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Artificial intelligence (Al) has rapidly progressed from being a niche curiosity to becoming a real
force in the chemical sciences. In organic synthesis, however, Al’s role is still mostly viewed in
two ways: helping automate retrosynthetic planning and speeding up reaction optimization. These
advances—like the retrosynthesis engine developed by Segler et al." and the optimization
workflows from Doyle’s group? have been game-changing in specific cases. But if we only see Al
in these roles, we risk overlooking its bigger potential.

That potential is to use Al not just as a “prediction machine,” but as a creative partner, one that
can help generate new ideas, or hypotheses, that could lead to the discovery of completely new
types of reactivity, reaction mechanisms, and molecular frameworks (Figure 1).
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Figure 1. From prediction to co-creation: reframing Al’s role in organic synthesis.



Breaking Cognitive Overfitting. Traditionally, synthetic organic chemistry has advanced
through the cycle of observation, intuition, and experimental refinement, driven by chemist’s ability
to recognize subtle patterns in reactivity. But human thinking is naturally biased: our training, past
experiences, and even the published literature push us toward familiar reactions. This “cognitive
overfitting” means we often focus on a narrow slice of chemistry.® Al can help counteract this by
revealing reaction possibilities that fall outside our usual mental patterns.

Recent examples illustrate the point. For example, Cronin and co-workers* coupled machine
learning with an automated, programmable synthesis platform to explore reactivity in a closed
loop. Rather than only optimizing known transformations, the system prioritized experiments that
revealed unexpected outcomes, showing how self-driving laboratories can probe beyond routine
reactivity. Historical antecedents exist—algorithmic approaches to discovering new reactions
were reported as early as the 1990s,° but modern implementations integrate continuous
instrumentation, feedback control, and richer molecular representations. Similarly, the
AspuruGuzik group has developed “inverse-design” frameworks using advanced Al models to
explore chemical space in multiple directions at once, considering several target properties
simultaneously, not just one.® In both cases, the Al acted less like a black-box and more like a
collaborator offering “alien” suggestions that challenged conventional design rules.’

Three shifts needed. To make this shift more common, three changes are required. First,
broaden the training data: Al models should learn from reaction datasets that capture diverse
and underrepresented transformations. Current corpora, whether from public databases or the
literature, are dominated by a few reaction classes. For example, Beker et al.® reported over
10,000 cases of heteroaryl Suzuki—Miyaura couplings, highlighting the overwhelming prevalence
of this single transformation. Such abundance risks models “learning popularity” rather than
reactivity, defaulting to common reactions instead of uncovering less explored but potentially
transformative chemistries. Countering this bias requires deliberately incorporating reactions such
as radical cascades, photochemical rearrangements, and high-valent metal-mediated oxidations.
Second, blend Al with chemical insight: purely statistical models risk memorizing patterns
rather than capturing underlying reactivity. Embedding mechanistic understanding—through
interpretable physical-organic descriptors such as sterics, electronics, pK a values, or kinetic
parameters—allows predictions to generalize beyond the training distribution.® This integration
also makes outputs more chemically meaningful: a model that incorporates mechanistic context
can suggest transformations that are both novel and consistent with known principles, giving
chemists a stronger basis for trust and follow-up experimentation. Third, make Al thinking
visible: most current models present outputs as black boxes, leaving chemists unsure why a
prediction was made. Interfaces should instead reveal which features or reaction motifs influenced
the outcome, highlight precedent examples considered similar, and provide calibrated measures
of uncertainty. Such transparency turns opaque predictions into interrogable hypotheses. This
allows chemists to probe, stress-test, and refine model suggestions, transforming Al from a
oneway oracle into a collaborative partner in discovery.

Beyond Small Molecules. The potential of Al extends far beyond small-molecule synthesis. In
complex molecular settings such as total synthesis of natural products, diversity-oriented
synthesis, or late-stage modification of bioactive scaffolds, exploring unknown chemical reactivity
can be slow and expensive. Al can act as a triage tool, rapidly narrowing huge numbers of
possible reactions to a manageable set of promising options. Similar opportunities exist in peptide
and protein chemistry. Many bioconjugation, macrocyclization, and post-translational modification
strategies are inspired by small-molecule logic. Al could go further not only improving site
selectivity and orthogonality but also uncovering reaction pathways that are difficult or impossible
to find by trial-and-error screening alone. Models trained on both organic and enzymatic reactions



could suggest hybrid strategies bridging synthetic chemistry with biomolecular reactivity. This
could speed up the creation of precise tools for chemical biology. A recent study published in
Nature,'® showed how high-throughput experimentation combined with Bayesian optimization can
efficiently search reaction conditions. The Al was not intended to outperform human intuition at
known chemistry, but to accelerate the productive and unconventional solutions.

Al is not a final arbiter but a scientific partner—co-generating early hypotheses, stress-testing
assumptions, and enabling solutions neither could achieve alone. For organic chemists, this
means thinking of Al in a new way; not as the final step in planning the synthesis, but as a partner
early in the creative process. Just as NMR spectroscopy did not replace the chemist’'s
interpretation skills but expanded the kind of structures we could solve, Al can expand the range
of synthetic ideas we can imagine.

Making this vision real will require changes to both infrastructure and mindset. We need better
data standards for reactions, open databases that include failed, as well as successful
experiments, and incentives for chemists to gain cross-disciplinary skills. More importantly,
chemists must see Al reasoning as part of their own thinking process, not as a black-box service
done elsewhere. If we do this, Al won't replace the art of synthesis, it will make it richer, more
daring, and ultimately more creative.
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