Beyond Prediction: Al as a Creative Partner in Organic Synthesis

Tuan Bao Vinh¹, Tao Li², Carl Yang², Monika Raj^{1*}

Authors and Affiliations:

¹Department of Chemistry, Emory University; Atlanta, GA, United States.

²Department of Computer Science, Emory University; Atlanta, GA, United States.

*Corresponding author. Email: monika.raj@emory.edu

Artificial intelligence (AI) has rapidly progressed from being a niche curiosity to becoming a real force in the chemical sciences. In organic synthesis, however, AI's role is still mostly viewed in two ways: helping automate retrosynthetic planning and speeding up reaction optimization. These advances—like the retrosynthesis engine developed by Segler et al.¹ and the optimization workflows from Doyle's group² have been game-changing in specific cases. But if we only see AI in these roles, we risk overlooking its bigger potential.

That potential is to use AI not just as a "prediction machine," but as a creative partner, one that can help generate new ideas, or hypotheses, that could lead to the discovery of completely new types of reactivity, reaction mechanisms, and molecular frameworks (Figure 1).

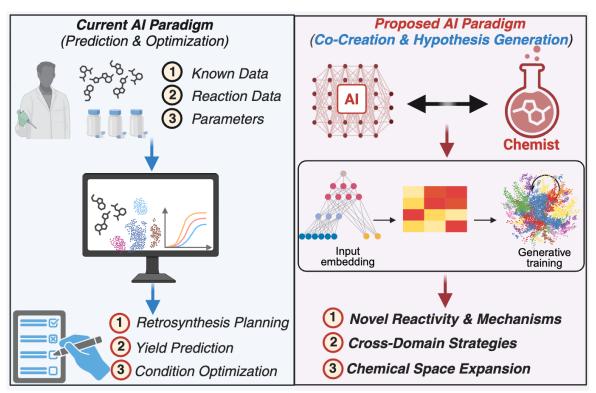


Figure 1. From prediction to co-creation: reframing Al's role in organic synthesis.

Breaking Cognitive Overfitting. Traditionally, synthetic organic chemistry has advanced through the cycle of observation, intuition, and experimental refinement, driven by chemist's ability to recognize subtle patterns in reactivity. But human thinking is naturally biased: our training, past experiences, and even the published literature push us toward familiar reactions. This "cognitive overfitting" means we often focus on a narrow slice of chemistry. Al can help counteract this by revealing reaction possibilities that fall outside our usual mental patterns.

Recent examples illustrate the point. For example, Cronin and co-workers⁴ coupled machine learning with an automated, programmable synthesis platform to explore reactivity in a closed loop. Rather than only optimizing known transformations, the system prioritized experiments that revealed unexpected outcomes, showing how self-driving laboratories can probe beyond routine reactivity. Historical antecedents exist—algorithmic approaches to discovering new reactions were reported as early as the 1990s,⁵ but modern implementations integrate continuous instrumentation, feedback control, and richer molecular representations. Similarly, the AspuruGuzik group has developed "inverse-design" frameworks using advanced AI models to explore chemical space in multiple directions at once, considering several target properties simultaneously, not just one.⁶ In both cases, the AI acted less like a black-box and more like a collaborator offering "alien" suggestions that challenged conventional design rules.⁷

Three shifts needed. To make this shift more common, three changes are required. First, broaden the training data: Al models should learn from reaction datasets that capture diverse and underrepresented transformations. Current corpora, whether from public databases or the literature, are dominated by a few reaction classes. For example, Beker et al.8 reported over 10,000 cases of heteroaryl Suzuki-Miyaura couplings, highlighting the overwhelming prevalence of this single transformation. Such abundance risks models "learning popularity" rather than reactivity, defaulting to common reactions instead of uncovering less explored but potentially transformative chemistries. Countering this bias requires deliberately incorporating reactions such as radical cascades, photochemical rearrangements, and high-valent metal-mediated oxidations. Second, blend Al with chemical insight: purely statistical models risk memorizing patterns rather than capturing underlying reactivity. Embedding mechanistic understanding—through interpretable physical-organic descriptors such as sterics, electronics, pK a values, or kinetic parameters—allows predictions to generalize beyond the training distribution.⁹ This integration also makes outputs more chemically meaningful: a model that incorporates mechanistic context can suggest transformations that are both novel and consistent with known principles, giving chemists a stronger basis for trust and follow-up experimentation. Third, make Al thinking visible: most current models present outputs as black boxes, leaving chemists unsure why a prediction was made. Interfaces should instead reveal which features or reaction motifs influenced the outcome, highlight precedent examples considered similar, and provide calibrated measures of uncertainty. Such transparency turns opaque predictions into interrogable hypotheses. This allows chemists to probe, stress-test, and refine model suggestions, transforming AI from a oneway oracle into a collaborative partner in discovery.

Beyond Small Molecules. The potential of AI extends far beyond small-molecule synthesis. In complex molecular settings such as total synthesis of natural products, diversity-oriented synthesis, or late-stage modification of bioactive scaffolds, exploring unknown chemical reactivity can be slow and expensive. AI can act as a triage tool, rapidly narrowing huge numbers of possible reactions to a manageable set of promising options. Similar opportunities exist in peptide and protein chemistry. Many bioconjugation, macrocyclization, and post-translational modification strategies are inspired by small-molecule logic. AI could go further not only improving site selectivity and orthogonality but also uncovering reaction pathways that are difficult or impossible to find by trial-and-error screening alone. Models trained on both organic and enzymatic reactions

could suggest hybrid strategies bridging synthetic chemistry with biomolecular reactivity. This could speed up the creation of precise tools for chemical biology. A recent study published in Nature, 10 showed how high-throughput experimentation combined with Bayesian optimization can efficiently search reaction conditions. The AI was not intended to outperform human intuition at known chemistry, but to accelerate the productive and unconventional solutions.

Al is not a final arbiter but a scientific partner—co-generating early hypotheses, stress-testing assumptions, and enabling solutions neither could achieve alone. For organic chemists, this means thinking of Al in a new way; not as the final step in planning the synthesis, but as a partner early in the creative process. Just as NMR spectroscopy did not replace the chemist's interpretation skills but expanded the kind of structures we could solve, Al can expand the range of synthetic ideas we can imagine.

Making this vision real will require changes to both infrastructure and mindset. We need better data standards for reactions, open databases that include failed, as well as successful experiments, and incentives for chemists to gain cross-disciplinary skills. More importantly, chemists must see AI reasoning as part of their own thinking process, not as a black-box service done elsewhere. If we do this, AI won't replace the art of synthesis, it will make it richer, more daring, and ultimately more creative.

References

- 1. Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical Syntheses with Deep Neural Networks and Symbolic Al. Nature 2018, 555, 604-610.
- 2. Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian Reaction Optimization as a Tool for Chemical Synthesis. Nature 2021, 590, 89-96.
- 3. Corey, E. J.; Wipke, W. T. Computer-Assisted Design of Complex Organic Syntheses. Science 1969, 166, 178-192.
- 4. Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Controlling an Organic Synthesis Robot with Machine Learning to Search for New Reactivity. Nature 2018, 559, 377-381.
- 5. Herges, R.; Hoock, C. Reaction Planning: Computer-Aided Discovery of a Novel Elimination Reaction. Science 1992, 255 (5045), 711–713.
- 6. Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering. Science 2018, 361, 360-365.
- 7. Jones, N. OpenAl's 'deep research' tool: is it useful for scientists? Nature 2025 doi: 10.1038/d41586-025-00377-9.
- 8. Beker, W.; Roszak, R.; Wołos, A.; Angello, N. H.; Rathore, V.; Burke, M. D.; Grzybowski, B. A. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. J. Am. Chem. Soc. 2022, 144, 4819–4827.
- 9. Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J. Predictive Multivariate Linear Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of Diazines. J. Am. Chem. Soc. 2019, 141, 19178-19185.
- 10. Burger, B., Maffettone, P.M., Gusev, V.V. et al. A Mobile Robotic Chemist. Nature 2020, 583, 237-241.