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Artificial intelligence (AI) has rapidly progressed from being a niche curiosity to becoming a real 
force in the chemical sciences. In organic synthesis, however, AI’s role is still mostly viewed in 
two ways: helping automate retrosynthetic planning and speeding up reaction optimization. These 
advances—like the retrosynthesis engine developed by Segler et al.1 and the optimization 
workflows from Doyle’s group2 have been game-changing in specific cases. But if we only see AI 
in these roles, we risk overlooking its bigger potential.  

That potential is to use AI not just as a “prediction machine,” but as a creative partner, one that 
can help generate new ideas, or hypotheses, that could lead to the discovery of completely new 
types of reactivity, reaction mechanisms, and molecular frameworks (Figure 1). 

Figure 1. From prediction to co-creation: reframing AI’s role in organic synthesis. 



Breaking Cognitive Overfitting. Traditionally, synthetic organic chemistry has advanced 
through the cycle of observation, intuition, and experimental refinement, driven by chemist’s ability 
to recognize subtle patterns in reactivity. But human thinking is naturally biased: our training, past 
experiences, and even the published literature push us toward familiar reactions. This “cognitive 
overfitting” means we often focus on a narrow slice of chemistry.3 AI can help counteract this by 
revealing reaction possibilities that fall outside our usual mental patterns.  

Recent examples illustrate the point. For example, Cronin and co-workers4 coupled machine 
learning with an automated, programmable synthesis platform to explore reactivity in a closed 
loop. Rather than only optimizing known transformations, the system prioritized experiments that 
revealed unexpected outcomes, showing how self-driving laboratories can probe beyond routine 
reactivity. Historical antecedents exist—algorithmic approaches to discovering new reactions 
were reported as early as the 1990s,5 but modern implementations integrate continuous 
instrumentation, feedback control, and richer molecular representations. Similarly, the 
AspuruGuzik group has developed “inverse-design” frameworks using advanced AI models to 
explore chemical space in multiple directions at once, considering several target properties 
simultaneously, not just one.6 In both cases, the AI acted less like a black-box and more like a 
collaborator offering “alien” suggestions that challenged conventional design rules.7  

Three shifts needed. To make this shift more common, three changes are required. First, 
broaden the training data: AI models should learn from reaction datasets that capture diverse 
and underrepresented transformations. Current corpora, whether from public databases or the 
literature, are dominated by a few reaction classes. For example, Beker et al.8 reported over 
10,000 cases of heteroaryl Suzuki–Miyaura couplings, highlighting the overwhelming prevalence 
of this single transformation. Such abundance risks models “learning popularity” rather than 
reactivity, defaulting to common reactions instead of uncovering less explored but potentially 
transformative chemistries. Countering this bias requires deliberately incorporating reactions such 
as radical cascades, photochemical rearrangements, and high-valent metal-mediated oxidations. 
Second, blend AI with chemical insight: purely statistical models risk memorizing patterns 
rather than capturing underlying reactivity. Embedding mechanistic understanding—through 
interpretable physical–organic descriptors such as sterics, electronics, pK a values, or kinetic 
parameters—allows predictions to generalize beyond the training distribution.9 This integration 
also makes outputs more chemically meaningful: a model that incorporates mechanistic context 
can suggest transformations that are both novel and consistent with known principles, giving 
chemists a stronger basis for trust and follow-up experimentation. Third, make AI thinking 
visible: most current models present outputs as black boxes, leaving chemists unsure why a 
prediction was made. Interfaces should instead reveal which features or reaction motifs influenced 
the outcome, highlight precedent examples considered similar, and provide calibrated measures 
of uncertainty. Such transparency turns opaque predictions into interrogable hypotheses. This 
allows chemists to probe, stress-test, and refine model suggestions, transforming AI from a 
oneway oracle into a collaborative partner in discovery. 

Beyond Small Molecules. The potential of AI extends far beyond small-molecule synthesis. In 
complex molecular settings such as total synthesis of natural products, diversity-oriented 
synthesis, or late-stage modification of bioactive scaffolds, exploring unknown chemical reactivity 
can be slow and expensive. AI can act as a triage tool, rapidly narrowing huge numbers of 
possible reactions to a manageable set of promising options. Similar opportunities exist in peptide 
and protein chemistry. Many bioconjugation, macrocyclization, and post-translational modification 
strategies are inspired by small-molecule logic. AI could go further not only improving site 
selectivity and orthogonality but also uncovering reaction pathways that are difficult or impossible 
to find by trial-and-error screening alone. Models trained on both organic and enzymatic reactions 



could suggest hybrid strategies bridging synthetic chemistry with biomolecular reactivity. This 
could speed up the creation of precise tools for chemical biology. A recent study published in 
Nature,10 showed how high-throughput experimentation combined with Bayesian optimization can 
efficiently search reaction conditions. The AI was not intended to outperform human intuition at 
known chemistry, but to accelerate the productive and unconventional solutions.  

AI is not a final arbiter but a scientific partner—co-generating early hypotheses, stress-testing 
assumptions, and enabling solutions neither could achieve alone. For organic chemists, this 
means thinking of AI in a new way; not as the final step in planning the synthesis, but as a partner 
early in the creative process. Just as NMR spectroscopy did not replace the chemist’s 
interpretation skills but expanded the kind of structures we could solve, AI can expand the range 
of synthetic ideas we can imagine. 

Making this vision real will require changes to both infrastructure and mindset. We need better 
data standards for reactions, open databases that include failed, as well as successful 
experiments, and incentives for chemists to gain cross-disciplinary skills. More importantly, 
chemists must see AI reasoning as part of their own thinking process, not as a black-box service 
done elsewhere. If we do this, AI won’t replace the art of synthesis, it will make it richer, more 
daring, and ultimately more creative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

References 

1. Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical Syntheses with Deep Neural 
Networks and Symbolic AI. Nature 2018, 555, 604-610.  

 
2. Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. 

M.; Adams, R. P.; Doyle, A. G. Bayesian Reaction Optimization as a Tool for Chemical 
Synthesis. Nature 2021, 590, 89-96.  

 
3. Corey, E. J.; Wipke, W. T. Computer-Assisted Design of Complex Organic Syntheses. 

Science 1969, 166, 178-192.  
 

4. Granda, J. M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Controlling an Organic 
Synthesis Robot with Machine Learning to Search for New Reactivity. Nature 2018, 559, 
377-381.  

 
5. Herges, R.; Hoock, C. Reaction Planning: Computer-Aided Discovery of a Novel 

Elimination Reaction. Science 1992, 255 (5045), 711–713. 
 

6. Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse Molecular Design Using Machine 
Learning: Generative Models for Matter Engineering. Science 2018, 361, 360-365.  

 
7. Jones, N. OpenAI's 'deep research' tool: is it useful for scientists? Nature 2025 doi: 

10.1038/d41586-025-00377-9.  
 

8. Beker, W.; Roszak, R.; Wołos, A.; Angello, N. H.; Rathore, V.; Burke, M. D.; Grzybowski, 
B. A. Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A 
Case Study of Heterocyclic Suzuki–Miyaura Coupling. J. Am. Chem. Soc. 2022, 144, 
4819–4827. 

 
9. Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J. Predictive Multivariate Linear 

Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of 
Diazines. J. Am. Chem. Soc. 2019, 141, 19178-19185.  

 
10. Burger, B., Maffettone, P.M., Gusev, V.V. et al. A Mobile Robotic Chemist. Nature 2020, 

583, 237-241.  
 
 
 


