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Abstract

Search-augmented LLMs often struggle with complex reasoning tasks due to inef-
fective multi-hop retrieval and limited reasoning ability. We propose AceSearcher,
a cooperative self-play framework that trains a single large language model (LLM)
to alternate between two roles: a decomposer that breaks down complex queries
and a solver that integrates retrieved contexts for answer generation. AceSearcher
couples supervised fine-tuning on a diverse mixture of search, reasoning, and
decomposition tasks with reinforcement fine-tuning optimized for final answer
accuracy, eliminating the need for intermediate annotations. Extensive experiments
on three reasoning-intensive tasks across 10 datasets show that AceSearcher outper-
forms state-of-the-art baselines, achieving an average exact match improvement of
7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B
matches the performance of the giant DeepSeek-V3 model using less than 5% of
its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses
existing search-augmented LLMs with up to 9× more parameters, highlighting its
exceptional efficiency and effectiveness in tackling complex reasoning tasks.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance in areas such as natural
language generation [65, 80, 17] and complex reasoning [26, 20]. However, they often fall short
when handling long-tailed or dynamically evolving knowledge [48]. To address these limitations, a
growing body of work has explored augmenting LLMs with external search tools that retrieve relevant
information at inference time. Search-augmented LLMs not only improve factual accuracy [2, 58],
but also facilitate efficient adaptation to new tasks and domains without costly parameter updates [78].

Despite notable advances in retrieval-augmented generation (RAG) [2, 39, 45, 86, 50], most existing
approaches are restricted to relatively simple questions [33, 48] solvable through single-turn retrieval.
However, real-world applications often demand more complex reasoning, requiring (i) multi-hop
retrieval to gather relevant evidence from large corpora due to the low recall of direct single-step
retrieval [83], and (ii) reasoning capability to integrate multiple pieces of information beyond span
extraction for response generation [9]. To address these challenges, prior works propose multi-step
search via iterative prompting [68, 31, 36, 42, 88], often relying on powerful, closed-source LLMs
with strong reasoning abilities. Alternatively, tree-search algorithms have been explored to improve
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retrieval and reasoning at inference time [27, 72, 77], but at the expense of increased latency. Recent
efforts employing reinforcement learning (RL) frameworks allow LLMs to interact with search
engines [30, 92, 62, 4, 63]. While promising, these methods are often memory-intensive and thus
less practical for deployment in resource-constrained environments. Additionally, their exclusive
reliance on QA datasets for supervision limits the broader potential of LLMs to integrate search with
complex, multi-step reasoning across a wider range of tasks.

Motivated by these challenges, we aim to develop an efficient, data-centric training recipe to enhance
the capabilities of LLMs for reasoning-intensive search scenarios. Inspired by human problem-
solving strategies – where complex tasks are decomposed into simpler subproblems [93, 31, 59], we
propose AceSearcher that trains LLMs to act as two roles: decomposer and solver. The decomposer
breaks down the original question into subquestions to guide retrieval, while the solver generates
intermediate and final answers by integrating subquestions, their answers, and context.

We then introduce a two-stage fine-tuning framework to train both the decomposer and solver modules.
In the first stage, we perform supervised fine-tuning (SFT) by extending existing open-domain QA
datasets with open-source reasoning data. This covers task decomposition and problem-solving in
both text and code. This simultaneously boosts the model’s ability to extract relevant information
from context as well as strengthens its general reasoning capabilities. In the second stage, we
apply reinforcement fine-tuning on targeted reasoning and QA tasks, using rewards derived solely
from final outputs. To overcome the lack of intermediate annotations, we hypothesize that better
decompositions lead to more accurate answers. The solver is reinforced to produce correct answers
based on decompositions and context, while the decomposer is optimized to maximize the solver’s
accuracy. This framework promotes joint structured reasoning across both roles with one unified
model, while eliminating dependence on supervision from proprietary frontier models. Notably,
AceSearcher achieves strong performance using iterative preference optimization, without relying on
memory-intensive online RL training or costly inference-time scaling.

Our contributions can be summarized as follows:

• We introduce AceSearcher, a cooperative self-play framework designed to jointly enhance LLM’s
capabilities in both search and reasoning. By introducing two roles, namely the decomposer and
solver, AceSearcher equips a single LLM with joint skills of task decomposition and task solving,
providing an efficient and flexible solution for complex reasoning in search-augmented settings.

• We propose a two-stage fine-tuning framework that first applies SFT on a mixture of retrieval,
reasoning, and decomposition datasets, followed by reinforcement fine-tuning using rewards solely
from the final answer to train the decomposer and solver without intermediate supervision. This
approach can be readily applied to LLMs with varying sizes (1.5B - 32B as shown in our study) to
enhance the multi-step reasoning ability of search-augmented LLMs.

• We conduct extensive evaluations of AceSearcher covering three tasks across ten public datasets.
Compared to strong baselines, including recent reasoning models and RL-enhanced search LLMs,
AceSearcher demonstrates strong empirical performance with 7.6% gain on average. Moreover,
AceSearcher demonstrates high parameter efficiency: the 1.5B variant matches the performance of
models 10× larger on QA tasks, highlighting its suitability for low-resource settings.

2 Related Works

Reasoning-intensive Search/Retrieval. Standard RAG pipelines often consider single-step retrieval
only and cannot handle complex questions well [34, 58, 18]. To incorporate reasoning into RAG
pipelines, earlier research [68, 70, 71, 36, 88] design multi-turn prompting techniques for complex
QA. Besides, several works [2, 75] leverage SFT on high-quality chain-of-thoughts to improve the
reasoning skills of LLMs, but without explicit task decomposition. Additionally, [27, 77] design
reward-guided search during inference time, [22, 79] trains the query refinement model based on
the feedback of generator LLMs, and [6, 37] leverage multi-agent fine-tuning to further enhance
reasoning performance, but at the cost of serving multiple LLMs in deployment.

Self-play Finetuning for LLMs. Self-play [60] is an effective technique that enables LLMs to learn
through self-interaction, promoting diverse experience trajectories and prompt coverage. Recent stud-
ies have applied self-play to alignment [8, 76, 84], instruction following [13], theorem proving [15],
and reasoning [10, 89]. Unlike these works, we consider collaborative self-play for complex problem
solving, and tailor LLM self-play frameworks specifically for reasoning-intensive RAG applications.
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Figure 1: Overview of AceSearcher. AceSearcher contains a two-stage training process to teach LLM
for joint precise question decomposition and answer generation with cooperative self-play.

RL for Search-augmented LLMs. Very recently (concurrent to us), multiple studies [4, 62, 30, 92,
29] attempted to leverage the RL pipeline for RAG by viewing the search as an external tool and
using open-domain QA datasets (e.g. NQ [33], HotpotQA [83]) to create verification rewards. In
contrast to these approaches, we propose a data-centric pipeline that enhances LLM retrieval and
reasoning capabilities through a unified self-play fine-tuning framework. Our method demonstrates
strong generalization across a broad range of reasoning-intensive RAG tasks beyond multi-hop QA.

3 Overview of AceSearcher

In this section, we first define the problem setup and present an overview of AceSearcher. Then, we
introduce the training and inference pipeline for AceSearcher.

3.1 Problem Formulation

In our setting, let Q denote the space of questions and A the space of all possible answers. Given a
question q ∈ Q and corpus C (e.g. Wikipedia) that provides background knowledge, the retriever
(often embedding models) first find a small set of relevant passages D = {d1, ...dk}, then the LLM
fθ generates the output a′ ∈ A conditioned on both q and D as a′ ∼ pθ(· | q,D). Note that a′ can be
a short- or long-form response, depending on the type of task. In reasoning-intensive scenarios, the
question q may require multi-step reasoning beyond simple retrieval to produce accurate answers.

3.2 AceSearcher: A Cooperative Self-Play Framework

Our AceSearcher model, shown in Figure 1, tightly couples reasoning and search by enabling a single
LLM to act as two roles (controlled by different input and prompt templates):

⋄ A decomposer ρ that converts the original question q into a sequence of subquestion templates1

z = (z1, z2, . . . , zn), where the number of subquestions is n and zi may depend on answers to earlier
subquestions. These templates are sampled from z ∼ pθ(· | q).
⋄ A solver π that generates intermediate answers w = (w1, w2, . . . , wn) and final answer a′ in a
stepwise manner: For each subquestion zi ∈ z, the solver produces the intermediate answer as wi ∼
pθ(· | zi, w<i,Di), where w<i denotes the answers to previous subquestions, Di = {di,1, . . . , di,k}
is the set of retrieved passages for zi. After solving subquestions, the solver predicts the final answer
a′ ∼ pθ(· | q, z, w,D) based on the original question, intermediate answers and context passages.

Joint Learning Objective. Given the question q, we train θ to maximize the probability of the LLM
for generating the final answer a. In our framework, the learning objective can be written as

pθ(a | q) =
∑
z

pθ(z | q)

(∑
w

pθ(a | q, z, w) pθ(w | q, z)

)
(3.1)

In practice, marginalizing over all possible decompositions z and intermediate answers w is in-
tractable. To approximate it during training, we sample a small set of candidate (z, w) paths and

1We refer to them as “templates” since some subquestions are determined by answers to previous ones. An
example template [19] is: “Q1: What items did Aristotle use?; Q2: Is laptop in #1?”. In practice, the template z
is a text snippet with a fixed format and will be parsed to multiple subquestions, detailed in Appendix E.
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identify the most promising ones to encouraging the decomposer to help the solver generate the
correct answer. At inference time, given a question q, the decomposer ρ generates a subquestion
sequence z, and the solver π reasons over the intermediate answer to derive the final answer a′.

4 Two-Stage Finetuning for AceSearcher

To enable the LLM to perform both roles effectively, we first apply SFT on publicly available datasets
to establish its foundational capabilities. Subsequently, we perform reinforcement fine-tuning to
further improve LLM’s capabilities, using only final answers as supervision.

4.1 Stage I: Supervised Finetuning (SFT)

Although recent studies have introduced data mixing strategies for search-augmented LLMs [39, 45,
86, 37], they focus on enhancing the LLM’s ability to extract answers from provided contexts. In
contrast, our setting presents a greater challenge – requiring the LLM to automatically decompose
and solve complex questions across a diverse range of tasks that requires reasoning. Towards this
goal, we extend the SFT data mixture Dsft for the following tasks:

• Context-rich QA Data. We follow [45, 39, 86, 37] to leverage multiple QA datasets to enhance the
LLM’s capability of using context for generation. Specifically, we consider the following datasets:
NQ [33], SQuAD [56], DROP [16], NarrativeQA [32], Quoref [12], ROPES [38], FEVER [66],
TAT-QA [94], which contains a question, context passages, and an answer.

• Question Decomposition Data. To improve the LLM’s ability to decompose complex questions
into simpler subproblems, we incorporate GSM8K [11], ConvFinQA [9], and StrategyQA [19].
These datasets require generating a sequence of subquestions for solving the original problem.

• Chain-of-thought Data. To enhance multi-step reasoning, we leverage chain-of-thought datasets
including GSM8K [11], TabMWP [46], and IfQA [85]. Inspired by studies showing that combining
Chain-of-Thought (CoT) [74] and Program-of-Thought (PoT) [5] rationales can boost reasoning
capabilities, we incorporate MathInstruct [87], which contains CoT and PoT style prompts.

Detailed descriptions of datasets, prompt formats, and the number of training examples are provided
in Appendix D, E. In total, we curate 180K training examples in the SFT stage. The LLM is fine-tuned
using the standard next-token prediction objective.

4.2 Stage II: Preference-based Reinforcement Finetuning (RFT)

While SFT equips the LLM with basic capabilities for question decomposition and answer generation,
it relies on richly annotated prompts with intermediate question decomposition and chain-of-thought
annotations – resources that are limited in practice. To overcome this scarcity, we further fine-tune
the LLM on prompts D = {(q, a)} covering RAG and context-reasoning scenarios that contain only
the final answer a∗ given the question q. We frame this setting as an interactive environment, where
the LLM learn to actively decompose the question and generate intermediate reasoning steps with
external context. This motivates the use of reinforcement learning to optimize the reasoning trajectory
in the absence of explicit intermediate supervision.

⋄ Environment for RAG. We collect labeled pairs from multi-hop QA and fact verification datasets,
including HotpotQA [83], 2WikiMHQA [21] and HOVER [28], which require the usage of retrieval
to generate accurate answers. To formulate the RAG framework as an environment, the query
decomposer ρ first generates a sequence of candidate sub-questions z = (z1, . . . , zn) ∈ Qn. For
each sub-question qi, k relevant documents are retrieved, denoted by Di. The solver pθ then produces
intermediate solutions by generating wi ∼ pθ (· | zi, w<i,Di), conditioned on the current sub-
question, previously generated answers, and retrieved context. Finally, the solver predicts the final
answer as a′ ∼ pθ(· |

⋃n
i=1 zi,

⋃n
i=1 wi,

⋃n
i=1 Di).

⋄ Environment for Context-Rich Reasoning. Beyond RAG-specific tasks, we also focus on
improving the LLM’s reasoning abilities. To this end, we incorporate three datasets from the SFT
stage, including GSM8K [11], TabMWP [46], and ConvFinQA [9], which involve reasoning over
contexts C such as tables, passages, or problem conditions. Under this setting, ρ is used to generate
subquestions z = (z1, . . . , zn) ∈ Qn, and the solver pθ produces intermediate solutions by generating
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wi ∼ pθ (· | zi, w<i, C), conditioned on the current subquestion, previous answers, and contexts.
Finally, the solver predicts the final answer as a′ ∼ pθ(· |

⋃n
i=1 zi,

⋃n
i=1 wi, C).

⋄ Reward Design. For both scenarios, the complete trajectory (q, z1, w1, . . . , zn, wn, a) is evaluated
using a reward signal derived from the final answer. Specifically, the reward function is defined as:

r(q, a′, a) = EM(a′, a)× I(f(q, a′) = 1), (4.1)

where EM denotes the exact match between the model-generated a′ and ground-truth answer a. The
function f(q, a′) represents a format-based binary reward, verifying whether the model generates
sub-questions, intermediate answers, and reasoning steps in the correct structure.

Optimization πθ and ρθ. During the RL phase, we use the reward function defined above as the
feedback to update both πθ and ρθ. Denote uθ(a, z, w|q) = pθ(z|q)pθ(w, a|q, z). Following existing
works [52], the overall optimization objective is formulated as

max
θ

Eq

[
Ez∼ρθ,(w,a′)∼πθ

[r(q, a′, a)]− βDKL [uθ(a
′, z, w | q)∥uref(a

′, z, w | q)]
]
, (4.2)

where β is the parameter for controlling deviation from the reference policy. We further decompose
the KL divergence between uθ and uref as
DKL(uθ∥uref) =

∑
a′,z,w

uθ(a
′, z, w|q)

[
log pθ(z) + log pθ(w, a′|z, q)− log pref(z)− log pref(w, a′|z, q)

]
=

∑
z

pθ(z|q)
[
log

pθ(z|q)
pref(z|q)

]
︸ ︷︷ ︸

DKL(ρθ∥ρref)

+
∑
z

pθ(z|q)
∑
w,a′

pθ(w, a′|z, q)
[
log

pθ(w, a′|z, q)
pref(w, a′|z, q)

]
.

︸ ︷︷ ︸
DKL(πθ∥πref)

Then, the optimization objective can be rewritten as
max

θ
Jθ = Eq

[
Ez∼ρθ,(w,a′)∼πθ

[r(q, a′, a)]− β DKL(ρθ∥ρref)− β Ez∼ρθ
[DKL(πθ∥πref)]

]
. (4.3)

The above optimization problem have the closed-form solution (details in Appendix A) [55] as

p∗(z | q) ∝ pref(z | q)E(w,a′)∼pref(·|q,z)

[
exp

(
1

β
r(q, a′, a)

)]
,

p∗(w, a′ | q, z) ∝ pref(w, a
′ | q, z) exp

(
1

β
r(q, a′, a)

)
.

What does the form of π∗ and ρ∗ imply? The closed-form policies ρ∗ (i.e. p∗(z | q)) and π∗

(i.e. p∗(w, a′ | q, z)) align with our intuitions: an effective decomposition policy ρ promotes higher
overall expected reward by enabling better intermediate reasoning steps, while an improved solver π
directly enhances the reward, regardless of the quality of the decomposition.

Practical Implementation for Optimization. In practice, direct optimization under sparse reward
signals from single-trajectory rollouts is often ineffective due to high variance and limited feedback.
We employ a rollout strategy to address this challenge and enrich the learning signal. For each
question q, we first generate m candidate decompositions by sampling from the decomposer policy,
i.e., z(i) ∼ ρθ(· | q) for i = 1, . . . ,m. Then, for each decomposition z(i), we subsequently
sample m′ candidate solutions by drawing from the solver policy as aj ∼ πθ(· | q, z(i)) for
j = 1, . . . ,m′. To construct preference datasets for RFT, we first identify the best and worst
decompositions for each question q based on the expected reward over their corresponding solutions
as r̄(q, z(i)) = E(w,a′)∼π(·|q,z(i))r(q, a

′, a). This results in the following preference pair dataset:

Ddecompose = {(q, z(i+), z(i−))|(q, a) ∈ D}, where

z(i+) = z(j), j = argmax
i

r̄(q, z(i)),

z(i−) = z(j
′), j′ = argmin

i
r̄(q, z(i)).

(4.4)

Constructing preference pairs to optimize the answer generation policy π (with fixed subquestions
z) is more challenging due to the presence of multiple intermediate answers along the reasoning
trajectory. Denote the trajectory T (i) = (q, z1, w

(i)
1 , . . . , zn, w

(i)
n , a′(i)) with a′(i) being the final

prediction, we create preference pairs for intermediate Dsubq and final question answering Dfinal as
Dsubq = ∪n

i=1

{
(zi, w

+
i , w

−
i ) | w

+
i ̸= w−

i , (q, a) ∈ D, (zi, w
+
i ) ∈ T +, (zi, w

−
i ) ∈ T −} ,

Dfinal =
{(

[q, z1, w
+
1 , . . . , zn, w

+
n ], a

′+, a′−
)
| (q, a) ∈ D

}
.
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where the best and worst trajectories are selected as:

T + = (q, z1, w
+
1 , . . . , zn, w

+
n , a

′+), where a′+ = argmax
i

r(q, a′(i), a),

T − = (q, z1, w
−
1 , . . . , zn, w

−
n , a

′−), where a′− = argmin
i

r(q, a′(i), a).

To jointly optimize both the decomposer ρ and the solver π, we construct a unified preference dataset
by combining three sources of pairs: Dpref = Ddecompose ∪ Dsubq ∪ Dfinal. For notational consistency,
we represent each example as (x, g+, g−), where x is the input, and g+, g− are the chosen and
rejected responses. Following [55], we optimize the policy with the following preference loss:

LDPO := −E(x,g+,g−)∼Dpref log σ

(
β

[
log

pθ (g
+ | x)

pref (g+ | x)
− log

pθ (g
− | x)

pref(g− | x)

])
.

Multi-turn DPO for Online Optimization. Motivated by the benefits of on-policy data sampling
in RL, we adopt an iterative DPO framework for improved optimization. Specifically, in the t-th
iteration, we use the LLM policy model2 f (t)

θ to act as πθ and ρθ to sample preference pairs to create
the dataset D(t)

pref. Then, we use D(t)
pref to update the policy model for the next iteration f

(t+1)
θ as

LmDPO := −E
(x,g+,g−)∼D(t)

pref
log σ

(
β

[
log

p
(t+1)
θ (g+ | x)
p
(t)
θ (g+ | x)

− log
p
(t+1)
θ (g− | x)
p
(t)
θ (g− | x)

])
. (4.5)

Remark. To balance effectiveness and efficiency in practice, we adopt the following strategy: the
model πθ directly generates answers for intermediate questions, while producing a full rationale only
for the final answer. To prevent overly long input contexts during final answer generation, we set
the total number of documents to N (N = 15 in this study), and allocate up to ⌊N/n⌋ top-ranked
documents for each of n subquestions produced by πθ. We discard preference pairs if the reward for
the best and the worst response is the same.
Theorem 4.1 (Informal). Under regularity conditions, with high probability, the minimizer of the
loss (Eq. (4.5)) at step t is close to the minimizer of the loss (Eq. (4.2)). Furthermore, as t increases,
the minimizer converges to the true parameter θ∗.

The proof for the theorem is deferred to Appendix B due to the space limit. This theorem implies
that our optimization algorithm is equivalent to maximizing the reward in Eq. (4.2). Furthermore, it
guarantees convergence of our algorithm, which we also empirically validate in Section 5.4.

5 Experiments

In this section, we conduct experiments on various tasks to verify the effectiveness of AceSearcher.

5.1 Experiment Setups

Tasks and Dataset Information. We consider the following 3 types of tasks: (i) Multi-hop QA, which
includes 2WikiMHQA [21], HotpotQA [83], Bamboogle [53] and MusiQue [67]. (ii) Multi-hop Fact
Verification, namely HOVER [28] and Exfever [47]. (iii) Document-level Reasoning, where we use
the DocMath-Eval benchmark [91] with several financial reasoning datasets such as TAT-QA [94],
FinQA [7], MultiHiertt [90], and TAT-HQA [35]. Note that some of datasets have very long contexts
that make retrieval necessary. The detailed information for these datasets is in Appendix C.

Baselines. For Multihop QA and Fact Verification tasks, we compare against the following categories
of baselines: (i) Instruction-tuned LLMs with Single-turn RAG: we consider Llama-3.1-it [17],
DeepSeek-R1-Distill [20], Qwen-3 [80]3, Llama-4-Maverick [1], GPT-4o [25], and GPT-4.1 [51].
(ii) Prompt-based Multi-step Retrieval: we include IRCOT [68], Plan-RAG [70], Search-o1 [36],
IterDRAG [88]. (iii) Finetuned LLMs with Search: we compare with InstructRAG [75], RAG-
Star [27], ReARTeR [64], CORAG [72] and Iter-RetGen [57]. (iv) LLMs with Search Trained
via Reinforcement Learning: Recent agentic search-augmented works such as Search-R1 [30], R1-
Searcher [62], DeepResearcher [92], MMOA-RAG [6], and ReSearch [4] are also included for
comprehensive evaluation. For document-level reasoning, we follow DocMath-Eval [91] to compare

2We denote the model after the SFT stage described in Section 4.1 as f (1)
θ .

3For Qwen-3, we evaluate both thinking and non-thinking prompting modes and report the better result.
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Table 1: Comparison of AceSearcher and baselines on Multi-hop QA and Fact Verification datasets.
“–” stands for results that are not publicly available. †: This model often does not follow instructions
and generates long answers. ‡: Concurrent works (preprint appears online after 2025/03/01).

Baselines 2WikiMHQA HotpotQA Bamboogle MusiQue Hover ExFever Avg. QA Avg. All
Acc EM F1 Acc EM F1 Acc EM F1 Acc EM F1 EM EM Acc / EM EM

Base Size: < 10B parameters

Llama-3.1-it RAG 8B [17] 43.0 16.0 26.5 46.2 24.4 34.5 24.8 5.6 15.1 19.8 7.2 12.5 66.3 45.0 33.5 / 13.3 27.4
R1-Distill RAG 8B [20] 50.8 30.0 42.8 45.2 25.2 36.2 39.2 25.6 37.3 21.6 12.4 21.4 63.0 48.2 39.2 / 23.3 34.1
Qwen-3 RAG 8B‡ [80] 54.2 35.4 46.4 56.0 42.0 55.1 50.4 33.6 46.1 26.2 15.2 23.8 65.7 68.8 46.7 / 31.6 43.5
Plan-RAG 8B [70] 47.8 36.6 46.0 47.6 35.2 45.1 31.0 23.4 32.2 20.4 12.2 21.2 57.9 62.5 36.7 / 26.9 38.0
Search-R1 7B‡ [30] — 38.2 — — 43.3 — — 43.2 — — 19.6 — — — — / 36.1 —
R1-Searcher 7B‡ [62] 63.6 — — 65.4 — — 52.8 — — 28.2 — — — — 52.5 / — —
DeepResearcher 7B‡ [92] 66.6 — 59.7 64.3 — 52.8 72.8 — 71.0 29.3 — 27.1 — — — —
InstructRAG 8B [75] 58.6 43.2 49.5 54.6 44.0 54.4 35.2 24.8 35.5 21.2 14.8 22.8 65.3 58.0 42.4 / 31.7 41.7
MMOA-RAG 8B [6] 42.8 41.4 46.4 39.2 36.2 48.3 — — — — — — — — — —
CORAG 8B (Greedy) [72] — 56.5 62.3 — 50.1 63.2 — 37.6 51.4 — 18.6 29.3 — — — / 40.7 —
CORAG 8B (Inference Scaling) [72] — 72.5 77.3 — 56.3 69.8 — 54.4 68.3 — 30.9 42.4 — — — / 53.5 —
AceSearcher 1.5B 69.8 60.6 68.5 60.6 50.4 59.8 38.4 33.6 41.7 37.2 26.8 37.0 60.7 64.2 51.5 / 42.9 49.4
AceSearcher 8B 80.6 66.0 76.7 68.2 58.8 69.2 60.8 55.2 63.5 46.8 35.4 47.7 68.3 73.8 64.1 / 53.9 59.6
Large Size: 10 - 30B parameters

Qwen-2.5-it RAG 14B [81] 44.4 17.8 29.1 50.4 35.6 48.1 40.8 22.4 35.4 21.8 9.8 18.2 65.7 42.9 39.4 / 21.4 32.4
R1-Distill RAG 14B† [20] 31.8 8.4 11.4 45.6 11.2 14.6 34.8 8.0 12.1 20.8 1.8 5.2 68.3 62.5 33.3 / 7.4 26.7
Qwen-3 RAG 14B‡ [80] 59.2 42.0 49.1 63.8 44.6 55.1 50.4 36.8 46.7 32.4 15.0 25.6 67.5 70.5 51.5 / 34.6 46.1
Plan-RAG 14B [70] 61.6 51.0 60.8 60.0 48.2 59.5 51.2 41.4 53.2 34.2 23.4 32.4 52.5 63.6 51.8 / 41.0 46.7
Search-R1 14B‡ [30] — 47.0 — — 46.8 — — 52.8 — — 24.1 — — — — / 42.7 —
InstructRAG 14B [75] 63.2 50.4 58.1 58.2 46.6 58.0 37.6 31.2 41.4 24.6 16.2 25.5 67.5 65.3 45.9 / 36.1 46.2
AceSearcher 14B 81.2 65.6 76.6 70.8 61.2 71.8 60.0 53.6 65.6 48.6 36.2 47.4 69.3 75.0 65.2 / 54.2 60.1
XL Size: > 30B parameters

Qwen-2.5-it RAG 32B 51.4 31.6 40.6 58.0 38.5 50.4 59.2 51.2 65.2 22.2 10.4 19.8 70.3 69.6 47.7 / 32.9 45.2
R1-Distill RAG 32B 57.2 39.4 51.2 63.2 49.0 62.7 56.4 46.4 58.9 30.4 18.6 30.7 72.3 67.0 51.8 / 38.4 48.8
Qwen-3 RAG 32B‡ [80] 61.0 39.8 51.5 65.4 49.0 62.4 56.8 40.8 53.6 32.6 19.0 30.7 70.5 65.3 54.0 / 37.2 47.4
Search-o1 32B [36] — 58.0 71.4 — 45.2 57.3 — 56.0 67.8 — 16.6 28.2 68.3 74.4 — / 44.0 53.1
Plan-RAG 32B [70] 62.0 52.4 63.8 61.8 49.2 60.7 60.0 53.6 62.5 37.2 25.4 35.4 66.7 66.4 55.3 / 45.2 52.3
ReSearch 32B‡ [4] — 45.0 — — 46.7 — — 56.8 — — 26.4 — — — — / 43.7 —
AceSearcher 32B 79.0 65.6 75.3 73.8 60.4 72.7 61.6 57.6 66.6 52.2 40.2 50.8 67.0 73.2 66.7 / 56.0 60.7
Qwen-2.5-it RAG 72B 49.2 34.6 46.9 58.6 41.6 55.1 56.8 46.4 60.7 24.0 11.2 20.9 69.3 57.2 47.2 / 33.5 43.4
R1-Distill RAG 70B 61.0 50.4 59.8 67.6 53.0 67.3 60.8 48.8 61.1 36.6 22.8 36.1 67.7 65.2 56.5 / 43.8 51.3
Llama-4 Maverick RAG 17B*128‡ [1] 63.0 50.6 61.2 63.6 49.4 63.8 64.8 48.8 66.3 23.8 16.0 26.2 74.0 73.9 53.8 / 41.2 52.1

Proprietary Retrieval-Augmented LMs (For reference)

GPT-4o RAG [25] 57.8 45.8 57.2 64.0 47.2 63.6 35.2 27.2 37.2 29.8 17.4 30.0 61.7 64.8 46.7 / 34.4 44.0
GPT-4.1 RAG‡ [51] 51.0 42.4 49.5 60.8 44.0 59.3 40.8 35.2 44.3 30.0 18.4 29.7 67.5 66.4 45.7 / 35.0 45.7
IRCOT (zero shot, w/ GPT-4o) [68] 61.4 51.4 61.0 64.2 48.0 63.7 60.8 46.4 56.9 33.8 22.4 33.5 63.7 64.8 55.1 / 42.1 49.5
IRCOT (few shot, w/ GPT-4o) [68] 78.0 62.2 72.9 66.4 52.8 66.0 66.4 57.6 70.2 46.2 30.4 44.9 70.2 70.5 64.3 / 50.8 57.3
Iter-RetGen (w/ GPT-4o) [57] 71.4 52.8 69.6 62.6 48.4 63.4 62.4 48.8 67.7 40.8 26.6 42.6 68.3 69.6 59.3 / 44.2 52.4
RAG-Star (w/ GPT-4o) [27] 68.0 47.0 62.8 57.0 48.0 68.6 — — — 40.0 29.0 43.5 — — — —
ReARTeR (w/ GPT-4o-mini) [64] 53.4 — — 50.6 — — 54.4 — — 30.2 — — — — — —
IterDRAG (Gemini-1.5, 5M ctx) [88] 76.9 67.0 75.2 56.4 51.7 64.4 68.8 65.6 75.6 30.5 22.5 35.0 — — 58.2 / 51.7 —

against general instruction-tuned LLMs [51, 25, 65, 40, 41, 17], reasoning LLMs [26, 20, 80], Code
LLMs [96, 24], Math LLMs [43, 82] and specialized finance reasoning LLMs [44, 95].

Implementation Details. We consider four different backbones for AceSearcher with varying
sizes including Qwen-2.5-Instruct-1.5B/14B/32B [81] and Llama-3.1-8B-Instruct [17].
For AceSearcher-32B, we apply LoRA fine-tuning [23] with r = 8, α = 16, while other models
use full fine-tuning. All models are trained with a batch size of 64 and maximum token of 2048
for 1 epoch on both SFT and RFT stages, with RFT run for 2 total iterations. For HotpotQA,
2WikiMHQA, MusiQue, we use the corpora provided by their respective sources. For Bamboogle,
Hover, ExFever, we use the Wikipedia from Dec. 2018 as the corpus. During inference, we set
the temperature t = 0.0, the number of retrieved passages to k = 10. For QA and fact verification
tasks, we adopt E5 [73] as the retriever, while for document-level reasoning, we follow [91] and use
OpenAI’s Embedding-3-Large as the retriever. Detailed implementation settings for AceSearcher
and baselines are in Appendix F.

Evaluation. For QA, we report Exact Match (EM), Accuracy, and F1 score. For fact verification,
we use EM as the metric. For document-level reasoning, we use Accuracy computed via the official
evaluation script, and report the better performance between CoT and PoT prompting [54].

5.2 Evaluation on QA and Fact Verification

The main results comparing AceSearcher with baseline methods are presented in Table 1. From the
results, we have the following key observations: (i) AceSearcher achieves strong performance
over baselines. Notably, AceSearcher-32B achieves the highest overall score (60.7), outperforming
both proprietary and open-source baselines by up to 7.6%. (ii) Compared to reasoning models,
AceSearcher better adapt to RAG tasks. Qwen-3 and Deepseek-R1-distill are trained with extensive
knowledge distillation, we observe that their gains are limited. This suggests that long thinking
does not fully address the inherent challenge of multi-hop retrieval, while AceSearcher tackles this
more effectively. (iii) AceSearcher has strong parameter efficiency. AceSearcher-1.5B matches or
exceeds 8B baselines, while AceSearcher-8B outperforms baseline models with 70B parameters.
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Table 3: Ablation results on QA and DocMath-Eval using Llama-3.1-8B. We report EM for QA and
fact verification due to space constraints. For w/o ρ and w/o π, we replace the respective components
with Llama-3.1-8B-Instruct. w/o Search excludes CQA, StrategyQA, and IfQA from SFT; w/o
Reasoning removes GSM8K, TabMWP, ConvFinQA, and MathInstruct. w/ CQA follows [45] and
finetune solely on context-aware QA tasks.

Model Name 2WikiMHQA HotpotQA Bamboogle MusiQue Hover ExFever Avg. DMSS DMCS DMSL DMCL Avg.
Ablation Study for Different Components of AceSearcher

AceSearcher 66.0 58.8 55.2 35.4 68.3 73.8 59.6 83.0 80.5 48.0 32.3 59.0
AceSearcher w/o RFT 61.8 53.8 52.0 34.8 64.1 71.4 56.2 71.5 73.0 49.0 26.7 52.3
AceSearcher w/o SFT 40.0 37.2 38.4 18.2 74.7 76.8 47.6 71.0 51.5 46.0 31.0 48.0
AceSearcher w/o ρ 57.8 52.4 53.6 32.4 65.0 70.5 55.3 81.5 78.0 45.0 29.6 56.6
AceSearcher w/o π 41.4 32.0 20.8 12.2 63.7 75.0 40.9 73.5 72.0 45.0 27.7 52.4

Ablation Study for SFT Data Mixture

AceSearcher w/o Search 52.6 53.0 51.2 23.4 56.5 58.9 49.3 79.5 83.0 42.0 28.7 56.6
AceSearcher w/o Reasoning 62.4 55.8 44.8 36.6 57.7 71.4 54.8 76.5 74.0 38.0 29.7 53.5
AceSearcher w/ CQA [45] 35.8 40.0 22.4 12.2 61.6 45.7 36.3 53.0 52.0 38.0 20.3 38.6

Ablation Study for RL Algorithms †

RAFT [14] 63.6 55.6 50.4 32.8 66.7 69.6 56.5 73.0 69.5 43.0 27.3 51.2
RESTEM [61] 65.4 57.6 51.2 32.8 67.5 68.7 57.2 77.5 81.0 48.0 28.0 56.1
Offline DPO [55] 64.6 57.8 53.6 35.2 64.6 73.2 58.2 73.5 83.5 49.0 30.0 56.6
(Iterative) SimPO [49] 67.2 57.2 46.8 34.6 69.3 70.5 57.6 75.5 78.0 44.0 32.0 55.9

5.3 Evaluation on Document-level Reasoning Table 2: Results on DocMath-Eval [91], sorted
by average performance. SS, CS, SL and CL
stands for SimpShort, CompShort, SimpLong
and CompLong, respectively.

Datasets DMSS DMCS DMSL DMCL Avg.
Proprietary Models

GPT-o3-mini 86.0 87.5 59.0 35.0 63.9
Gemini-1.5-Pro 85.5 80.0 58.0 40.3 63.7
GPT-4.1‡ 85.5 75.0 62.0 39.3 62.6
GPT-4o 86.0 76.5 64.0 36.7 62.4
Claude-3.5-Sonnet 78.0 76.0 54.0 44.0 61.8

Open-Sourced Models

DeepSeek-V3 685B 89.5 86.0 53.0 42.3 66.4
AceSearcher 32B 89.5 84.0 53.0 43.0 66.1
DeepSeek-V2 236B 87.0 75.5 61.0 43.0 64.4
DeepSeek-R1 685B 89.0 83.5 53.0 38.7 64.3
DeepSeek-Coder-V2 236B 85.0 78.0 56.0 41.0 63.1
Mistral-Large 122B 85.0 76.5 56.0 41.0 62.8
AceSearcher 14B 84.0 82.0 49.0 39.3 62.4
AceMath 72B 77.5 77.0 59.0 39.7 60.9
Qwen-2.5-Math 72B 78.0 73.0 58.0 41.0 60.4
DianJin-R1 32B‡ 76.0 77.0 46.0 42.3 59.9
AceSearcher 8B 83.0 80.5 48.0 32.3 59.0
Qwen-2.5-Coder 32B 81.0 79.0 57.0 30.0 58.4
DeepSeek-R1-Distill 70B 77.5 76.0 53.0 34.7 58.0
Qwen-2.5 72B 81.5 81.0 64.0 24.7 57.9
DeepSeek-R1-Distill 32B 74.0 71.0 50.0 40.3 57.6
Llama-3.3 70B 79.5 74.5 54.0 31.7 57.1
Qwen3 32B‡ 80.0 78.0 44.0 25.3 54.5
Qwen3 14B‡ 75.0 78.5 41.0 26.7 53.5
DianJin-R1 7B‡ 67.0 68.5 41.0 29.3 50.0
AceMath 7B 65.5 62.0 47.0 26.7 47.8
AceSearcher 1.5B 66.5 77.5 39.0 18.0 47.6
Qwen3 8B‡ 76.0 76.5 32.0 11.7 46.5
Fin-R1 7B‡ 66.5 51.5 40.0 21.3 42.5
DeepSeek-Coder-V2 16B 67.5 53.5 30.0 20.3 41.6
Llama-3.1 8B 62.0 44.0 32.0 19.0 37.6
Qwen-2.5-Math 7B 52.0 49.0 36.0 16.7 36.0

We evaluate AceSearcher on DocMath-Eval (Ta-
ble 2) against large-scale LLMs, demonstrating
notable improvements over similarly-sized base-
lines, including both reasoning and domain-specific
models. For instance, AceSearcher-32B and
AceSearcher-8B outperform size-comparable base-
lines by 6.2% and 9.0%, respectively. Further-
more, AceSearcher achieves performance compa-
rable to significantly larger models: AceSearcher-
32B matches the accuracy of DeepSeek-V3 using
less than 5% of its parameters, while AceSearcher-
14B exceeds baselines up to 72B (5×) in size.
These results highlight AceSearcher’s strong gen-
eralization capabilities beyond factual QA, particu-
larly in complex reasoning scenarios involving long
documents and tables.

5.4 Additional Studies

Ablation Study. Table 3 reports the results of Ace-
Searcher. The top rows show that both SFT and
RFT contribute to overall performance gains. Be-
sides, AceSearcher improves both question decom-
position (ρ) and answer generation (π), as replacing
each component with the frozen Llama-8b-it hurts
the performance. This verifies the complementary roles of these two components.

SFT RFT-1 RFT-2 RFT-3
52

54

56

58

60

Av
g.

 P
er

fo
rm

an
ce

QA & Fact Verif
Reasoning

Figure 2: Performance of Ace-
Searcher over different stages.

Ablation Study For SFT Data. The middle rows in Table 3 show
SFT performance under different data compositions. Removing
either the Reasoning or Search data leads to performance drops
across both knowledge-intensive tasks (QA and Fact Verification)
and document-level reasoning, indicating that both components
are jointly beneficial for building a capable LLM with search.

Ablation Study For RFT. In the bottom rows of Table 3, we
compare our reinforcement finetuning algorithm with other al-
ternatives and find AceSearcher achieves the best performance.
This highlights the importance of using both positive and negative
trajectories, and shows that online methods outperform their of-
fline counterparts. Figure 2 shows results across RFT iterations of
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Figure 3: Efficiency Studies of AceSearcher with Llama-3.1-8B-Instruct as the backbone.
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Figure 5: Quality Analysis for AceSearcher

AceSearcher-8B. We observe significant gains in the first two iterations, with diminishing returns in
the third. We set the number of iterations to 2 to balance between performance and efficiency.

5.5 Efficiency Studies

Data Efficiency. Figure 3(a) and 3(b) show the accuracy of AceSearcher under varying amounts of
data. For SFT, we evaluate the performance with varying SFT subset sizes and its improvement after
subsequent RFT. For RFT experiments, we fix the full SFT dataset to isolate the effect of RFT. With
just 2K SFT examples (∼1%), AceSearcher matches strong baselines like Search-R1 and Search-O1
(with up to 4× more parameters), and surpasses them after RFT. In the RFT stage, the use of only 5K
prompts leads to a 1% gain in QA and fact verification and a 2% gain on document-level reasoning,
justifying the data efficiency of AceSearcher with a diverse set of prompts.

Inference Efficiency. Figure 3(c) shows the inference time of AceSearcher and baseline models on
QA and fact verification tasks. Unless noted, all models are 8B or similar in size. While AceSearcher
incurs higher latency than standard RAG due to question decomposition and multi-step reasoning, it
achieves substantial performance gains – even outperforming 32B models with comparable inference
time. Besides, AceSearcher outperforms reasoning models and inference-time scaling methods costs
1.5× to 2.8× more time. These results justify AceSearcher balances between efficiency and efficacy.

5.6 Parameter Studies

We study the effect of varying k, m, and m′ on AceSearcher. As shown in Figure 4(a), performance
improves with more retrieved contexts, with gains plateauing at k = 10, which we adopt in our
experiments. In Figure 4(b) shows that increasing the number of sampled decompositions (m) and
final answers (m′) generally improves performance as it will generate more valid preference pairs,
but increases trajectory collection time. The study on the effect of β and retrievers is in Appendix G.

5.7 Quality Analysis of Question Decomposition Module

As question decomposition is a key component of AceSearcher, we analyze the quality of the
generated subquestions. Figure 5(a) shows the average human evaluation scores (on a 1–5 scale)
for 40 randomly sampled subquestions per task. We observe that both SFT and RFT significantly
enhance subquestion quality across different model sizes. To quantify the impact of decomposition
on end-task performance, we evaluate passage-level answer recall on HotpotQA after applying
question decomposition. As shown in Figure 5(b), AceSearcher achieves up to a 25% improvement

9



in recall@10 over standard retrieval and surpasses strong passage reranking model4. The details for
human studies as well as more cases studies are given in the Appendix H.

6 Conclusion

We present AceSearcher, a cooperative self-play framework specifically designed for RAG and
document-level reasoning tasks. By training a single LLM to act as both decomposer and solver,
AceSearcher addresses complex multi-hop retrieval and reasoning effectively. Our two-stage fine-
tuning framework combines SFT on diverse reasoning tasks with preference-based RFT guided
by final answer accuracy, achieving strong performance without relying on expensive intermediate
supervision. Evaluated on ten benchmarks, AceSearcher outperforms state-of-the-art models by 7.6%
on multi-hop QA and fact verification, and matches Deepseek-V3 on document reasoning with under
5% of its parameters. Even with smaller models (1.5B, 8B), AceSearcher delivers competitive or
superior performance, offering an efficient and generalizable solution for advanced reasoning under
resource constraints.
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Limitations and Impact Statement

Limitations. While AceSearcher demonstrates strong empirical performance across a wide range of
RAG and document-level reasoning benchmarks, several limitations remain. First, our framework
is evaluated primarily on complex QA, fact verification, and document-level reasoning tasks; its
applicability to other tasks such as open-ended generation, dialogue, or use of real-time tools
remains to be explored, though our scope is comparable (or even broader) compared to concurrent
works [62, 30, 92]. Second, AceSearcher relies on a fixed retriever during training and inference.
Joint optimization of retrieval and reasoning could offer further gains but is left for future work. Third,
our decomposition-based pipeline introduces inference overhead, which may limit applicability in
latency-sensitive settings. Nonetheless, as shown in Figure 3(c), AceSearcher achieves favorable
tradeoffs, and many strong baselines [70, 36, 72] also adopt multi-turn retrieval. Finally, due to
resource constraints, we adopt iterative preference optimization (Online DPO) as a practical and
efficient alternative to fully online reinforcement learning. While this approach achieves strong results
in our setting, exploring more expressive RL formulations may offer further improvements.

Impact Statement. This work advances the development of search-augmented LLMs capable of
complex reasoning. By enabling smaller open-source LLMs to search and reason more effectively,
AceSearcher reduces reliance on proprietary or extremely large models, which may have high
computational or financial barriers. This can promote democratization of advanced AI capabilities in
low-resource or domain-specific applications, such as finance, scientific discovery, and healthcare.
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A Derivation Step for Optimal Policy π∗ and ρ∗

We aim to maximize the following objective:

Jθ = Eq

[
Ez∼ρθ(·|q), a∼πθ(·|q,z)[r(q, a

′, a)]− βDKL (ρθ∥ρref)− β Ez∼ρθ(·|q) [DKL (πθ∥πref)]
]
.

Since ρ and π appear in separate terms, we can optimize them independently.

1. Optimal π for each z. For fixed z, consider the Lagrangian

Lz(π, λz) =
∑
w,a′

π(w, a′ |q, z) r(q, a′, a)− β
∑
w,a′

π(w, a′ |q, z) ln π(w, a′ |q, z)
πref(w, a′ |q, z)

(A.1)

+ λz

(∑
w,a′

π(w, a′ |q, z)− 1
)
. (A.2)

Taking the functional derivative with respect to π(w, a′ |q, z) and setting to zero gives

r(q, a′, a)− β
(
lnπ(w, a′ |q, z)− lnπref(w, a

′ |q, z) + 1
)
+ λz = 0.

Rearranging yields

lnπ(w, a′ |q, z) = lnπref(w, a
′ |q, z) + 1

β
r(q, a′, a) +

(
λz

β
− 1

)
︸ ︷︷ ︸
constant in w,a′

.

Hence, the optimal policy is:

π∗(w, a | q, z) = 1

Zπ(q, z)
πref(w, a | q, z) exp

(
1

β
r(q, a′, a)

)
where

Zπ(q, z) =
∑
w,a

πref(w, a | q, z) exp
(
1

β
r(q, a′, a)

)
Now compute G (π∗)

log
π∗(w, a | q, z)
πref(w, a | q, z)

=
1

β
r(q, a′, a)− logZπ(q, z)

so

r(q, a)− β log
π∗(a | q, z)
πref(a | q, z)

= β logZπ(q, z)

Therefore,
G (π∗) = Ew,a∼π∗ [β logZπ(q, z)] = β logZπ(q, z)

2. Optimal ρ. Substitute π∗ back into Jq . Denote

F [ρ] = Ez∼ρ

[
β logZπ(q, z)− β log

ρ(z | q)
ρref(z | q)

]
= βEz∼ρ

[
log

ρref(z | q)Zπ(q, z)

ρ(z | q)

]
together with the constraint

∑
z ρ(z |q) = 1. Introduce multiplier µ and form

L[ρ, µ] =
∑
z

ρ(z | q)β logZπ(q, z)− β
∑
z

ρ(z | q) ln ρ(z | q)
ρref(z | q)

+ µ

(∑
z

ρ(z | q)− 1

)
.

Taking
∂L

∂ρ(z | q)
= β logZπ(q, z)− β (ln ρ(z | q)− ln ρref(z | q) + 1) + µ = 0.

16



Rearranging:

ln ρ(z | q) = ln ρref(z | q) + logZπ(q, z) +

(
µ

β
− 1

)
.

The optimal policy is:

ρ∗(z | q) = 1

Zρ(q)
ρref(z | q)Zπ(q, z)

where
Zρ(q) =

∑
z

ρref(z | q)Zπ(q, z)

Combining these two results yields exactly the stated closed-form solutions

p∗(z | q) ∝ pref(z | q)E(w,a′)∼pref(·|q,z)

[
exp

(
1

β
r(q, a′, a)

)]
, (A.3)

p∗(w, a′ | q, z) ∝ pref(w, a
′ | q, z) exp

(
1

β
r(q, a′, a)

)
. (A.4)

B Omitted Theorems and Proofs

B.1 Notion

Let B(r, x) represent the l2-ball of radius r centered at x. For two positive sequences {an} and {bn},

an ≳ bn if an ≥ Cbn. The l2 norm of a vector x ∈ Rd is defined as ∥x∥2 :=
(∑d

i=1 x
2
i

)1/2
. A

sequence of random variables Xn is said to be oP (1) if Xn
P−→ 0, that is, Xn converges to 0 in prob-

ability as n → ∞. The Kullback–Leibler (KL) divergence from a discrete distribution p to a discrete
distribution q (defined over a common support X ) is given by DKL [p ∥ q] :=

∑
x∈X p(x) log

(
p(x)
q(x)

)
,

under the assumption that whenever p(x) > 0, one also has q(x) > 0 for all x ∈ X .

B.2 Main theorem

Recall the losses (4.2) and (4.5) are defined as follows:

Eq

[
Ez∼ρθ,(w,a′)∼πθ

[r(a′, q, a)]− βDKL [uθ(a
′, z, w | q)∥uref(a

′, z, w | q)]
]
. (B.1)

LmDPO := −E
(x,g+,g−)∼D(t)

pref
log σ

(
β

[
log

p
(t+1)
θ (g+ | x)
p
(t)
θ (g+ | x)

− log
p
(t+1)
θ (g− | x)
p
(t)
θ (g− | x)

])
. (B.2)

To enable decomposition into a decomposer and a solver, we require the following assumption:
assumption B.1 (Conditional Probability decomposition). We assume the following decomposition
holds:

pθ(a | q) =
∑
z

pθ(z | q)

(∑
w

pθ(a | q, z, w) pθ(w | q, z)

)

We present the informal version of our theorem below. Formal statements are given in Theorems B.2
and B.3.

Theorem B.1 (Informal). Under regularity conditions, with high probability, the minimizer of the
loss (B.2) at step t is close to the minimizer of the loss (B.1). Furthermore, as t increases, the
minimizer converges to the true parameter θ∗.

Remark B.1. The main theorem can be divided into two components. The first component establishes
the equivalence between loss (B.1) and loss (B.2) are equivalent. The second component shows that,
once the equivalence is established and the maximizer of loss (B.1) converges, the minimizer of
loss (B.2) also converges.
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The proof is organized as follows: In Appendices B.3 and B.4, we analyze the convergence properties
of the maximizer of the population version loss (B.3) and sample version of loss (B.6) which
corresponds exactly to loss (B.1). In Appendix B.5, we demonstrate the equivalence of loss (B.1)
to loss (B.2). Finally, in Appendix B.6, building on these results, we prove that the minimizer of
loss (B.2) converges as well.

B.3 Population Version

Based on the loss (B.1), define the population version loss as

L(θ | θt−1) = E(q,a)∼pθ∗ (·)
[
Ez∼ρθ(·|q)

[
E(w,a′)∼πθ(·|z,q)[r(a

′, q, a)]
]]

− βDKL
(
uθ(a

′, z, w | q) ∥uθt−1(a
′, z, w | q)

)
. (B.3)

Define the operator M : Θ → Θ,

M(θ) = argmax
θ′∈Θ

L(θ′ | θ),

where Θ represents the parameter space. Notice that it is natural to assume that θ∗ satisfy the
self-consistency, i.e. θ∗ = M(θ∗). So the first assumption will be:
assumption B.2 (Self-consistency). θ∗ = M(θ∗).
assumption B.3 (λ-strong Concavity). There is some λ > 0 such that

L(θ1 | θ∗)− L(θ2 | θ∗)− ⟨∇L(θ2 | θ∗), θ1 − θ2⟩ ≤ −λ

2
∥θ1 − θ2∥22 for all θ1, θ2 ∈ B(r, θ∗).

(B.4)
Definition B.1 (First-order stability). The functions {L(· | θ), θ ∈ Θ} satisfy the First-order stability
condition over B(r, θ∗) if

∥∇L(M(θ) | θ∗)−∇L(M(θ) | θ)∥2 ≤ µ∥θ − θ∗∥2
for all θ ∈ B(r, θ∗).
assumption B.4. Assume the functions {L(· | θ), θ ∈ Θ} satisfy the First-order stability condition
(B.1).
Proposition B.1 (Population Version). For some radius r > 0 and pair (µ, λ) such that 0 ≤ µ < λ,
suppose that the Assumption B.1-B.4 hold, then the population operator M is contractive over
B(r, θ∗), in particular with

∥M(θt−1)− θ∗∥2 ≤ µ

λ
∥θt−1 − θ∗∥2 for all θ ∈ B(r, θ∗).

Proof. By the first order optimality condition, we have:

⟨∇L(θ∗ | θ∗), θ − θ∗⟩ ≤ 0 ∀θ
⇒⟨∇L(θ∗ | θ∗),M(θt−1)− θ∗⟩ ≤ 0

⟨∇L(M(θt−1) | θt−1), θ −M(θt−1)⟩ ≤ 0 ∀θ
⇒⟨∇L(M(θt−1) | θt−1), θ

∗ −M(θt−1)⟩ ≤ 0.

Combine the two terms,

⟨∇L(θ∗ | θ∗)−∇L(M(θt−1) | θt−1),M(θt−1)− θ∗⟩ ≤ 0.

Thus,

⟨∇L(θ∗ | θ∗)−∇L(M(θt−1) | θ∗),M(θt−1)− θ∗⟩ ≤
− ⟨∇L(M(θt−1) | θ∗)−∇L(M(θt−1) | θt−1),M(θt−1)− θ∗⟩.

For the right-hand side, by Cauchy-Schwarz inequality,

− ⟨∇L(M(θt−1) | θ∗)−∇L(M(θt−1) | θt−1),M(θt−1)− θ∗⟩ ≤
∥∇L(M(θt−1) | θ∗)−∇L(M(θt−1) | θt−1)∥2∥M(θt−1)− θ∗∥2.
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By Assumption B.4,

∥∇L(M(θt−1) | θ∗)−∇L(M(θt−1) | θt−1)∥2∥M(θt−1)− θ∗∥2 ≤ µ∥M(θt−1)− θ∗∥22.
For the left-hand side, by Assumption B.3,
λ

2
∥M(θt−1)− θ∗∥22 ≤ L(θ∗ | θ∗)− L(M(θt−1) | θ∗) + ⟨∇L(θ∗ | θ∗),M(θt−1)− θ∗⟩,

λ

2
∥M(θt−1)− θ∗∥22 ≤ L(M(θt−1) | θ∗)− L(θ∗ | θ∗) + ⟨∇L(M(θt−1) | θ∗), θ∗ −M(θt−1)⟩.

Hence,

λ∥M(θt−1)− θ∗∥22 ≤ ⟨∇L(θ∗ | θ∗)−∇L(M(θt−1) | θ∗),M(θt−1)− θ∗⟩. (B.5)
Combining all,

λ∥M(θt−1)− θ∗∥22 ≤ µ∥M(θt−1)− θ∗∥22.

Remark B.2. This theorem follows the idea in [3]. It suggests that, under a self-play procedure, the
algorithm progressively approaches the true underlying distribution. This behavior is characterized
by a contraction parameter µ

λ , which ensures convergence toward the ground-truth parameter θ∗. The
incorporation of an intermediate reasoning step smooths the local optimization landscape, rendering
the loss approximately convex and thereby facilitating convergence to the global optimum.

B.4 Sample Version

We define the below sample version: assume we have the data

Dq,a = {qi, ai}Ni=1.

The loss will be:

LN (θ | θt−1) = E(q,a)∼p̃θ∗ (·)
[
Ez∼ρθ(·|q)

[
E(w,a′)∼πθ(·|z,q)[r(a

′, q, a)]
]]

− βDKL
(
uθ(a

′, z, w | q) ∥uθt−1
(a′, z, w | q)

)
, (B.6)

where p̃ represents the empirical distribution defined as

p̃(q, a) =
1

N

N∑
i=1

1{(q, a) = (qi, ai)}.

We also have the similar convergence property. Similar to the population version, we define the
sample-based operator MN : Θ → Θ,

MN (θ) = argmax
θ′∈Θ

LN (θ′ | θ).

For a given sample size N and tolerance parameter ϵ ∈ (0, 1), define ζunif
M (N, ϵ) as the smallest scalar

such that
sup

θ∈B2(r;θ∗)

∥MN (θ)−M(θ)∥2 ≤ ζunif
M (N, ϵ) (B.7)

with probability at least 1− ϵ.
Proposition B.2 (Sample Version). Suppose that for all θ ∈ B(r, θ∗), the mapping M satisfies

∥M(θt−1)− θ∗∥2 ≤ µ

λ
∥θt−1 − θ∗∥2

with probability at least 1− ϵ. Then we have

∥MN (θt−1)− θ∗∥2 ≤ µ

λ
∥θt−1 − θ∗∥2 + ζunifM (N, ϵ), for all θ ∈ B(r, θ∗)

with probability at least 1− ϵ.

Proof. The result follows directly from the triangle inequality:
∥MN (θt−1)− θ∗∥2 ≤ ∥M(θt−1)− θ∗∥2 + ∥MN (θt−1)−M(θt−1)∥2

≤ µ

λ
∥θt−1 − θ∗∥2 + ζunifM (N, ϵ).
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B.5 On the Equivalence with DPO

In the deterministic setting - where m or m′ is fixed and the responses with
the maximum and minimum rewards are selected - depending on the data tuple(
(amax, zmax, wmax), (amin, zmin, wmin), a, q

)
, we note that in practice the construction of

positive and negative samples can vary, some containing z or (z, w), and others including full triples
such as (a′, z, w). For simplicity, we unify the representation and consider the minimal component
shared across all formats, namely the tuple (a′, z, w). This process can thus be interpreted as
observing a finite dataset:

D = {((a+i , z
+
i , w

+
i ), (a

−
i , z

−
i , w−

i ), ai, qi)}
N
i=1,

Then the DPO loss will be:

LmDPO(θ | θt−1) = −E((a+,z+,w+),(a−,z−,w−),a,q)∼D

log σ

(
βmDPO

[
log

uθ(a
+, z+, w+ | q)

uθt−1
(a+, z+, w+ | q)

− log
uθ(a

−, z−, w− | q)
uθt−1

(a−, z−, w− | q)

])
(B.8)

To demonstrate the closeness between the loss (B.6) and the loss (B.8), we first show that, with high
probability, optimizing the loss (B.8) over the dataset D is equivalent to maximizing the original
reward up to a scaling factor.

Specifically, we can derive a closed-form solution for Equation (B.6) at step t:

uθ∗
t
(a′, z, w | q) ∝ uθt−1

(a′, z, w | q) exp
(
1

β
r(a′, q, a)

)
, (B.9)

where θ∗t denotes the ground truth parameter at step t. Accordingly, the reward function r(a′, q, a) can
be written as rγ∗

t
(a′, q, a) to emphasize its dependence on the true reward parameter γ∗

t . Specifically,
consider the dataset D, which follows the following deterministic model:

P((a+, z+, w+) ≻ (a−, z−, w−) | q) = 1 if rγ∗
t
(a+i , q, a) > rγ∗

t
(a−i , q, a), (B.10)

indicating that we always select a+i as the positive sample. To approximate this deterministic behavior,
we introduce the α-BT model:

P((a+, z+, w+) ≻ (a−, z−, w−) | q) = e
αrγ∗

t
(a+,q,a)

e
αrγ∗

t
(a+,q,a)

+ e
αrγ∗

t
(a−,q,a)

. (B.11)

As α → ∞, the α-BT model becomes close to the deterministic model (B.10). Then given the above
dataset D, we define the following data set

Dα = {((a+α,i, z
+
α,i, w

+
α,i), (a

−
α,i, z

−
α,i, w

−
α,i), ai, qi)}

n
i=1,

where ((a+α,i, z
+
α,i, w

+
α,i), (a

−
α,i, z

−
α,i, w

−
α,i)) is generated according to the α-BT model (B.11). To

ensure the closeness between the dataset D and Dα, we have the following lemma:
assumption B.5 (Reward Seperation Condition). Assume that given (q, a), for any
((a+, z+, w+), (a−, z−, w−)), there exists δ such that |rγ∗

t
(a+, q, a)− rγ∗

t
(a−, q, a)| ≥ δ.

Lemma B.1. Suppose the Assumption B.5 holds, given ϵ, there exists α0 ≳
log N

2ϵ

δ ,

P(D = Dα0
) ≥ 1− ϵ

2
. (B.12)

Proof. We start by bounding the probability of disagreement between two actions:

P((a+α,i, z
+
α,i, w

+
α,i) ̸= (a+i , z

+
i , w

+
i )) =

e
αrγ∗

t
(a−,q,a)

e
αrγ∗

t
(a+,q,a)

+ e
αrγ∗

t
(a−,q,a)

≤ 1

1 + eα0δ
.

The total probability that the datasets D and Dα differ is bounded by

P(D ≠ Dα) =

N∑
i=1

P(a+i ̸= a−i ) ≤
N

1 + eα0δ
.
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Given α0 ≳
log N

2ϵ

δ , we conclude that

P(D = Dα) = 1− P(D ≠ Dα) ≥ 1− ϵ

2
.

we can take our data generated according to the α0-BT model. In this case the new reward will be

r̃α0,γ∗
t
(a′, q, a) = α0rγ∗

t
(a′, q, a). (B.13)

Under this model, the minimizer of the loss (B.8) can be obtained via a two-step optimization
procedure [55]:
Step 1: minimize the negative log-likelihood to obtain the reward:

LN,NLL(γ | α0) = −E((a+,z+,w+),(a−,z−,w−),a,q)∼D

log σ
(
r̃α0,γ(a

+, q, a)− r̃α0,γ(a
−, q, a)

)
, (B.14)

Denote the minimizer as r̃α0,γ̂N,t
(a′, q, a).

Step 2: maximize the reward r̃α0,γ̂N,t
(a′, q, a):

LREW(θ | θt−1) = E(a,q)∼p̃θ∗ (·)

[
Ez,w∼p̃θt−1

(·|a,q)
[
Ea′∼fθ(·|z,w,q,a)[r̃α0,γ̂N,t

(a′, q, a)]
]]

− βmDPODKL
(
uθ(a

′ | z, w, q, a) ∥uθt−1
(a′ | z, w, q, a)

)
. (B.15)

The solution will be

uθ̂t
(a′ | z, w, q, a) ∝ uθt−1(a

′ | z, w, q, a) exp
(

1

βmDPO
r̃α0,γ̂N,t

(a′, q, a)

)
, (B.16)

This expression is identical to Equation (B.9), except that it uses a different parameterization of the
reward. Specifically, the reward function r̃α0,γ∗

t
(a′, q, a) is parameterized by the ground truth γ∗

t
and a hyperparameter α0. To ensure uniform consistency of the maximum likelihood estimator, we
invoke the following lemma, which is modified from Theorem 5.7 in [69]. This result guarantees that
the minimizer in Step 1 converges to the true reward function r̃α0,γ∗

t
(a′, q, a). We need the following

assumption:
assumption B.6. Suppose that there exists a constant cα > 0, for every ϵ > 0, such that:

sup
α0∈[cα,∞)

sup
γ∈Γ

|LN,NLL(γ | α0)− LNLL(γ | α0)|
P−→ 0, (B.17)

where Γ represents the parameter space and

sup
α0∈[cα,∞)

sup
γ:∥γ−γ∗

t ∥2
≥ϵ

−(LNLL(γ | α0)− LNLL(γ
∗
t | α0)) < 0. (B.18)

Lemma B.2 (Uniform MLE Consistency). Let LN,NLL(γ | α0) be the negative log-likelihood
function, and let LNLL(γ | α0) denote its expected version. Let Assumption B.6 holds, then for the
sequence of estimators γ̂N,t obtained form minimizing the loss (B.14), we have: given ϵ > 0, there
exists N1, when N ≥ N1, for any α0 ∈ [cα,∞),

P
(
∥γ̂N,t − γ∗

t ∥2 ≤ ϵ
)
≥ 1− ϵ

2
. (B.19)

Proof. For given ϵ, according to the Equation (B.18), there exists cϵ,NLL, such that:

sup
α0∈[cα,∞)

sup
γ:∥γ−γ∗

t ∥2
≥ϵ

−(LNLL(γ | α0)− LNLL(γ
∗
t | α0)) < −cϵ,NLL.

For cϵ,NLL, according to Equation (B.17), there exists N1, when N ≥ N1, for any α0 ∈ [cα,∞),

P
(
|LN,NLL(γ̂N,t | α0)− LNLL(γ̂N,t | α0)| ≤

cϵ,NLL

3

)
≥ 1− ϵ

4
,

P
(
|LN,NLL(γ

∗
t | α0)− LNLL(γ

∗
t | α0)| ≤

cϵ,NLL

3

)
≥ 1− ϵ

4
.
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Since γ̂N,t is the minimizer of loss (B.14), for any α0 ∈ [cα,∞), we have:

LN,NLL(γ̂N,t | α0) ≤ LN,NLL(γ
∗
t | α0)

Consequently,

P
(
−(LNLL(γ | α0)− LNLL(γ0 | α0)) ≥ −2cϵ,NLL

3

)
≥ 1− ϵ

2
.

Thus for any α0 ∈ [cα,∞),

P
(
∥γ̂N,t − γ∗

t ∥2 ≤ ϵ
)

≥ P
(
−(LNLL(γ | α0)− LNLL(γ0 | α0)) ≥ −2cϵ,NLL

3

)
≥ 1 − ϵ

2
.

Having established the necessary groundwork, we are now ready to present Theorem B.2, which
establishes the equivalence between the minimizes of the two loss functions:

Theorem B.2. Assume Assumptions B.5 and B.6 hold, given ϵ, there exists N1 and βmDPO ≳
log

N1
2ϵ

δ β,
the minimizer of loss (B.8) θ̂t,mDPO will satisfy:

P
(∥∥∥θ̂t,mDPO − θ∗t

∥∥∥
2
≥ ϵ
)
< ϵ, (B.20)

where θ∗t is defined in Equation (B.9).

Proof. First, according to the Lemma B.2, there exists N1, if we define the event Ω1 =
{∥γ̂N1,t − γ∗

t ∥2 ≤ ϵ}, , we have:

P(Ω1) ≥ 1− ϵ

2
.

Secondly, just choose the sample size of D as NK, define the event Ω2 = {D = Dα0}, by Lemma

B.1, when we take α0 ≳

(
log

N1
2ϵ

δ ∨ cα

)
, we have:

P(Ω2) ≥ 1− ϵ

2
.

Since cα is a constant, we may, without loss of generality, take α0 ≳
log

N1
2ϵ

δ . Henceforth, we restrict
our analysis to the event Ω1 ∩ Ω2, which occurs with probability at least1− ϵ. Conditioned on this
event, the data can be viewed as being generated from the α0-BT model (B.11). Consequently, the
minimizer of the loss (B.8) coincides with that of Equation (B.16):

uθ̂t,mDPO
(a′, z, w | q) ∝ uθt−1(a

′, z, w | q) exp
(

1

βmDPO
r̃α0,γ̂N1,t

(a′, q, a)

)
∝ uθt−1

(a′, z, w | q) exp
(

α0

βmDPO
rγ̂N1,t

(a′, q, a)

)
.

Compared to the solution in (B.9), when βmDPO = α0β ≳
log

N1
2ϵ

δ β, controlling the distance be-
tween θ̂t,mDPO and θ∗t reduces to controlling the distance between γ̂N1, t and γ∗

t , as established by
Lemma B.2. Consequently, we obtain:

P
(∥∥∥θ̂t,mDPO − θ∗t

∥∥∥
2
≥ ϵ
)
< ϵ.

This concludes the proof.
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B.6 Convergence Property of DPO

Finally, combining Proposition B.2, we conclude that the sequence θ̂t,mDPO converges as t increases.
We formally state the following theorem:

Theorem B.3. For a given iteraton number T , for some radius r > 0 and pair (µ, λ) such that
0 ≤ µ < λ, suppose that the Assumption B.1-B.6 hold and assume (ϵ + ζunif

M (N, ϵ)) < (1 − µ
λ )r,

then with probability at least 1− (T + 1)ϵ, we have:

∥∥∥θ̂T,mDPO − θ∗
∥∥∥
2
≤
(µ
λ

)T
∥θref − θ∗∥2 +

1

1− µ
λ

ζunifM (n, ϵ)

Proof. Notice that θ∗t = MN (θ̂t−1,mDPO), apply Proposition B.2, we get:

∥θ∗t − θ∗∥2 ≤ µ

λ

∥∥∥θ̂t−1,mDPO − θ∗
∥∥∥
2
+ ζunifM (N, ϵ)

with probability at least 1− ϵ. Combining Theorem B.2,

∥∥∥θ̂t,mDPO − θ∗
∥∥∥
2
≤ µ

λ

∥∥∥θ̂t−1,mDPO − θ∗
∥∥∥
2
+ ϵ+ ζunifM (N, ϵ),

with probability at least 1− 2ϵ. Notice that (ϵ+ ζunif
M (N, ϵ)) ≤ (1− µ

λ )r, then θ̂t,mDPO ∈ B(r, θ∗).
Based on this, we can perform iteration:

∥∥∥θ̂T,mDPO − θ∗
∥∥∥
2
≤ µ

λ

∥∥∥θ̂T−1,mDPO − θ∗
∥∥∥
2
+ ϵ+ ζunifM (N, ϵ)

≤ µ

λ

(µ
λ

∥∥∥θ̂T−2,mDPO − θ∗
∥∥∥
2
+ ϵ+ ζunifM (N, ϵ)

)
≤
(µ
λ

)T
∥θref − θ∗∥2 +

T−1∑
s=0

(µ
λ

)s
(ϵ+ ζunifM (N, ϵ))

≤
(µ
λ

)T
∥θref − θ∗∥2 +

1

1− µ
λ

(ϵ+ ζunifM (N, ϵ))

with probability at least 1− (T + 1)ϵ.

C Information for Test Datasets

The information of the test datasets used in AceSearcher is listed in the following table. Note that We
conduct evaluations on all questions from StrategyQA and Bamboogle, and the first 500 questions
from the development sets of the other datasets following existing studies [68, 57, 36]. For dataset in
DocMathEval, we use the testmini version as the evaluation set to compare the performance of
AceSearcher and baselines.
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Table 4: Descriptions of datasets used in AceSearcher. For SimpLong and CompLong, we use
text-embedding-3 to retrieve top-10 relevant context before generate the answer.

Dataset Description

2WikiMHQA [21] 2WikiMultiHopQA is a multi-hop question answering dataset built from Wikipedia,
where each question requires reasoning over two distinct articles. It emphasizes
information synthesis across multiple documents for accurate answer retrieval.

HotpotQA [83] HotpotQA is a crowd-sourced multi-hop QA dataset where each question demands
reasoning over multiple Wikipedia passages. It also includes supporting fact annotations
to promote explainability in QA systems.

Bamboogle [53] Bamboogle is a multi-hop QA dataset constructed using Bing search engine snippets.
It presents naturally occurring, challenging questions requiring reasoning over diverse
web snippets rather than structured sources like Wikipedia.

MusiQue [67] MusiQue is a multi-hop QA dataset featuring real-world questions from community
forums like Quora and Yahoo Answers. It targets complex questions requiring synthesis
across multiple evidence passages, each carefully annotated.

HOVER [28] HOVER is a multi-hop QA dataset with annotated supporting facts, built on entity-
linked Wikipedia documents. It stresses explainable reasoning by providing intermedi-
ate evidence chains.

ExFEVER [47] ExFEVER extends the FEVER dataset by introducing multi-hop claims requiring
evidence from multiple documents. It is designed to support research on fact verification
and evidence-based reasoning.

DMSS (DocMath SimpShort) A dataset reannotated from TAT-QA [94] and FinQA [7], consisting of short financial
documents with a single table for simple numerical reasoning.

DMCS (DocMath CompShort) A dataset reannotated from TAT-HQA [35], consisting of short single-table documents
for complex numerical reasoning, including hypotheticals.

DMSL (DocMath SimpLong) A dataset reannotated from MultiHiertt [90], consisting of long multi-table financial
documents for simple reasoning in realistic contexts.

DMCL (DocMath CompLong) A dataset of long, structured financial documents requiring multi-step compositional
numerical reasoning.
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D Details of Training Data

We provide the data composition for SFT and RFT, including their corresponding tasks, links to
access the data, and the number we use in each stage in Table 5. To avoid data contamination, we
follow the instructions in the MusiQue repository and remove the training data with overlapping IDs
from NQ and Squad to avoid data leakage.

Table 5: The data composition for SFT and RFT stages.
Dataset Task Link Count
Data composition for SFT

NarrativeQA [32] Context-rich QA https://huggingface.co/datasets/deepmind/
narrativeqa

20000

SQuAD 1.1 [56] Context-rich QA https://rajpurkar.github.io/SQuAD-explorer/ 10000

SQuAD 2.0 [56] Context-rich QA https://rajpurkar.github.io/SQuAD-explorer/ 10000

TAT-QA [94] Context-rich QA https://github.com/NExTplusplus/TAT-QA/
tree/master/dataset_raw

12000

FEVER [66] Context-rich QA https://fever.ai/dataset/fever.html 10000

DROP [16] Context-rich QA https://huggingface.co/datasets/ucinlp/drop 20000

Quoref [12] Context-rich QA https://huggingface.co/datasets/allenai/
quoref

20000

ROPES [38] Context-rich QA https://huggingface.co/datasets/allenai/
ropes

10000

NQ [33] Context-rich QA https://dl.fbaipublicfiles.com/dpr/data/
retriever/biencoder-nq-train.json.gz

20000

GSM8K [11] Question Decomposition https://huggingface.co/datasets/openai/
gsm8k/viewer/socratic

7000

ConvFinQA [9] Question Decomposition https://github.com/czyssrs/ConvFinQA 1000

StrategyQA [19] Question Decomposition https://huggingface.co/datasets/ChilleD/
StrategyQA

1600

IfQA [85] CoT https://github.com/wyu97/IfQA/tree/main/
dataset

2000

TabMWP [46] CoT https://promptpg.github.io/index.html#
dataset

10000

GSM8K [11] CoT https://huggingface.co/datasets/openai/
gsm8k/viewer/socratic

7000

MathInstruct-COT [87] CoT https://huggingface.co/datasets/TIGER-Lab/
MathInstruct

10000

MathInstruct-POT [87] CoT https://huggingface.co/datasets/TIGER-Lab/
MathInstruct

10000

TOTAL — — 180600
Data composition for RFT

HotpotQA [83] RAG https://github.com/hotpotqa/hotpot 10000

2WikiMQA [21] RAG https://huggingface.co/datasets/xanhho/
2WikiMultihopQA

10000

HOVER [28] RAG https://github.com/hover-nlp/hover 10000

GSM8K [11] Context-rich Reasoning https://huggingface.co/datasets/openai/
gsm8k/viewer/socratic

7000

TabMWP [46] Context-rich Reasoning https://promptpg.github.io/index.html#
dataset

10000

ConvFinQA [9] Context-rich Reasoning https://github.com/czyssrs/ConvFinQA 2000

Total — — 49000
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E Prompt Templates

E.1 Prompts for Direct RAG

You have the following context passages: {context}

Given the question: “{question}” as well as the context above, please answer the above
question with one or a list of entities with the given context as the reference. Your answer
needs to be a span with one or a list of entities.

Figure 6: Prompt for direct RAG on complex question answering tasks.

Answer the following questions with SUPPORTED or NOT_SUPPORTED with the given
context as the reference.

Question: {question}
Context: {context}

Your answer should only be SUPPORTED or NOT_SUPPORTED.

Figure 7: Prompt for direct RAG on fact verification tasks.

You have the following passages and table:

Passages:
{passage}

Tables:
{table}

For the question “{question}”, write a Python program to solve the question. Store the final
result in the variable ans.

Figure 8: Prompt for direct RAG on document-level reasoning tasks with PoT.

You have the following passages and table:

Passages:
{passage}

For the question “{question}”, reason step by step to calculate the final answer. Please use
\boxed{} to wrap your final answer.

Figure 9: Prompt for direct RAG on document-level reasoning tasks with CoT.
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E.2 Prompts for Decomposition

Please break down the question “{question}” into multiple specific sub-questions that address
individual components of the original question.

Mark each sub-question with ### at the beginning. If you need to refer to answers from earlier
sub-questions, use #1, #2, etc., to indicate the corresponding answers.

Decomposed question:

Figure 10: Prompt for question decomposition on complex question answering tasks.

Please break down the claim “{claim}” into multiple smaller sub-claims that each focus on a
specific component of the original statement, making it easier for a model to verify. Begin
each sub-claim with ###. If needed, refer to answers from earlier sub-claims using #1, #2, etc.

Decomposed claim:

Figure 11: Prompt for question decomposition on fact verification tasks.

You have the following passages and table:

Passages:
{passages}

Tables:
{tables}

Please break down the question “{question}” into multiple specific sub-questions that address
individual components of the original question, with the table and passages as the reference.
Use ### to mark the start of each sub-question.

Decomposed question:

Figure 12: Prompt for question decomposition on document-level reasoning tasks.

E.3 Prompts for subquestion answering

You have the following context passages:
{passages}

Please answer the question “{subquestion}” with a short span using the context as reference.
If no answer is found in the context, use your own knowledge. Your answer needs to be as
short as possible.

Figure 13: Prompt for subquestion answering on complex question answering tasks.
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You have the following context passages:
{passages}

Please verify whether the claim “{subquestion}” is correct using the context as reference. If
no answer is found in the context, use your own knowledge. Please only output Yes or No and
do not give any explanation.

Figure 14: Prompt for subquestion answering on fact verification tasks.

You have the following passages and tables:

Passage:
{passages}

Table:
{tables}

For the question “{subquestion}”, write a Python program to solve the question. Store the
final result in the variable ans.

Figure 15: Prompt for subquestion answering on document-level reasoning tasks with PoT.

You have the following passages and tables:

Passage:
{passages}

Table:
{tables}

For the question “{subquestion}”, reason step by step to calculate the final answer. Please use
\boxed{} to wrap your final answer.

Figure 16: Prompt for subquestion answering on document-level reasoning tasks with CoT.

E.4 Prompts for final answer generation

You have the following passages:
{passages}

You are also given some subquestions and their answers:
# subquestion #1: {subquestion_1} Answer: {answer_1}
# subquestion #2: {subquestion_2} Answer: {answer_2}
. . .

Please answer the question “{the_original_question}” with a short span using the documents
and subquestions as reference.

Make sure your response is grounded in documents and provides clear reasoning followed by
a concise conclusion. If no relevant information is found, use your own knowledge.

Wrap your answer with <answer> and </answer> tags.

Figure 17: Prompt for final answer generation on complex question answering tasks.
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You are given some subquestions and their answers:
# subquestion #1: {subquestion_1} Answer: {answer_1}
# subquestion #2: {subquestion_2} Answer: {answer_2}
. . .

Please answer the question “{the_original_question}” with only Yes or No using the subques-
tions as reference. Provides clear reasoning followed by a concise conclusion. If no relevant
information is found, use your own knowledge.

Wrap your answer with <answer> and </answer> tags.

Figure 18: Prompt for final answer generation on fact verification tasks.

You have the following passages and table:

Passages:
{passage}

For the question “{question}”, here is a referenced breakdown:
{decomposition}.

Write a Python program to solve the question. Store the final result in the variable ans.

Figure 19: Prompt for final answer generation on document-level reasoning tasks with PoT.

You have the following passages and table:

Passages:
{passage}

For the question “{question}”, here is a referenced breakdown:
{decomposition}.

Reason step by step to calculate the final answer. Please use \boxed{} to wrap your final
answer.

Figure 20: Prompt for final answer generation on document-level reasoning tasks with CoT.
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E.5 Prompts for InstructRAG

Read the following documents relevant to the given question: {question}

Documents:
{documents}
...

Please identify documents that are useful to answer the given question: “{question}”. If none
of the documents is aligned with the answer, in that case, you have to explain the answer only
based on your own knowledge, without referring to the provided information.

Note that the question may be compositional and require intermediate analysis to deduce
the final answer. Make sure your response is grounded and provides clear reasoning details
followed by a concise conclusion. Your answer should be in a short span with a few keywords.
Use <answer> and </answer> tag to mark your final answer.

Figure 21: Prompt for InstructRAG on complex question answering tasks.

Read the following documents relevant to the given question: {question}

Documents:
{documents}
...

Please identify documents that are useful to answer the given question: “{question}”. If none
of the documents is aligned with the answer, in that case, you have to explain the answer only
based on your own knowledge, without referring to the provided information.

Note that the question may be compositional and require intermediate analysis to deduce
the final answer. Make sure your response is grounded and provides clear reasoning details
followed by a concise conclusion. Your answer should be yes or no only. Use <answer> and
</answer> tag to mark your final answer.

Figure 22: Prompt for InstructRAG on fact verification tasks.

F Additional Implementation Details

F.1 Implementation Details for SFT

For SFT, we set the batch size to 64 for every example, and set the learning rate as Table 7. With
maximum number of tokens to 2560.

Table 6: Results for different model sizes for SFT.
Model Size Learning Rate Warmup Steps
AceSearcher 1.5B 5e− 6 5%
AceSearcher 8B 1e− 6 5%
AceSearcher 14B 1e− 6 5%
AceSearcher 32B (LoRA) 1e− 5 5%

F.2 Implementation Details for RFT

We set the hyperparameters to m = 3, m′ = 4, and t = 1.0 when generating multiple rollouts.
Examples with identical maximum and minimum rewards are discarded. For RFT, we use β = 0.1
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Table 7: Results for different model sizes for RFT.
Model Size Learning Rate Warmup Steps
AceSearcher 1.5B 1e− 6 5%
AceSearcher 8B 5e− 7 5%
AceSearcher 14B 5e− 7 5%
AceSearcher 32B (LoRA) 1e− 6 5%

and run for the DPO for 2 iterations by default. All models are optimized using AdamW with
β1 = 0.9 and β2 = 0.98, and experiments are conducted on 8 NVIDIA A100 GPUs.

F.3 Implementation Details for Baselines

We implement and evaluate a variety of baselines using standardized decoding and prompting config-
urations to ensure fair comparison. For Qwen-3, we follow the official guidance5 to adopt distinct
sampling strategies depending on the task setting. In thinking mode (enable_thinking=True), we
use temperature = 0.6, top-p = 0.95, top-k = 20, and min-p = 0 to encourage diverse yet coherent
generation. Greedy decoding is explicitly avoided to prevent performance degradation and repetitive
outputs. In non-thinking mode (enable_thinking=False), we slightly increase the temperature to
0.7 and reduce top-p to 0.8 while keeping top-k and min-p unchanged. In practice, we find that using
the thinking mode leads to slightly better performance despite being slower. For R1-distill models,
we set the maximum generation length to 32,768 tokens and use temperature = 0.6, top-p = 0.95. In
Plan-RAG, we incorporate 3-shot demonstrations in the prompt to guide the model toward producing
outputs in the correct format. For InstructRAG, we use the same SFT training set as AceSearcher
and generate CoT-style demonstrations tailored to context-rich QA datasets. For Llama-4, GPT-4.1,
and GPT-4o, we use greedy decoding (temperature = 0) for consistency with their default inference
behavior. For IRCOT and RAG-Star, we reproduce results by following the original repositories
and hyperparameter settings. For these methods, we tune the number of retrieved passages from
{5, 10, 20} and report the best performance. We refer to other baselines’ reported numbers in the
corresponding paper.
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Figure 24: Effect of different retrievers.

Effect of β. We study the effect of β in preference optimization with Llama-3.1-8B as the backbone,
and find that AceSearcher is generally robust to this parameter, with β = 0.1 leads to slightly better
performance.

Effect of Different Retrievers. We evaluate AceSearcher and representative baselines (at the 8B
scale) using two different retrievers: Dragon6 and Contriever7. Overall, the E5 retriever achieves

5https://huggingface.co/Qwen/Qwen3-32B#best-practices
6https://huggingface.co/facebook/dragon-plus-context-encoder
7https://huggingface.co/facebook/contriever-msmarco
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Table 8: Performance comparison across models and prompting methods.
Model Prompt Method DMSimpShort DMCompShort DMSimpLong DMCompLong Avg.
AceSearcher-32B PoT 89.5 84.0 53.0 43.0 66.1
AceSearcher-14B PoT 84.0 82.0 49.0 39.3 62.4
AceSearcher-8B PoT 83.0 80.5 48.0 32.3 59.0
AceSearcher-1.5B PoT 66.5 77.5 39.0 18.0 47.6

AceSearcher-32B CoT 73.5 70.0 50.0 33.0 54.5
AceSearcher-14B CoT 78.5 75.5 44.0 34.7 57.0
AceSearcher-8B CoT 44.0 31.5 30.0 15.7 28.5
AceSearcher-1.5B CoT 37.5 32.0 18.0 9.7 23.2

the best performance, supporting our hypothesis that stronger retrieval models yield more relevant
passages and thus enhance answer quality. Notably, AceSearcher consistently outperforms baselines
across different retrievers, demonstrating its robustness to retrieval choices.

Comparison of CoT and PoT for Document-level Reasoning. Table 8 presents a comparison
between Program of Thought (POT) and Chain of Thought (COT) prompting methods across four
evaluation settings. POT consistently outperforms COT across all tasks, with notable improvements
on both simple and complex reasoning benchmarks. For example, across models, POT yields higher
average scores than COT on DMCompLong (e.g., 43.0 vs. 33.0 for AceSearcher-32b) and DMSimpShort
(e.g., 89.5 vs. 73.5 for AceSearcher-32b), demonstrating its advantage in guiding structured reasoning.
These results highlight the effectiveness of POT in enhancing model performance on decision-making
tasks requiring multi-step reasoning, regardless of model scale.

H Case Studies

Details of Human Study Our human study has received IRB approval from our institute. The below
is the form used in human evaluation:

You are provided with:

• The original complex question

• A proposed decomposition into subquestions

Please assess the overall quality of the decomposition using the criteria below.

• Relevance: Do the subquestions help solve the original question?

• Completeness: Are all important aspects covered?

• Coherence: Is the breakdown logically structured and easy to follow?

• Usefulness: Does the decomposition make the reasoning process easier or more inter-
pretable?

Please rate the overall quality of the subquestion decomposition.

• 1: Very Poor: Subquestions are irrelevant, incomplete, or incoherent.

• 2: Poor: Some relevance, but major gaps or unclear logic.

• 3: Fair: Moderately helpful with minor issues in coverage or clarity.

• 4: Good: Clear and mostly complete decomposition.

• 5: Excellent: Subquestions are highly relevant, complete, and well-structured, with proper
reference to answers from previous subquestions.

Details of Case Study

We present two case studies from the MusiQue, 2WikiMHQA and DocMathEval datasets in Tables 9,
10 and 11. Despite its larger size, the Qwen3-32B-reasoning model struggles with handling complex
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questions. In contrast, AceSearcher effectively decomposes each question into manageable sub-
questions, generates accurate answers for each sub-questions, and performs multi-step reasoning to
arrive at the correct final answer.

Table 9: A case study from MusiQue dataset.
A sample from MusiQue

Question: In which state is Vera Barbosa’s place of birth located?
Ground Truth Answer: Lisbon District

AceSearcher-8B
Sub-question 1: Who is Vera Barbosa?
Answer 1: a Portuguese track and field athlete
Sub-question 2: Where was Vera Barbosa born?
Answer 2: Vila Franca de Xira
Sub-question 3: In which state is #2 located?
Answer 3: Lisbon District

Final Answer:
The documents state that Vera Barbosa is a Portuguese track and field athlete and was born in Vila Franca de
Xira. Additionally, Vila Franca de Xira is located in the Lisbon District. Therefore, Vera Barbosa’s place of
birth, Vila Franca de Xira, is in the Lisbon District.

<answer>Lisbon District</answer>
Qwen3-32B Reasoning

<think>
Okay, let’s see. The question is asking about the state where Vera Barbosa’s place of birth is located. First, I
need to figure out which Vera Barbosa they’re referring to here because there are several people named Vera
Barbosa in the provided contexts.

Looking at the first entry: Vera Barbosa, born 13 January 1989 in Vila Franca de Xira, Portugal. That’s a
Portuguese athlete. Then there’s another Vera Krasova, a Russian model, and Vera Begić, a Croatian athlete.
There’s also a mention of a place called Barbosa in Colombia and Brazil. But the key here is the name Vera
Barbosa specifically.

The user is asking about Vera Barbosa’s birthplace state. The first context says she was born in Vila Franca
de Xira, which is in Portugal. However, the question is phrased as "In which state is Vera Barbosa’s place of
birth located?" So, states are typically administrative divisions in countries like the US, Brazil, etc. Portugal
is divided into districts, not states. But maybe the user is using "state" in a general sense here.

Wait, but looking at other entries, there’s a Carlos Barbosa in Brazil’s Rio Grande do Sul state, and Bárbara
Barbosa is a Brazilian footballer. But the specific Vera Barbosa mentioned in the first paragraph is the
Portuguese athlete. Her birthplace is Vila Franca de Xira, Portugal. Since Portugal doesn’t have states, but
the question uses "state," perhaps the answer is Portugal. Alternatively, if the user is confused and actually
refers to a different person, but based on the given data, the only Vera Barbosa with a birthplace listed is the
Portuguese one. Therefore, the answer should be Portugal.
</think>

<answer>Portugal</answer>
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Table 10: A case study from 2WikiMHQA dataset.
A sample from 2WikiMHQA

Question: Which film has the director who was born later, The Silver Treasure or Taxi To Paradise?
Ground Truth Answer: Taxi To Paradise

AceSearcher-8B
Sub-question 1: Who directed The Silver Treasure?
Answer 1: Rowland V. Lee
Sub-question 2: Who directed Taxi To Paradise?
Answer 2: Adrian Brunel
Sub-question 3: When was the director of #1 born?
Answer 3: September 6, 1891
Sub-question 4: When was the director of #2 born?
Answer 4: 4 September 1892
Sub-question 5: Is the year of #3 later than #4?
Answer 5: no

Final Answer:
From the documents, “The Silver Treasure” was directed by Rowland V. Lee, born on September 6, 1891
(Q3), and "Taxi To Paradise" was directed by Adrian Brunel, born on September 4, 1892 (Q4). Comparing
these dates, Adrian Brunel was born later than Rowland V. Lee (Q5 confirms this).
Thus, the film with the director born later is “Taxi To Paradise.”

<answer>Taxi To Paradise</answer>
Qwen3-32B Reasoning

<think>
Okay, let’s see. The user is asking which film has the director born later between The Silver Treasure and
Taxi to Paradise.

First, I need to find the directors of both films. From the context:

- The Silver Treasure (1926) is directed by Rowland V. Lee. - Taxi to Paradise (1933) is directed by Adrian
Brunel.

Now, I need to check their birth dates. The context doesn’t provide birth dates for these directors. So I’ll
have to rely on my own knowledge.

Rowland V. Lee was born on April 22, 1894. Adrian Brunel was born on October 2, 1887. Wait, Brunel
was born earlier than Lee? Wait, no: if Brunel was born in 1887 and Lee in 1894, then Brunel was born
earlier. Therefore, Rowland V. Lee was born later. So The Silver Treasure’s director was born later than Taxi
to Paradise’s director. Therefore, the answer is The Silver Treasure.
</think>

<answer>The Silver Treasure</answer>
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Table 11: A case study from DMCS subset of the DocMathEval dataset.
A sample from DMCS subset of DocMathEval.

Table:

Year Segment Americas Europe Asia Total % of Total
(Amounts in thousands)

2019 TS $67,728 $3,285 $646 $71,159 90%
2019 HPP $5,294 $771 $1,837 $7,902 10%
2019 Total $72,522 $4,056 $2,483 $79,061 100%
2019 % of Total 92% 5% 3% 100%
2018 TS $52,034 $9,059 $1,344 $62,437 86%
2018 HPP $8,424 $1,266 $789 $10,479 14%
2018 Total $60,458 $10,325 $2,133 $72,916 100%
2018 % of Total 83% 14% 3% 100%

Table 12: The following table details the Company’s sales by operating segment for fiscal years
ended September 30, 2019 and 2018. The Company’s sales by geographic area based on the location
of where the products were shipped or services rendered are as follows: Substantially all Americas
amounts are United States.

Question: What is the percentage change in Asia sales between 2018 and 2019 if the 2019 sales is doubled
and increased by another 400 thousand? (in percent)
Ground Truth Answer: 151.5705

AceSearcher-8B
Sub-question 1: What was the value of Asia sales in 2019?
Sub-question 2: What is the value of Asia sales in 2019 after doubling it?
Sub-question 3: What is the value of Asia sales in 2019 after doubling it and then adding 400,000?
Sub-question 4: What was the value of Asia sales in 2018?
Sub-question 5: What is the net change in the value of Asia sales from 2018 to 2019, after adjusting the
2019 value?
Sub-question 6: What is the percentage change in the value of Asia sales from 2018 to 2019, after adjusting
the 2019 value?

Final Answer:
# Given data
asia_sales_2019 = 2483 # in thousands (Q1)
asia_sales_2018 = 2133 # in thousands (Q4)

# Adjust 2019 sales: double it and add 400 thousand (Q2, Q3)
adjusted_2019_sales = (asia_sales_2019 * 2) + 400

# Compute value change (Q5)
change_in_sales = adjusted_2019_sales - asia_sales_2018

# Compute percentage change (Q6)
ans = (change_in_sales / asia_sales_2018) * 100

151.57055789967183

Qwen3-32B Reasoning
# Original 2019 Asia sales in thousands
original_2019_asia = 646

# Adjusted 2019 sales after doubling and adding 400 thousand
adjusted_2019_asia = original_2019_asia * 2 + 400

# Original 2018 Asia sales in thousands
original_2018_asia = 1344

# Calculate percentage change
percentage_change = ((adjusted_2019_asia - original_2018_asia) /
original_2018_asia) * 100
ans = percentage_change

25.892857142857146

35


	Introduction
	Related Works
	Overview of AceSearcher
	Problem Formulation
	AceSearcher: A Cooperative Self-Play Framework

	Two-Stage Finetuning for AceSearcher
	Stage I: Supervised Finetuning (SFT)
	Stage II: Preference-based Reinforcement Finetuning (RFT)

	Experiments
	Experiment Setups
	Evaluation on QA and Fact Verification
	Evaluation on Document-level Reasoning
	Additional Studies
	Efficiency Studies
	Parameter Studies
	Quality Analysis of Question Decomposition Module

	Conclusion
	Derivation Step for Optimal Policy * and *
	Omitted Theorems and Proofs
	Notion
	Main theorem
	Population Version
	Sample Version
	On the Equivalence with DPO
	Convergence Property of DPO

	Information for Test Datasets
	Details of Training Data
	Prompt Templates
	Prompts for Direct RAG
	Prompts for Decomposition
	Prompts for subquestion answering
	Prompts for final answer generation
	Prompts for InstructRAG

	Additional Implementation Details
	Implementation Details for SFT
	Implementation Details for RFT
	Implementation Details for Baselines

	Additional Experimental Results
	Case Studies

