly. We can justify intuitively this choice by observ-
ing that a higher bottleneck link capacity requires a greater
speed in convergence to the fair share. We are here trying to
avoid the well known drawback of TCP New Reno, i.e. slow
convergence with large pipe sizes paths.

4. Stability control. Thestability controlmakes sure that, tak-
ing as an input the share of buffer occupancy, the protocol
operates in its stable region (we will later more formally de-
fine what we mean asstable region). This control acts as a
gauge on thescalability control, which may be too aggres-
sive in scenarios where a great number of flows share the
same bottleneck link.

5. Burstiness control. This component determines when pack-
ets may be sent, making sure that the network is not injected
with a heavy burst of traffic all at once. The reason is to
avoid synchronization of losses and multiple reductions of
the congestion window due to buffer overflows. In order to
also avoid losses due to synchronized pacing strategies be-
tween flows that share the same bottleneck, we have imple-
mented a randomized pacing strategy, that should prevent the
problem.



In the following subsection we will present the algorithm and high-
light the components we just enumerated.

2.1 Algorithm
TCP Libra falls in the class of the AIMD (additive increase, multi-
plicative decrease) algorithms and implements a sender side modi-
fication to the New Reno congestion control algorithm. TCP Libra
reacts to queueing by diminishing the increment of the congestion
window when the buffer occupancy increases. If packet loss is de-
tected, TCP Libra decreases the congestion window by a variable
multiplicative decrease factor. Here follows the algorithm:

• windown+1 ← windown + 1
windown

αnT2
n

Tn+T0
in case of a

successful transmission.

• windown+1 ← windown− T1windown
2(Tn+T0)

in case of loss (and
the threshold is set accordingly).

wherewindown is the window size at timen, Tn the end-to-end
round-trip time measured at timen, T0, T1 are fixed parameters
andαn is defined as:

αn = k1ce
−k2

Tn−Tmin
Tmax−Tmin (1)

wherek1 andk2 are fixed parameters,c is the capacity of the bot-
tleneck link seen by the source,Tmin andTmax are the minimum
and the maximum round-trip times, respectively, experienced dur-
ing the connection up to timen.

We can now map the architectural components of TCP Libra at an
algorithmic level.

We may identify thescalability controlask1C, wherek1 is a fixed
parameter that must be set taking into account the requirement of
responsiveness of the algorithm, as well as the necessity to operate
in a stable region.

Thefairness controlis implemented by the T2
n

T0+Tn
factor in the in-

crease portion and the 1
T0+Tn

factor in the decrease portion. The

T 2
n term in the increase portion is a well known factor, that has al-

ready been conjectured by Floyd and Jacobsen in [13] and analyzed
by Henderson and Kelly in [19] [18] [28]. The term 1

T0+Tn
gives

us the control over the range of RTTs for which we are interested
to equalize throughput. In cases in whichTn << T0 the influence
of Tn over the increase portion will be minimal, so we’ll have that

T2
n

T0+Tn
≈ T2

n
T0

. In cases whereTn is at least comparable toT0, we’ll

have that T2
n

T0+Tn
≈ Tn

2
. We are somewhat penalizing the flows that

exceed a certain maximum RTT that we may set. This may be a fur-
ther control in case we want to penalize flows that exceed a certain
RTT limit. The reason to do this is that a flow experiencing a RTT
value above a certain threshold may be understood as experiencing
some problem on the path. Since transmissions RTTs are bounded
by upper limits of light propagation and buffering times, this may
be a reasonable tradeoff: paths that are not performing properly
should not be overflowed with packets.

Thestability controlsection of the algorithm is represented by the

term e
−k2

Tn−Tmin
Tmax−Tmin . This control function ensures that the al-

gorithm slows down with the window increase rate when links be-
come congested. Indeed, the termTn−Tmin

Tmax−Tmin
may be interpreted

as the share of buffer occupancy. When this approaches unity, it has
the effect to slow down the increase in the congestion window. The
substantial difference with the schemes analyzed in [39], is that
the TCP Libra algorithm does not strongly penalize the window
dynamics when buffer build up is sensed. In both DUAL and Ve-
gas [6] [27], when RTT grows beyond a threshold, the congestion
window is decreased. Here we do not decrease the window, rather
we reduce the increase of the window. We also argue that this is the
correct strategy in order to achievefair friendliness to the legacy
TCP implementation, since the reaction to queuing delay (which
the legacy protocol ignores in its dynamics) does not heavily com-
promise the performance of TCP Libra when competing with TCP
New Reno. k2 is a fixed parameter that sets the responsiveness
to queue build up. A greaterk2 implies that TCP Libra will be
functioning with a larger stability region, utilize its share more ef-
ficiently but, on the other hand, suffer higher throughput loss when
competing against legacy protocol flows.

3. PROBLEM FORMULATION

3.1 Network Model
The network is modeled as a finite set of nodesN and linksL,
which connect the nodes inN . Each link is characterized by a
finite capacity. We definec as the vector of capacities where each
row (cl, l ∈ L) represents the capacity of linkl ∈ L. S is the set
of sources that accesses network resources, typically a subset ofN
andL. We may define the routing matrixR as:

Rlr =

(
1, if link l ∈ L is utilized by source r ∈ S

0, otherwise
(2)

Each sourcer ∈ S is characterized byxr(t), the transmission rate.
Theaggregateflow at link l is defined as the sum of the contribu-
tions of the sources that use that link:

yl(t) =
X

r

Rlrxr(t− τf
lr) (3)

whereτf
lr is the forward delay from sourcer to link l. We also de-

fine the backward delay in the feedback path from linkl to source
r asτr

lr. We have that the round-trip time may then be written as
Tr = τf

lr+τr
lr. We defineprice to be the marginal cost (or penalty)

per unit flow that a source incurs in sending that flow increment.
The price is sent back to source as a feedback signal by the link
when congestion is detected. Theprice(s) to which an algorithm
is sensitive shapes its dynamics: TCP New Reno is, for example,
sensitive to packet loss, while TCP Vegas is sensitive to queuing de-
lay. TCP Libra is primarily sensitive to packet loss, while it adapts
to buffer occupancy while increasing its window. The aggregate
price, in terms of packet loss, seen by sourcer is:

λr(t) = 1−
Y
l∈r

(1− µl(t− τr
lr)) (4)

whereµj(t) is defined as:



µl(t) = fl(
X
r:l∈r

xr(t− τf
lr)) (5)

wherefl(y(t)) is the price signal sent by linkl at timet. The price,
µl(t), also known asbarrier [5] is a function of the link flow.
The price perceived by the source depends on the aggregate price
signals sent by all the resources on router, as seen in (4).

3.2 Queue Models
In this paper we will focus on routers implementing either drop-
tail, which is the type of queue implemented in the great majority
of routers on the Internet, or RED [14] which is the most popular
active queue management technique. We can model the probability
of loss deriving from the droptail queue strategy as follows:

µl(t) =

(
1 if ql(t) > B

0 otherwise
(6)

whereq(t), queuing time at timet, is calculated as:

ql(t) =

Z
[y(t)− c]+dt (7)

The dynamics of RED is captured, at a fluid flow level, by the fol-
lowing:

µl(t) =

8><>:
1 if ql(t) > B

ρl(ql(t)− b) if b ≤ ql(t) ≤ B

0 if 0 ≤ ql(t) < b

(8)

with:

ρl =
µmax

B − b
(9)

andql(t) is the average queue length, which is calculated with an
exponential averaging filter.

4. MODEL VALIDATION
4.1 Fluid Flow Model and Network Stability

Analysis
We carry out and complete here the analysis of TCP Libra, which
had began in [3]. This time we will refer to the network case, where
the system will be studied in its linear approximation around the
equilibrium point and conditions for local stability will be shown.
This analysis derives directly from the analysis by Vinnicombe [54]
and Kelly [28] for TCP New Reno, where the general case of a non-
linear increase and decrease algorithm is considered. We will also
consider two different dual strategies in the network, namely drop-
tail and RED [14] [9], seeing how they affect the primal algorithm
operation. We can here recall the fluid flow non-linear expression
of TCP Libra [3], for ther-th flow, is:

dxr(t)

dt
=

xr(t− T̃r)

T̃r

(
α̃rT̃r

xr(t)(T̃r + 1)
(1−λr(t))−

2

3

xr(t)T̃rλr(t)

T̃r + 1
)

(10)

We may linearize the above around its equilibrium points(x̃r, λ̃r),
where the average throughput may be expressed as:

x̃r =

s
ar

br

αr

T1

1− λ̃r

λ̃r

(11)

and may write the linearized system as:

δẋr(t) = −2
brλ̃r

T0 + T̃r

s
α̃rar

T1br
(
1− λ̃r

λ̃r

)δxr(t)−
α̃rar

(T0 + T̃r)λ̃r

δλr(t)

(12)

Recalling the result by Vinnicombe [54], we may state the follow-
ing:

THEOREM 4.1. Consider the TCP Libra congestion control al-
gorithm (43). Lets suppose the congestion control algorithm is re-
sponding to the input prices given by a single bottleneck linkl. We
may then write that:

λr(t) = µl(t− τr
lr) = fl(

X
r:l∈r

xr(t− τf
lr − τr

lr)) (13)

Under this assumption the condition:

α̃rT̃r

(T̃r + T0)x̃r

1− λ̃r

λ̃r

ylf
′
l (yl)

1− fl(yl)
<

π

2
(14)

is a sufficient condition for the the linearized system (12) to be
asymptotically stable.

LEMMA 4.2. If fl(y) is Lipschitz, under the conditionyl ≥
xl > 0, there∃ β such that:

ylf
′
l (yl) ≤ βfl(yl) (15)

condition (14) may be written as:

α̃rT̃r

(T̃r + T0)x̃r

1− λ̃r

λ̃r

ylf
′
l (yl)

1− fl(yl)
≤ α̃rT̃r

(T̃r + T0)x̃r

1− λ̃r

λ̃r

βfl(yl)

1− fl(yl)
(16)

=
α̃rT̃r

(T̃r + T0)x̃r

β (17)

<
π

2
(18)

The above lemma, under the given assumption, confirms what we
have already observed, for the single source single link case, in [3].



Figure 1: Flow 1, with RTT 10ms, competing with Flow 2 on a
15Mb bottleneck. Packet size is set to 1500 bytes. The buffer at
the bottleneck link implements droptail, with size 600pkts.T0 is
set to1 andk1 = 2.

Figure 2: Flow 2, with RTT 82ms, competing with Flow 1 on a
15Mb bottleneck. Packet size is set to 1500 bytes. The buffer at
the bottleneck link implements droptail, with size 600pkts.T0 is
set to1 andk1 = 2.

High values ofk1 lead to instability, while low values ofk1 lead to
extremely slow convergence, as may be understood both intuitively
(smallerk1 represents a smaller increase rate in congestion control
phase) and analytically. An opposite reasoning may be done fork2

andT0. We will validate these arguments in the following section
by simulation means.

In Fig. 1 and 2 we compare the result of a NS-2 simulation against
the fluid flow model implemented in Simulink. We obtained the av-
erage values in (12) from the simulation in NS-2 and plugged them
in the simulink model. The queue has been modeled as an integra-
tor (please refer to Appendix II for the details), while the droptail
behavior has been implemented as a step, on-off non-linearity (i.e.
depending on the queue size congestion information is fed back to
the transmitters). The simulink graphs in Fig. 1 and 2 are the result
of a perturbation,∆x1 and∆x2, with respect to the stable values
x̃1 andx̃2.

5. COMPONENT TUNING
TCP Libra performance, other than the ”prices” and accuracy of the
capacity estimate, depends on the parameters’ tuning. We analyze
here the influence of the parameters tuning and the correspondence
between the expected values as determined by the analysis and the
actual behavior of the algorithm. We also want to investigate what
are the consequences of choosing a value, for each parameter, in-
stead of another and which is the influence of parameters on each
component of TCP Libra. We, hence, focus the simulative investi-
gation, via Matlab and NS-2, on effects of tuning over the variance
of instantaneous throughput. Other aspects of parameter tuning that
concern stability and efficiency, have been already treated by sim-
ulative means in [3].

5.1 Fairness Control
We have ”captured” thefairness control component in the term

T2
n

T0+Tn
in the increase portion of the algorithm and in the term

T1
T0+Tn

in the decrease portion of the algorithm. We can control
the variance in the throughput and the convergence speed by set-
ting the parameterT0. An increase inT0 implements a reduction

in throughput variance at the expense of convergence speed. For
this reason, an increase inT0 should be followed by an increase in
k1. We here produce three examples, implemented in Matlab and
in NS-2, where we increase bothT0 andk1. As we can see from
Fig. 3-8, as expected, an increase inT0 results in a more regular
pattern of the curve representing the instantaneous throughput.

5.2 Stability Control
Stability is one of the key contributions of TCP Libra together with
scalability and fairness. Thestability controlportion of the algo-
rithm, which is reflected in the additive phase of the algorithm by

the coefficiente
−k2

Tn−Tmin
Tmax−Tmin , is the control that enables TCP

Libra to operate with the desired tradeoff between stability and ef-
ficiency. This control fixes the problem that has been identified
in [13] [19], where the effect of setting the increase coefficientc,

that multiplies T2
n

windown
cannot be precisely determined. In fact,

a high value ofc will drive to instability problems at some point,
while low values will give a good stability but lead to a very slow
convergence. The ”right” operational value of coeffcientc cannot
be determined a priori, without introducing adaptivity to network
conditions.

5.3 Burstiness Control
TCP Libra’s burstiness control has been designed with the objective
of avoiding two specific problems: synchronization of loss events
and failure to collect significant samples of the round-trip time ex-
perienced by the flow. From previous studies [1], we have learned
that pacing has a de-synchronizing effect that leads to higher effi-
ciency in steady state. We improve the cyclic pacing scheme by
introducing randomness. Namely, packets are uniformily, but ran-
domly sent within a round-trip time.

We argue that our pacing scheme will help obtaining significant
RTT measurements. The under-sampling problem reported in [49]
remains, but since our scheme implements a DCC, and not a DCA
algorithm, the influence of innaccurate sample measurements is
less disruptive.



Figure 3: Flow 1, with RTT 10ms, compet-
ing with Flow 2 on a 100Mb bottleneck.T0

is set to1 and k1 = 2. We set the slow start
threshold to1 in NS2. Packet size is 1500
bytes. The bottleneck router implements
RED. The RED parameters are,µmax = 0.1,
b = 150pkts and B = 600pkts. The queue av-
eraging weight is set to 0.002.

Figure 4: Flow 1, with RTT 10ms, compet-
ing with Flow 2 on a 100Mb bottleneck.T0

is set to4 and k1 = 8. We set the slow start
threshold to1 in NS2. Packet size is 1500
bytes. The bottleneck router implements
RED. The RED parameters are,µmax = 0.1,
b = 150pkts and B = 600pkts. The queue av-
eraging weight is set to 0.002.

Figure 5: Flow 1, with RTT 10ms, com-
peting with Flow 2 on a 100Mb bottleneck.
T0 is set to8 and k1 = 16. We set the
slow start threshold to1 in NS2. Packet
size is 1500 bytes. The bottleneck router im-
plements RED. The RED parameters are,
µmax = 0.1, b = 150pkts and B = 600pkts.
The queue averaging weight is set to 0.002.

5.4 Scalability Control
The scalability feature of TCP Libra was designed to ensure that
TCP Libra will scale to any delay bandwidth product. There will
be no need to change the protocol at some point for scalability is-
sues. It is well known from the literature that at some point of its
life TCP New Reno will need to be retrofitted or replaced. The con-
stant increase in Internet bandwidth will eventually make the pro-
tocol itself the bottleneck. TCP Libra scales its window increase
rate proportionally to the bottleneck capacity. A higher value ofk1

makes the algorithm more aggressive. This value must be selected
jointly with k2.

6. SENSITIVITY ANALYSIS
The sensitivity analysis of TCP Libra aims at determining how TCP
Libra is sensitive to errors in the estimate of the capacity. To this
end we derive a simple linearized model, which is based on the
assumption that the percentage error in the estimate is low.

6.1 Capacity Sensitivity
TCP Libra relies on the capacity estimation, which contributes to
esteem theα factor. We, hence, need to investigate the impact of es-
timation errors on the algorithm behavior. Recalling (43) we must
now introduce a new variable, the estimated capacity of the bot-
tleneck linkc(t). In Appendix II we evaluate the effect of errors
in the bottleneck link capacity estimation taking into account the
”perturbation” applied to the estimated bottleneck link capacity at
the beginning of each session. We find that the error percentage
error, with respect to the throughputx̃r, is given by:

Relative error =
Absolute error

x̃r
=

1

2
γ (19)

The TCP Libra control mechanism cannot, of course, correct the
error. However, it has the remarkable property of reducing its ef-
fect by the factor2. In terms of fairness, if two TCP users are
sharing the same bottleneck and one is overestimating capacity by
10%, it will achieve a throughput 5% higher than the user equipped
with an accurate estimate. This ”fairness” error is quite acceptable,
especially if we consider the fact that state of the art bottleneck ca-
pacity estimators for wired Internet path are quite accurate (well

within 10% errors if there is time to collect enough samples - as is
the case in off line estimation).

The above sensitivity analysis was carried out on a linearized model.
To verify that the1

2
factor impactproperty applies also tolarge

errors, we have carried out an experiment with 50% error. Both
Matlab and NS-2 simulation results are in presented Fig. 9 and 10.

7. PERFORMANCE EVALUATION
In this section we evaluate TCP Libra using the NS-2 [50] simula-
tion platform. We also compare it to thede factostandard transport
protocol in the Internet, namely TCP Sack, and to other TCP ver-
sions which claim some RTT-fairness. Further RTT-fairness claim-
ing protocols were previously evaluated against TCP Libra in [3].
In that paper, a simple dumbbell shaped topology with concurrent
flows but no background traffic was utilized to compare the perfor-
mance of TCP Libra, TCP New Reno, TCP Vegas, CUBIC and TCP
Hybla over configurations featured by including connections with
different RTTs. In particular, we gathered results that demonstrate
how our TCP Libra was the only one really guaranteeing a high de-
gree of RTT-fairness, whilst remaining friendly towards TCP New
Reno. More in detail we showed the advantage of utilizing TCP
Libra as the transport protocol by evaluating the following param-
eters:

i available bandwidth utilization;

ii intra-protocol RTT-fairness;

iii inter-protocol RTT-fairness;

iv friendliness to the legacy protocol TCP New Reno;

v scalability to many flows, large capacity and large RTT.

We are now aimed at studying the behavior of TCP Libra in more
complex scenarios that include heterogeneous cross traffic, i.e., con-
current long and short lasting TCP flows, and web traffic. More-
over, we compare our protocol with other RTT-fair proposals, namely:
TCP Sack, BIC and TCP Fast. For TCP Sack, we have used the ex-
isting NS-2 option; for BIC and TCP Fast we have downloaded and



Figure 6: Flow 2, with RTT 83ms, compet-
ing with Flow 1 on a 100Mb bottleneck.T0

is set to1 and k1 = 2. We set the slow start
threshold to1 in NS2. Packet size is 1500
bytes. The bottleneck router implements
RED. The RED parameters are,µmax = 0.1,
b = 150pkts and B = 600pkts. The queue av-
eraging weight is set to 0.002.

Figure 7: Flow 2, with RTT 83ms, compet-
ing with Flow 1 on a 100Mb bottleneck.T0

is set to4 and k1 = 8. We set the slow start
threshold to1 in NS2. Packet size is 1500
bytes. The bottleneck router implements
RED. The RED parameters are,µmax = 0.1,
b = 150pkts and B = 600pkts. The queue av-
eraging weight is set to 0.002.

Figure 8: Flow 2, with RTT 83ms, compet-
ing with Flow 1 on a 100Mb bottleneck.T0

is set to8 andk1 = 16.We set the slow start
threshold to1 in NS2. Packet size is 1500
bytes. The bottleneck router implements
RED. The RED parameters are,µmax = 0.1,
b = 150pkts and B = 600pkts. The queue av-
eraging weight is set to 0.002.

Figure 9: Flow 1, with RTT 82.6ms, competing with Flow 2 on
a 100Mb bottleneck.T0 is set to1 andk1 = 2. All other param-
eters are set as before. This flow overestimates the bottleneck
link capacity by 50%.

Figure 10: Flow 2, with RTT 83.4ms, competing with Flow 1
on a 100Mb bottleneck.T0 is set to1 and k1 = 2. All other
parameters are set as before. This flow estimates correctly the
bottleneck link capacity.

installed NS-2 modules developed by the authors and available on-
line [33] [51]. Finally, we have developed the module representing
our TCP Libra. We have set parameters for BIC and TCP Fast as
inspired by their simulation scripts available online and following
the directions provided by their official web sites.

Each experiment was run for 1000 seconds of simulation time in
order to gather results of the various protocols in their steady state.
We have adopted two different topologies for our analysis and im-
plemented several scenarios. The bottleneck was set with different
values and its buffer size was equal to the pipe size corresponding,
alternatively, to the bottleneck link pipe or to the longest connec-
tion pipe. Routers along the path were configured to implement
both drop tail and adaptive RED queuing policies. The advertised
window for each connection was set larger than the whole pipe size
so as to still occasionally drop packets, even when that connection
is the only active one. Finally, the packet size was set always equal
to 1000 bytes.

Unfortunately, space limitation allows us to present only a limited
subset of our simulations. In particular, we decided to show results
only for the 100Mbps bottleneck configuration, as it well repre-
sents a general case and results coming from other configurations
did not show particular differences worth to be deeply analyzed or
compared with the chosen one. For this bottleneck size, the alpha
and beta parameters utilized by TCP Fast were always set equal to
100. BIC parameters were instead set as in [57].

7.1 Benchmark Suite
The scientific community is feeling as more and more urgent the
necessity of defining a valid benchmark suite to objectively eval-
uate different protocols [12] [15] [56] [8]. Indeed, whenever a
new protocol is proposed, the authors independently choose the set
of experiments they are going to utilize to measure performance.
However, some experiment may exploit a too simplicistic configu-
ration which does not embody the real scenario in which the proto-
col would be utilized, while others may be too complex to permit



precise information acquisition on the new protocols behavior.

We decided to run a large set of simulations involving different
topologies, parameters configuration, typology of cross traffic, and
network workload. Among these, we had then to choose a subset
of information that may not exceed the page limitation of this paper
but, at the same time, provide relevant information.

Inspired by [12], a set of relevant metrics have been evaluated:fair-
ness, throughput, anddeployability. Since TCP Libra was devel-
oped to address the RTT-unfairness of regular TCP, one of the eval-
uated metric had obviously to be the achieved fairness degree and,
in particular, the RTT-fairness degree. The efficiency in utilizing
the available bandwidth is important as well, since there would be
no point in having fairness if this implied a conspicuous general
reduction of transmission speed (e.g., transmitting only one packet
every second would be an unpractical, even if RTT-fair, solution).
Finally, deployability regards the integration feasibility of the new
protocol within the current Internet. This includes the amount of
modifications that has to be performed both in terms of complex-
ity of the code and of involved nodes typology (i.e., routers, end-
nodes). Furthermore, the large volume of nodes and domains com-
posing the Internet does not allow a sudden upgrade from one ver-
sion of TCP to a new one but rather a slow evolution. In order to be
factually deployed over the Internet, any new protocol must hence
be able to coexist with the legacy one. We deem that the deploya-
bility metric should also include a measure for friendliness toward
existing protocols (i.e., TCP New Reno or TCP Sack).

We define a new TCP as friendly toward the legacy one if the for-
mer does not affect the performance of the latter and viceversa,
when concurrently employed. In essence, the new TCP may even
obtain better results than those achievable by concurrent traditional
TCP; however, it should do this by exploiting the inefficiencies of
the latter rather than aggressively overwhelming its functionalities
and affecting its performance.

The most largely adopted tool for evaluating the fairness degree of
TCP flows is Jain’s Fairness index [22]. This index can be used
also to specifically evaluate the RTT-fairness as required in our
case. We have hence computed its value for every configuration
adopted in our simulations. However, it has to be said that there
is not a complete consensus in the scientific community about the
need for reaching the RTT-fairness goal. In particular, flows that
traverse different number of congested node may deserve differ-
ent achievable throughput [12] [9] [13]. In point of this, we believe
that RTT-fairness should be achieved whenever there is an identical
amount of utilized resources, regardless of the RTTs experienced
by the various concurrent flows. Our standpoint may align the di-
verse views on this topic as we use the term resource to indicate the
number of queues (and therefore congested links) that each flow
has to travel on its path from the source to the destination and not
the physical length of the traversed links.

The efficiency of the protocols has been analyzed through the good-
put and, in particular, through its value with respect to its maximum
achievable value on the considered bottleneck link. The goodput
can be distinguished from the throughput since the former repre-
sents the subset of the latter that embodies the useful traffic ef-
fectively received by the destination. To measure this metric in
our simulations we have counted the number of packets acked by
the receiver and compared this value with the maximum achievable
amount of packets that could be sent on the considered link.

Finally, friendliness towards legacy TCP represents an important
metric but also a difficult one to be evaluated. Indeed, it is not suf-
ficient that a new protocol obtains higher (or lower) sending rate
with respect to regular TCP to determine unfriendliness: the new
protocol has to be proven as affecting the performance of the old
one. For this reason, we have first computed the average good-
put of flows when only TCP Sack is utilized for all of them. We
have then substituted TCP Sack with another protocol on half of
the connections and verified the average value of the goodput for
the remaining TCP Sack flows. This clearly shows how (if) the new
protocol impact on the legacy one.

7.2 Parking Lot Topology
A parking lot topologyis a linear network generally used as an ex-
ample for a multiple bottleneck links configuration. Its links can
be featured with different bandwidth and delays and its flows may
traverse it utilizing diverse hops. It is frequently exploited in scien-
tific literature as a simplification for representing connections with
different RTTs, number of hops, and cross traffic between client
and server.

Fig. 11 shows a simulation network involving 8 connections. Two
of these connections (i.e., flows 1 and 2) have 180ms of minimum
RTT and traverse 9 hops, other two (i.e., flows 3 and 4) have 90ms
of minimum RTT and traverse 9 hops, and the remaining 4 flows
(i.e., flows 5-8) utilize 3 hop paths featured with 30ms of minimum
RTT.

To overcome the phase effect artificially introduced by NS-2, the
actual minimum RTT of the aforementioned connections was slightly
modified in positive or negative with a maximum difference of
1ms [32]. Moreover, all the flows where randomly starting within
the first 5 seconds of simulation.

In all the simulations we run, for every considered protocol, the
Jains index corresponding to flows 5-8 hits values superior to 0.99
thus denoting a very high fairness among them. In Fig. 12, we
present the Jains index values achieved during the same simula-
tions by flows 1-4, for each different protocol, and with the buffer
set equal to the bottleneck pipe size and the longest connection pipe
size, respectively. As clearly showed by the chart, TCP Libra is the
only protocol that is never affected by RTT differences among the
various connections. TCP Sack achieves a very high Jains index
when large buffers are present on routers and BIC shows accept-
able values regardless of the buffer size; yet we have to analyze
figures 13 14 to reconsider (in negative) their results. Fig. 13,
in fact, demonstrates that BIC significantly suffers from the con-
sidered topology and that its fairness degree is mainly obtained at
the cost of a very low goodput. A similar problem is experienced
also by TCP Sack. Simulation results showed that the short RTT
connections 5-8 largely affect the medium and long RTT connec-
tions 1-4, leaving them only a very limited share of the available
bandwidth. This can be deduced also by looking at Fig. 14 where
the Jains index is computed over all the 8 connections. TCP Sack,
which had an acceptable Jains index for connections 1-4 and an
optimal one for connections 5-8, obtains a very poor value when
considering all the 8 connections together.

Fig. 14 also shows that, TCP Libra results one of the fairest proto-
col when evaluating long and short RTT connections together, even
if it does not hit optimal fairness degrees. However, this is per-
fectly coherent with what we declared in section 7.1: “RTT-fairness
should be achieved whenever there is an identical amount of uti-
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Figure 13: Efficiency in the Parking Lot
Topology

.

lized resources, regardless of the RTTs experienced by the various
concurrent flows”. In fact, optimal RTT-fairness is achieved among
flows utilizing the same number of congested queues along the path
between sender and receiver (i.e., flows 1-4 encounter 4 congested
queues, while flows 5-8 encounters only 1).

This claim is confirmed also by Fig. 15 where the Jains index is
showed for TCP Libra supporting a varying number of short RTT
connections. In particular, ”0 cross tr” corresponds to having no
cross traffic along the backbone (i.e. only flows 1-4 are running),
”1 cross tr” means that flow 5 was active, and so on until ”4 cross
tr” which restores the original configuration where all the 8 con-
nections are simultaneously transmitting packets. In the ”1 cross
tr” case, all the 5 active flows share the unique congested link in
the configuration thus achieving optimal RTT-fairness regardless of
the RTTs experienced by the various flows and the number of hops
on their paths. As long as we increase the number of cross traffic
along the backbone, the difference in terms of number of traversed
congested link augments thus generating unfairness among flows
1-4 and flows 5-8, even if maintaining the fairness within these two
groups.

The deployability of the various protocols is quantitatively evalu-
ated in Fig. 16 by measuring the goodput of TCP Sack flows when
coexisting with other flows exploiting an alternative transport pro-
tocol. More in detail, the flows were evenly divided between TCP
Sack and, in turn, each of the other protocols. TCP Sack was uti-
lized on flows 2 (180ms of RTT), 4 (90ms of RTT), 6 and 8 (30
ms of RTT each), while the evaluated alternative protocol was uti-
lized on flows 1 (180ms of RTT), 3 (90ms of RTT), 5 and 7 (30 ms
of RTT each). Fig. 16 presents a set of columns for each of the
tested protocols; the first one corresponds to the referring case of
8 TCP Sack flows, while the other three sets represent the goodput
achieved in average by TCP Sack on each of its flow classes (in
terms of RTT) and as the sum of all of its driven connections.

Considering only the total goodput achieved, all the proposed pro-
tocols seems to be friendly towards TCP Sack. However, it is evi-
dent that TCP Fast annihilates the TCP Sack multihop connections
characterized by 90ms and 180ms of RTT. Conversely, when BIC
is employed on competing flows, TCP Sack increases its achieved
goodput. As seen before, BIC suffers in this kind of topology, with-
out reaching decent data rate, thus leaving a lot of space to con-

current protocols. The unfriendliness of BIC toward TCP Sack is
hence expressed by the impossibility of coexisting efficiently with
the legacy transport protocol in this scenario.

Therefore, TCP Libra is the only transport protocol that results fac-
tually friendly toward TCP Sack. The aggregate throughput of the
concurrent TCP Sack, in fact, diminishes of only about 11% with a
desirable, even if narrow, redistribution of the goodput from the
30ms RTT flows to the 90ms and 180ms RTT ones. We could
hence say that TCP Libra also helps coexisting TCP Sack flows to
(slightly) improve their fairness degree. Furthermore, this result is
achieved whilst preserving the inter-protocol RTT fairness among
its driven flows.

7.3 Dumbbell Topology
Thedumbbell topologyis widely adopted for network simulations.
Its aim is that of simply representing a set of connections sharing
the same bottleneck. We have used it to analyze how concurrent
heterogeneous traffic may affect the performance of the proposed
protocols.

For our experiments, we have adapted the simulation scripts uti-
lized by [57] and available online. Fig. 17 shows with more de-
tails our implementation of the dumbbell topology. Similar to the
parking lot topology, each link is configured so as to have different
RTTs and different starting times in order to avoid the phase effect.
In particular, the minimum RTT is around 40ms for the short con-
nections (from S2 to R2 and between Bi and Ci) and around 240ms
for the longest one (from S1 to R1).

These simulation scripts are able to generate a significant amount
of concurrent traffic; in particular, two flows, one going from S1 to
R1, the other one going from S2 to R2, featured with different RTTs
and relying on the evaluated transport protocol compete for the bot-
tleneck with other traffic. Concurrently, other flows go from Bi to
Ci, or from Cj to Bj and, specifically, i) 4 regular long-lived TCP
Sack flows traveling forward, ii) 4 regular long-lived TCP Sack
flows traveling backward, iii) 25 small TCP flows having their ad-
vertised window limited to 64, and iv) an amount of web traffic in
both directions able to occupy from 20% to 50% of the available
bottleneck bandwidth when no other flows are present.

For the presented results, the buffer size at the bottleneck was alter-
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Figure 18: Jains index values achieved by
the evaluated protocol while competing with
a large amount of concurrent traffic. The
concurrent connections were both short and
long lived TCP session in both directions.
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Figure 19: Jains index values achieved by
the evaluated protocol while competing with
a large amount of concurrent traffic. The
concurrent connections were both short and
long lived TCP session in both directions. -
Buffer= longest connection pipe size

natively set equal to the bottleneck link pipe size or to the longest
connection pipe size. Results for the former case are reported in
Fig. 18 while results for the latter are in Fig. 19. As it is easily
observable, TCP Libra generally overwhelm the other protocols in
terms of achieved fairness. When small buffers are employed, this
result is even more evident since all the other protocols performs
very poorly in terms of fairness.

8. RELATED WORK
In recent years a large amount of research has been conducted to
understand TCP behavior under different scenarios and network
conditions. Particularly remarkable are the efforts to provide a
well-defined mathematical model suitable to study the behavior
and stability of TCP and active queuing management (AQM) tech-
niques in the Internet. In this section we will report the leading
theoretical work on congestion control and AQM, focusing mainly
on RTT-fairness and stability.

The RTT-bias, as well as the bursty nature of TCP traffic, was
first experimentally discovered by Sally Floyd and Van Jacobson
in [13]. They also proposed a solution for the RTT-bias based
on a constant increase algorithm for the TCP window at steady
state. In a further study they also introduced a network layer tech-
nique, namely RED, designed as a relief from the effects of traf-
fic bursts [9] [10]. Briefly, RED monitors the queue length at the
routers and probabilistically drops a random TCP packet from the
queue upon reaching a certain queue length —thus leading to a
more regular traffic pattern [14]. Henderson in [18] [19] shows
that using constant increase and RED to achieve RTT-fairness leads
to an unstable solution for links with long propagation delays and
small buffers such as satellite links.
A detailed mathematical model for the TCP throughput at steady,
including the the Fast Retransmit–Fast Recovery phases and TCP’s



timeout impact, was first introduced by Towsley in [43] and [44].
Additionally, in [42] the same authors developed a new fluid based
modeling methodology for studying TCP behavior in a network
that features AQM routers. In particular, the proposed approach
models TCP behavior that includes the transient effects introduced
by AQM routers such as RED gateways.2

A fresh impulse to congestion control modeling in communica-
tion networks has to be acknowledged: Frank Kelly introduced
a new mathematical formulation for congestion control in com-
munication networks in terms of non-linear optimization problem
(primal/dual). The network is modeled as an interconnection of
users/sources which generate data and resources/links. The key
constraint is that the network control information can only be passed
along the same routes as the data that is being transmitted, and with
the same propagation delay as data [31]. In [30] and [17] it was
shown that TCP stability can be achieved in the aforementioned
network model if the TCP utility function is concave [28] [29].
Kelly’s results have been extended by several researchers. In partic-
ular, Vinnicombe, Massoulie, Johari and Tan addressed the stability
in network congestion control schemes [26]. Vinnicombe showed
that delay instability is characterized by the increase rule; while Ott
has shown that stochastic instability is primarily influenced by the
decrease rule [53] [55] [41]. Additionally Vinnicombe and Mas-
soulie derived the stability condition for scenarios with heteroge-
neous delays [54] [40]. A further substantial advancement in devel-
oping the theory for network congestion control was made by Low,
Paganini and Doyle. They fully exploited thePrimal/Dual model-
ing approach, finding the conditions needed for a scalable and sta-
ble congestion control for the Internet [35] [45] [47] [46] [37] [34].
The theoretical results have been used to drive the design of an en-
hanced AQM technique namely Random Early Mark (REM) that
improves RED performance while reducing the drawbacks, and
TCP Fast that contains a congestion control mechanism, based pri-
marily on queuing time, able to guarantee network stability and
high utilization in multi-gigabit networks [24,25] [4] [36].

Focusing our attention on the TCP RTT-bias it is worth noting that
there are few recent TCP variations that have tried to address RTT-
unfairness. In particular, TCP BIC and CUBIC [57] [52] feature a
linear RTT-fairnes, TCP Hybla [7] enhances the solution proposed
by Floyd in [10] and provides RTT-fairness under a certain stability
bound, TCP Vegas and FAST [6] [24] provide good RTT-fairness
when implementing the only TCP in the Network.

In summary, in almost a decade new modeling techniques for net-
work congestion control have been developed which offer a new
set of mathematical tools for understanding scalability, fairness and
stability limits of network algorithms and protocols. In particular,
network congestion control has been modeled as a non-linear op-
timization problem in which the primal models the system as seen
from the source/destination point of view, while the dual models the
system as seen from the resource point of view. The use of this for-
mulation benefits theoretical studies of the system dynamics from
both network and transport layers.

2The fluid model presented in [42] shows, as a potential source of
instability, the RED adaptive sampling and averaging algorithms.
These algorithm, indeed, are dependent on packet size and arrival
rates.

9. CONCLUSIONS AND FUTURE WORK
In this paper we introduced and analyzed TCP Libra, a new RTT
delay measurement aware protocol. The results show that TCP Li-
bra is RTT-fair, throughput efficient and friendly to legacy TCP
protocols. TCP Libra is a sender-side extension, thus allowing ex-
pedited deployment in the network. We have developed an ana-
lytic model of TCP-Libra’s stability and have carefully evaluated
its sensitivity to various protocol parameters. A critical parameter
in TCP Libra implementation is bottleneck capacity C. The cur-
rent design assumes prior knowledge of C, using source initiated
estimates collected off line (e.g., CapProbe, Pathrate, etc) or dur-
ing the slow start phase. An error in capacity estimate may lead to
unfair sharing. Analytic and simulation results show that the result-
ing flow imbalance is less than the capacity error. The simulation
results support the main innovative claims of TCP Libra, namely:
the scheme is TCP fair over many diverse scenarios with a broad
range of network speeds and RTT ratios; the scheme is friendly to
legacy TCP protocols, and; the RTT fairness enforcement does not
penalize efficiency.

More work is under way in several directions: incorporation of the
bottleneck capacity estimation technique in the TCP Libra source
only implementation; evaluation of the accuracy of the capacity
estimate; extensions to mixed wired and wireless scenarios with
random errors.
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APPENDIX
A. APPENDIX I
A.1 Dynamic Analysis
Let us start by recalling the fluid model for the TCP New Reno
congestion control scheme:

dxr(t)

dt
=

xr(t− T̃r)

T̃r

(
ar

xr(t)T̃r

(1− λr(t))− brxr(t)T̃rλr(t))

(20)
This is an NL differential equation in the variablexr(t) and models
the rate’s behavior of ther-th flow. For steady state equilibrium we
let t→∞. The stable point corresponds to the value ofxr(t) that
nullifies the gradient. It is found by setting the right hand side= 0.

We then have:

x̃r =
1

T̃r

s
ar

br

1− λ̃r

λ̃r

(21)

wherex̃r, T̃r, λ̃r are the stable points that are reached after the tran-
sient phase by ther-th connection in the network.

A dynamic system may be generally expressed as:(
ẋ = f(x, u)

y = g(x, u)
(22)

wherex is the vector of state variables,u is the vector of inputs
to the system andy is the vector of outputs. We want to linearize
system (20) around its stable point, in order to express it as (for a
strictly causal system):(

ẋ = A x + B u

y = C x
(23)

In (20) we may identifyxr(t) andxr(t−Tr) as state variables [38],
and λr(t) as the input to the system. We linearize (20) around
its stable point in order to study the behavior of the system in its
neighborhood. In equations (24) to (26) we show the results of
computing the derivatives of (20) with respect to the state and input
variables, and we substitute the value of (21) forxr(t) andxr(t−
T̃r).

(
df

dxr(t)
)eq = −2

brλ̃r

T̃r

s
ar

br
(
1− λ̃r

λ̃r

) (24)

(
df

dxr(t− T̃r)
)eq = 0 (25)

(
df

dλr(t)
)eq = − ar

T̃ 2
r λ̃r

(26)

In the linearization we assume thatxr(t) = x̃r + δxr(t), xr(t −
Tr) = x̃r + δxr(t− T̃r), andλr(t) = λ̃r + δλr(t) and that these
quantities vary slowly around their equilibrium point. We are now
able to findA and B, both |S| x |S| matrices, where|S| is the
number of sources, in the linearized system:

A = diag

8<:−2
brλ̃r

T̃r

s
ar

br
(
1− λ̃r

λ̃r

)

9=; (27)



Figure 20: Fluid flow model of a network with n competing flows
over a single bottleneck link. We have used this modeling ap-
proach in our time-continuos simulations in Simulink. In par-
ticular, we derived thẽλ, T̃ , x̃ values from NS-2 long run simu-
lations and studied the behavior of the fluid flow system for little
perturbatins. The Simulink results are consistent to the NS-2 re-
sults and to the modeling intuition.

B = diag


− ar

T̃ 2
r λ̃r

ff
(28)

The linearized form of (20), for ther-th flow, is then :

δẋr(t) = −2
brλ̃r

T̃r

s
ar

br
(
1− λ̃r

λ̃r

)δxr(t)−
ar

T̃ 2
r λ̃r

δλr(t) (29)

The Laplace transform of the transfer function results to be (here
we have thatC = I, the identity matrix, in (23), since the outputy
is equal to state variablex):

G(s) = C(sI −A)−1B (30)

= diag

8<:− ar

T̃ 2
r λ̃r

(
1

s + 2 br λ̃r

T̃r

q
ar
br

( 1−λ̃r

λ̃r
)
)

9=; (31)

Recall thatar andbr vary from implementation to implementation
of the AIMD-type control mechanism. Now we choose these pa-
rameters in a way that will lead to the desired fairness results. The
valuesâr andb̂r that we propose are:

âr ←
αrT̃

2
r

T0 + T̃r

ar (32)

b̂r ←
T1

T0 + T̃r

br (33)

Note that a new coefficientαr was introduced. Its setting and func-
tion will be explained later.

These values lead to the following stable point for ther-th source:

x̃r =

s
ar

br

αr

T1

1− λ̃r

λ̃r

(34)

We now have that (27) and (28) become:

A = diag

8<:−2T1λ̃rbr

T0 + T̃r

s
αrar

T1br

1− λ̃r

λ̃r

9=; (35)

B = diag


− αrar

(T̃r + T0)λ̃r

ff
(36)

With these transformations, recalling (31), we have that the new
Laplace transform of ther-th system becomes:

Gr(s) = − α̃rar

(T̃r + T0)λ̃r

1

s + 2T1λ̃rbr

T0+T̃r

q
αrar
T1br

1−λ̃r

λ̃r

(37)

We are at this point still missing an important part of the system, the
modeling of the network portion. In the section on queue models
we have have that the queue dynamics at linkl may be modelled
as:

q̇l(t) = (yl(t)− cl)
+ (38)

from which we can derive, assuming that these quantities vary slowly
in the neighborhood of their equilibrium point:

δq̇l(t) = δyl(t) (39)

In the Laplace domain we find that the above expression may be
written asδQl(s) = δ Yl(s)

s
.

The droptail buffer is a non-linear element in our system. Drop-
tail acts as a step non-linearity, if the queuing is below a threshold,
i.e. the maximum buffer capacity, then no congestion information,
i.e. loss, is feedbacked to the sender. In case the queue overshoots
buffer capacity, information is fed back in order to have the trans-
mitters lower their sending rate.

B. APPENDIX II
In this Appendix we evaluate the impact of capacity estimation er-
rors on the equilibrium solution, more precisely the value of through-
put at equilibrium. We begin by linearizing the system at the equi-
librium point. We recall that at equilibrium:

(
df

dcr(t)
)eq =

α̃′r(1− λ̃r)

T̃r + T0

(40)

where:

f(xr(t), xr(t− T̃r), λ̃r(t)) = (41)

=(42)

xr(t− T̃r)

T̃r

(
α̃rT̃r

xr(t)(T̃r + 1)
(1− λr(t))−

2

3

xr(t)T̃rλr(t)

T̃r + 1
) (43)

T̃r, λ̃r are the equilibrium round-trip time and probability of loss,
whileT0 is one of Libra’s parameters. We also remind thatαr(t) =

k1cre
−k2

Tr(t)−Tmin
Tmax−Tmin , with cr the bottleneck capacity,Tr(t) the

instantaneous round-trip time,Tmin the minimum round-trip time
andTmax the maximum round-trip time seen by ther-th flow, and
k1 andk2 Libra’s parameters. Since we are assuming thatcr isn’t



anymore set to the bottleneck capacity, due to an error in estima-
tion, we can then setαr(t) = α

′
r(t)c(t). We assume the equilib-

rium valuesT̃r, λ̃r, x̃r and α̃r to be the same as before and that
the perturbations in capacity are very small. We can now write
the linearized model, with the superposition of the second input
cr(t) = c̃r + δcr(t):

δẋr(t) = −2
brλ̃r

T0 + T̃r

s
α̃rar

T1br
(
1− λ̃r

λ̃r

)δxr(t)−
α̃rar

(T0 + T̃r)λ̃r

δλr(t)+
arα̃′r(1− λ̃r)

T̃r + T0

δc(t)

(44)

we now have one more input to the system. The new input is not
caused by feedback; it is a disturbance applied directly to the sys-
tem’s input. We want to estimate the impact on throughput. Using
Laplace tranforms, we have:

Xr(s)

Cr(s)
Λ(s)=0

=

α̃′r(1−λ̃r)

T̃r+T0

s + 2 br λ̃r

T0+T̃r

q
α̃rar
T1br

( 1−λ̃r

λ̃r
)

(45)

=
α̃′r(1− λ̃r)

(T̃r + T0)s + 2brλ̃r

q
α̃rar
T1br

( 1−λ̃r

λ̃r
)

(46)

We assume capacity is measured off line, before the start of the TCP
session, or during the slow start phase. Thus the error is constant
throughout the life of the connection. The input disturbance may be
written asδc(t) = ĉ. In the Laplace domain this becomesĈ(s) =
ĉ
s
. To evaluate the impact on throughputxr(t), we setxr(t) =

x̃r + x′r(t), and derive:

limt→∞x′r(t) = lims→0sX
′
r(s) (47)

= lims→0s
ĉ

s

α̃′r(1− λ̃r)

(T̃r + T0)s + 2brλ̃r

q
α̃rar
T1br

( 1−λ̃r

λ̃r
)

(48)

=
α̃′r(1− λ̃r)ĉ

2brλ̃r

q
α̃rar
T1br

( 1−λ̃r

λ̃r
)

(49)

=
α̃′r(1− λ̃r)ĉ

2brλ̃rx̃r

(50)

=
α̃′r(1− λ̃r)ĉ

2brλ̃rx̃r

C̃r

C̃r

(51)

=
1

2

x̃2
r ĉ

x̃rC̃r

(52)

=
1

2
γx̃r (53)

The percentage error, with respect tox̃r is given by :

Relative error =
Absolute error

x̃r
=

1

2
γ (54)

The system wont dump the error to zero, but will alleviate its effect
on the output. This is an acceptable behavior, considering we are
assuming the capacity percentage estimation error small. This error

depends strongly on the estimation method that is implemented.
More work has to be done on the understanding of the accuracy of
the existent estimation techniques and on understanding how the
system will vary for greater percentage errors in estimates.


