
When Do GNNs Work: Understanding and Improving Neighborhood Aggregation

Yiqing Xie1,2 ∗ , Sha Li1∗ , Carl Yang3 , Raymond Chi-Wing Wong2 and Jiawei Han1

1University of Illinois at Urbana-Champaign, IL, USA
2The Hong Kong University of Science and Technology, Hong Kong, China

3Emory University, GA, USA
{xyiqing2, shal2, hanj}@illinois.edu, j.carlyang@emory.edu, raywong@cse.ust.hk

Abstract
Graph Neural Networks (GNNs) have been shown
to be powerful in a wide range of graph-related
tasks. While there exist various GNN models, a
critical common ingredient is neighborhood aggre-
gation, where the embedding of each node is up-
dated by referring to the embedding of its neigh-
bors. This paper aims to provide a better under-
standing of this mechanism by asking the following
question: Is neighborhood aggregation always nec-
essary and beneficial? In short, the answer is no.
We carve out two conditions under which neigh-
borhood aggregation is not helpful: (1) when a
node’s neighbors are highly dissimilar and (2) when
a node’s embedding is already similar to that of its
neighbors. We propose novel metrics that quanti-
tatively measure these two circumstances and inte-
grate them into an Adaptive-layer module. Our ex-
periments show that allowing for node-specific ag-
gregation degrees have significant advantage over
current GNNs.

1 Introduction
Graph neural networks (GNNs) are a class of neural net-
work models for graphs which learn to integrate node fea-
tures based on labels and link structures [Zhou et al., 2018].
Despite the impressive performance, the structure of a typi-
cal GNN model, i.e., a graph convolutional network (GCN)
[Kipf and Welling, 2016], is quite simple. It can be regarded
as a fully-connected neural network (FNN) plus a neighbor-
hood aggregation component. The former computes a non-
linear feature projection, whereas the latter mixes the feature
of each node with those of its neighbors, allowing the model
to leverage graph topology for feature learning.

Despite the great success of GNN in several datasets, we
observe that in some cases the improvement over a simple
FNN that has no access to links in the graph is limited, es-
pecially when the aggregation degree (i.e., rounds of aggre-
gation) is large (Table 1). This leads us to question whether
neighborhood aggregation may be harmful or unnecessary in
certain cases. Existing studies have looked into this from a
∗Equal Contribution.

Method Aggregation degrees Acc0 1 2 ≥ 3
FNN 100% 0 0 0 40.5%

7-layer GNN 0 0 0 100% 40.8%
2-layer GNN 0 0 100% 0 77.1%

Node-wise Agg 7.4% 1.1% 83.2% 8.3% 86.8%

Table 1: Node classification performance on Cora (3% labels) using
different aggregation degrees. For Node-wise Agg, we manually
determine the aggregation degree for all nodes. For this experiment
we use GCN, a typical GNN model.

global perspective. They observe that high aggregation de-
grees over the entire graph mixes together nodes from differ-
ent clusters, and name this phenomenon as ‘over-smoothing’
[Li et al., 2018; Chen et al., 2020; Zhao and Akoglu, 2020;
Hou et al., 2020]. However, none of them has considered
different aggregation degrees from a local perspective. In
fact, if we allow the aggregation degrees to vary across nodes,
the performance of GNN can be significantly improved (as
shown in the last row of Table 1). The next question is how
can we control the aggregation degree for individual nodes?

Towards this goal, we try to characterize cases where ag-
gregation is not helpful. Specifically, for an individual node,
we analyze the utility of neighborhood aggregation based on
the features/predicted labels of itself and its immediate neigh-
bors. We find that: (1) If the learned feature/label of a cen-
ter node’s neighbors disagree (have high entropy), further ag-
gregation may hurt performance; (2) When the learned fea-
ture/label of a center node is nearly identical to its neighbors,
further aggregation is unnecessary. For each of the scenarios,
we design an intuitive and principled metric based on infor-
mation theory to quantify its presence.

To make use of our metrics and realize the full potential of
GNNs, we design an Adaptive-layer module that allows in-
dividual nodes to perform different rounds of neighborhood
aggregation. Specifically, during the training process, we
check each node and their neighbors’ learned label, estimate
whether neighborhood aggregation is harmful or unnecessary
by calculating our metrics, and only allow nodes where aggre-
gation is useful to perform aggregation. We keep conducting
this check-aggregate process until a certain number of iter-
ations have been executed, or all nodes are not allowed to
perform aggregation. Our module can be implemented effi-
ciently and has similar runtime to GCN. We also provide ex-

tensive experiments and case studies to validate and explain
the advantages of our proposed module.

To sum up, our key contributions are: (1) Analyzing the
utility of neighborhood aggregation from a local perspective,
with illustrative examples, theoretical support and empirical
results; (2) Proposing two intuitive and principled metrics
to quantitatively describe two scenarios where neighborhood
aggregation is not helpful; (3) Incorporating the metrics into
the design of a novel Adaptive-layer module, whose perfor-
mance is validated through extensive experiments on three
real-world networks.

2 Preliminary
GNN models have been intensively studied and applied to
various graph-related tasks. In this work, we focus on semi-
supervised node classification [Kipf and Welling, 2016;
Hamilton et al., 2017; Velickovic et al., 2017; Li et al., 2018;
Chen et al., 2020; Zhang and Meng, 2020].

2.1 Graph Neural Networks (GNN)
Given a graph G = (V;E) with input features X , the update
function of GNN for a single layer is as follows:

hl+1
u = �(WlAgg({hlv|v ∈ N (u)})); h0

u = xu: (1)

When the end task is node classification, another linear layer
is used to project the node embedding to class labels:

ŷu = Softmax(Wyh
L
u): (2)

We refer to the operation Agg({hlu|u ∈ N (v)}) as neighbor-
hood aggregation since it essentially combines information
from a node’s neighborhood. The exact aggregation func-
tion and the definition of ‘neighborhood’ differs from model
to model [Zhou et al., 2018]. In particular, GCN [Kipf and
Welling, 2016] sums up the information from direct neigh-
bors by defining

Agg({hlv|v ∈ N (u)}) =
X

v2N (u)[fug

hlvp
|N (u) + 1||N (v) + 1|

:

(3)
Since the aggregation-based update is done for each layer, we
refer to the total number of layers L as aggregation degree.

2.2 Simple Graph Convolution (SGC)
SGC [Wu et al., 2019] simplifies GCN by removing the non-
linearity between layers. SGC has been shown to have similar
performance as GCN with improved efficiency. Another ben-
efit of using a single linear projection is that the number of
parameters in SGC does not grow with the number of lay-
ers, sidestepping the over-fitting phenomenon. The resulting
model can be expressed as follows:

Ŷ = Softmax(SKXW);

S = D̃�
1
2 ÃD̃�

1
2 ;

(4)

where A is the adjacency matrix, Ã = A + I and D̃ is the
degree matrix of Ã.

0 1

2

34

5
6

7

8

9
10

11
12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30
31

32
33

Figure 1: Zachary’s karate club network. The label class of the
nodes are distinguished by color.

Figure 2: The first row: predicted labels on the Karate Club dataset
using SGC. The color of the nodes shows the predicted club. The
second row: the computed neighborhood entropy of the nodes. A
deeper color shows lower entropy. The third row: the computed
center-neighbor similarity. A deeper color shows smaller similarity.
Left to right: Aggregation degrees L = 1; 3; 5. The initial labeled
nodes are 16 (with label 0) and 14 (with label 1).

3 Analysis
In this section, we start from a case study to explore under
which circumstances neighborhood aggregation may not be
helpful to GNNs. The GNN update function consists of sev-
eral operations, namely the non-linearity, linear projection
and neighborhood aggregation. To avoid confounding fac-
tors such as overfitting, we use SGC [Wu et al., 2019] as our
base model for investigation.

Zachary’s karate club [Zachary, 1977] (Figure 1) is a clas-
sical dataset showing the interactions among club members.
The club is divided into two groups, as shown by the yel-
low and blue nodes. We start with gradually increasing the
aggregation degree L = 1; 3; 5 for SGC on this dataset to
observe how the information propagates over the aggrega-
tion rounds (first row in Figure 2). When L = 1, the ini-
tial labeled nodes clearly stand out and information is only
propagated to its direct neighbors and not sufficiently spread
among all club members. When L = 3 the prediction among
the same club is very similar but the inter-club distinction is
still evident. As L continues to increase (L = 5 and over),
the inter-club distinction begins to blur and finally all nodes
have the same prediction. This phenomenon was referred to
as over-smoothing in [Li et al., 2018]. In this example, to
achieve the best classification results, we need neighborhood

aggregation, but must retreat from excessive aggregation. The
key to avoiding deterioration is to prevent inter-club, or more
generally, inter-community mixing, which happens when the
aggregation crosses the community boundary (nodes 13, 19,
1, 2). A major characteristic of these nodes is that its neigh-
bors take on different labels, leading us to develop our �rst
metric neighborhood entropy. Moreover, the best aggrega-
tion degree differs from node to node: whenL = 1 bottom
right group (nodes 32, 33, 14, 29) already produces the right
prediction con�dently, whereas nodes in the top (nodes 0, 11,
12, 17) still require more aggregation. For these con�dent
nodes, further aggregation only increases computation cost,
but does not contribute to performance. Thus, we derive our
second metriccenter-neighbor similarity.

3.1 Neighborhood Entropy
Neighborhood aggregationtakes advantage of the homophily
effect in networks, which states that connected nodes should
be similar. Taking this one step further, the neighbors of a
node should be similar among themselves. When the neigh-
bors disagree, we take this as a warning that the assumption
may not hold and the aggregated information may be noise.

To measure the diversity of a particular node's neighbor-
hood, we compute the entropy among neighbors:

Scoreetp (u) = �
Z

X
f N (u) (x) � log(f N (u) (x))dx; (5)

whereX is the feature space,f N (u) is the probability den-
sity function (PDF) of the features of nodeu's neighbors.
However, since this PDF is a sum of Dirac functions at each
neighbor over high dimensional space, computing this differ-
ential entropy is infeasible and also not very informative. Al-
ternatively, we use the predicted labels to calculate the label
distribution of nodeu's neighbors and calculate its discrete
entropy:

Scoreetp (u) = �
X

c2 C

Pc(u) log(Pc(u)) ;

Pc(u) =
jf v 2 N (u) j yv = cgj

jN (u)j
;

(6)

whereC is the set of all label classes. IfScoreetp (u) is larger,
the diversity of nodeu's neighbor is larger. For the karate
club dataset shown in Figure 1, when labels are correctly pre-
dicted, we haveScoreetp (9) = 0 :673, which is much larger
thanScoreetp (6) = 0 , indicating that node 9's neighbors are
more diverse than node 6's.

3.2 Center-Neighbor Similarity
Towards the other end of the spectrum,neighborhood aggre-
gation may be redundant when a node's features are suf�-
ciently similar to its neighbors. For example, the label of
node 25 in Figure 2 is already the same as all of its neighbors
whenL = 1 , so the aggregation operation will not change its
label and is unnecessary.

We characterize this similarity by calculating the point-
wise mutual information (PMI) between the center node and
its neighbors' features:PMI (u; N (u)) = P (N (u) ju)

P (N (u)) . Since
we do not have prior knowledge of the probability distribution

of the neighbors' features, we assume it follows the uniform
distribution, which makesP(N (u)) a constant. The similar-
ity is then de�ned as follows:

Scoresim (u) = P(N (u)ju) =
1

jN (u)j

X

v2N (u)

f T
u f vP

k2 V f T
u f k

;

(7)
whereu is the center node,N (u) is the neighbor set ofu and
f u is the node feature ofu, which may be the input feature,
the learned embedding, or the predicted label of the node.
Similarly, we can use the one-hot predicted label to calculate
the metric:

Scoresim (u) =
jf v 2 N (u) j yv = yu gj

jN (u)j � jf v 2 V j yv = yu gj
: (8)

If Scoresim (u) is larger, nodeu is more similar to its
neighbors. In this scenario, we can compare the performance
before and after neighborhood aggregation and show that the
prediction results are nearly the same, as formally induced in
the following Theorem 1.
Theorem 1. Assume we usehu , the predicted probability dis-
tribution for each label to calculateScoresim . If we have
Scoresim (u) � � for all u 2 V , then the difference in 2-
norm loss in terms of before and after neighborhood aggre-

gation� L �
q

2(1 � � jV j
jC j).

Proof. Let f u be the original feature of nodeu, lu be the one-
hot true label vector ofu and hu be the original predicted
label distribution. The predicted label distribution of nodeu
after aggregation iŝhu = 1

jN (u)+1 j

P
v2N (u)

S
f ug hv .

* hhu ; ĥu i � h hu ;

P
v 2N (u) hv

jN (u)j
i � �

X

v 2 V

hhu ; hv i ; 8u 2 V

)
X

u 2 V

hhu ; ĥu i � � h
X

u 2 V

hu ;
X

u 2 V

hu i � �
jV j2

jCj

� L =
1

jV j

X

u 2 V

(jj hu � lu jj � jj ĥu � lu jj)

�
1

jV j

X

u 2 V

jj hu � ĥu jj �

p
jV j

jV j

s X

u 2 V

jj hu � ĥu jj 2

=

p
jV j

jV j

s X

u 2 V

jj hu jj 2 +
X

u 2 V

jj ĥu jj 2 � 2
X

u 2 V

hhu ; ĥu i

�

p
jV j

jV j

s

2jV j � 2
� jV j2

jCj
=

s

2(1 �
� jV j
jCj

):

3.3 Putting Metrics to Test
In the previous sections, we described the motivation and the-
oretical analysis behind our two proposed metricsneighbor-
hood entropyand center-neighbor similarity. When either
neighborhood entropyor center-neighbor similarityis high,
we should be more cautious in performing aggregation.

Now we put our proposed metrics to test as shown in the
second and third rows of Figure 2. The computedneighbor-
hood entropyis shown in the second row, with deeper col-
ors showing lower entropy. As seen from left to right, the
high entropy nodes gradually shift from the top to the mid-
dle and converge at the nodes that should act as `gatekeepers'

between communities. The third row shows the computed
values ofcenter-neighbor similarity. The bottom right group
has high similarity after 1 round of aggregation and remains
so throughout the process. As a comparison, the nodes on the
top initially have low similarity with their neighbors, indicat-
ing that more aggregation is needed. At a �rst glance, the two
rows may seem to be exactly opposite of each other and the
two metrics are indeed designed to handle cases at two ends
of the spectrum. The nodes that bene�t from further aggre-
gation are the ones that fall into neither of the categories and
should have low values for bothneighborhood entropyand
center-neighbor similarity. By overlaying the two rows, we
can see that the nodes that fall in this category gradually dis-
appear with the increase of aggregation degreeL , indicating
that no more aggregation should be done.

4 Model
Following previous analysis, we propose an Adaptive-layer
module, which allows nodes to make individual decisions at
each round of neighborhood aggregation. As a result, differ-
ent nodes may experience different aggregation degrees.

Speci�cally, in each layer, we apply a gating function that
controls the in�uence of neighborhood information. Its value
is determined byScoresim and Scoreetp . We remove all
non-linearities between layers in a similar spirit to SGC. The
structure of our module is as follows:

hl +1
u = hl

u + zl;u Agg(f hl
v jv 2 N (u)g); (1 < l < L)

h1
u = Wh Agg(f xv jv 2 N (u)g);

yu = softmax(Wy hL
u);

(9)
where zl;u is a random variable controlling the usage of
neighborhood aggregation. Our update function resembles
a residual layer. There are two considerations in this design:
(1) residual layers are known to allow the stacking of more
layers and (2) we are able to project the hidden statehl

u to
labels at every layer with the same projection matrixWy .

The gatezl;u is computed fromScoresim and Scoreetp
using the following formula:

zl;u = � (� 1 � Norm(Scoresim (l; u)))
� � (� 2 � Norm(Scoreetp (l; u))) :

(10)

The activation function� squeezes the value ofz to (0; 1).

Figure 3: ALaGCN model. In the �rst layer, a matrixWh is used to
reduce the dimensions of the input featuresX to that ofhl

u . Extra
aggregation layers are omitted.

When either ofScoresim or Scoreetp is large,z takes on
a small value close to 0. Norm is the batch normalization
operation to rescale the scores so that they are comparable
across layers.

For simplicity, we use the one-hot predicted label to calcu-
late Scoresim andScoreetp in our model. Since we do not
have prior knowledge of the actual class size in practice, we
assume all the label classes have the same size. So the label
class size term is a constant and is left out from calculation.

To compare with attention based models, we can extend
our base model to handle attention weights over neighbors:

Scoreatt
sim (l; u) =

X

v2N (u) ;y l
v = y l

u

al
u;v ;

Scoreatt
etp (l; u) = �

X

y2 Y

; Patt
y (l; u) log(Patt

y (l; u))

Patt
y (l; u) =

X

v2N (u) ;y l
v = y

al
u;v ;

(11)

whereal
u;v is the attention coef�cient of nodev for nodeu

in thel th layer, which can be computed similarly to[Velick-
ovic et al., 2017]. We can also extend our metrics to multi-
head attention by computing a differentz for each attention
head, denoted aszk

l;u :

hl +1
u =

Kn

k=1

hl
u + zk

l;u Agg(f hl
v jv 2 N (u)g) (l < L � 1);

hL
u =

1
K

KX

k=1

(hL � 1
u + zk

L � 1;u Agg(f hL � 1
v jv 2 N (u)g)) :

(12)

5 Experiments

In this section we conduct extensive experiments to test our
module on the node classi�cation problem. We refer to our
base model asALaGCN and our attention-enhanced model
asALaGAT .

5.1 Experiment Setup

Datasets. We conduct the experiments on three citation net-
works: Cora, CiteSeer[Senet al., 2008] and PubMed[Na-
mataet al., 2012]. The details are listed in Table 2. We
tested with 1%, 3% and 5% training size for Cora and Cite-
Seer, and with 0.3%, 0.15% and 0.05% training size for
PubMed. There rates are chosen for comparison with[Kipf
and Welling, 2016] and other methods. We also run the ex-
periments with the standard 20 labeled nodes per class setting
to compare with reported performance.

Datasets Nodes Edges Classes Features
Cora 2708 5429 7 1433

CiteSeer 3327 4732 6 3703
PubMed 19717 44338 3 500

Table 2: Dataset statistics.

Methods Cora CiteSeer PubMed
1% 3% 5% 1% 3% 5% 0.05% 0.15% 0.3%

CS-GNN 48.4 ± 3.4 (2) 62.2± 4.0 (2) 62.0 ± 6.5(2) 45.1 ± 4.0 (2) 56.4± 1.5 (2) 60.5 ± 3.9 (2) 60.5 ± 4.4 (2) 68.4± 6.3 (2) 74.0± 0.8 (2)
GResNet 64.7 ± 3.7 (7) 76.7 ± 2.2 (5) 79.2 ±1.1(5) 53.7 ± 3.6 (6) 63.2± 2.5 (6) 66.0 ± 0.5(4) 66.2 ± 5.7 (7) 75.0± 6.4 (7) 79.5±2.0 (7)

Co/self-train 64.4±7.8 (2) 76.7±3.2 (2) 81.3±2.0 (2) 54.1±5.6 (2) 63.4±1.2 (2) 65.7±0.8 (2) 62.0±11.5 (2) 74.9±5.3 (2) 78.8±2.4 (2)
PairNorm 69.0±3.4 (10) 78.6±2.9 (8) 80.8±1.6 (7) 60.2±3.9 (7) 65.9±1.3 (5) 69.0±1.1 (3) 67.8±5.7 (10) 74.7±9.0 (9) 80.3±0.9 (9)
APPNP 66.6 ± 4.3 (2) 76.9± 3.7 (2) 79.7 ± 2.1 (2) 54.1± 6.2 (2) 63.0 ± 4.3(2) 66.7± 2.3 (2) 68.3 ± 5.8 (2) 75.7± 5.2(2) 81.0 ± 1.7 (2)

GCN 59.2 ± 3.0 (2) 72.7 ± 4.5 (2) 80.4 ±1.9 (2) 45.4 ± 5.1 (2) 64.3 ±3.9 (2) 66.7± 1.2 (2) 63.6± 6.5 (2) 65.0 ± 8.0(2) 77.0 ± 2.2 (2)
GraphSage 63.3 ± 7.7 (4) 77.0 ± 2.2 (2) 81.3 ± 1.2 (2) 52.5 ± 4.2 (2) 67.1± 1.8 (2) 68.6 ±0.7 (2) 63.7 ± 5.5 (7) 72.2 ± 10.7 (3) 76.5 ± 1.7 (2)

SGC 63.6 ± 5.7 (9) 69.8 ±7.1 (7) 81.8 ± 5.8 (3) 53.1 ± 8.3 (7) 64.5± 3.1 (3) 66.9 ±1.2 (2) 67.5 ± 7.9 (10) 73.9 ± 10.5 (10) 78.4 ± 3.3 (10)
ALaGCN 73.3± 4.9 (9) 80.9 ± 0.4 (5) 83.1 ± 1.0(3) 55.7± 4.6 (7) 66.9 ± 1.2(4) 68.4 ± 1.3 (3) 71.2 ± 2.3 (9) 76.3 ± 2.7 (9) 80.6 ± 0.4 (9)

GAT 64.7 ± 4.8 (2) 79.3 ± 2.3 (3) 83.3 ± 0.9(2) 52.0 ± 7.3 (2) 67.7 ± 2.2 (2) 70.2± 1.2 (2) 64.4 ± 7.3(2) 67.4 ± 8.0(2) 76.7 ± 1.8 (2)
ALaGAT 65.2 ± 4.3 (3) 77.1 ± 1.3(3) 82.5 ± 1.0(3) 56.1 ± 3.7(7) 69.0 ± 1.8(3) 69.0 ± 1.0(3) 64.2 ±7.5(6) 69.5 ±6.8 (6) 76.5 ± 2.3(5)

Table 3: Semi-supervised node classification results on datasets Cora, Citeseer and PubMed with different percentage of labeled data and
randomized splits. The aggregation degree (or max aggregation degree for ALaGCN and ALaGAT) is marked in the parenthesis.

Baselines. We compare our model with widely adopted
GNN models including GCN [Kipf and Welling, 2016],
GraphSAGE [Hamilton et al., 2017] and GAT [Velickovic et
al., 2017] and more recent variants such as SGC [Wu et al.,
2019] APPNP [Klicpera et al., 2019], CS-GNN [Hou et al.,
2020], GResNet [Zhang and Meng, 2020], Co/self-train [Li
et al., 2018] and PairNorm [Zhao and Akoglu, 2020] APPNP
combines GNN with random walk with restart. CS-GNN fo-
cuses on aggregating information from dissimilar neighbors,
to maximize the utility of graph structure. GResNet explores
variations of residual connections which has some similarity
with our model. Co/self-train combines GNN with a random
walk model. PairNorm releases over-smoothing by prevent-
ing node embeddings from becoming too similar.

We also compare with some non-GNN models such as
DeepWalk [Perozzi et al., 2014], Planetoid [Yang et al., 2016]
and Label Propagation using ParWalks (LP) [Wu et al., 2012].

Parameters. We use the same set of hyper-parameters for
ALaGAT and GAT, and use another set of hyper-parameters
for GCN, GraphSAGE and ALaGCN. For other models, we
use their default parameters. For Co/Self-train, we use the
intersection of co-training and self-training, which yields the
best results among all variants. For each experiment, we re-
port the mean accuracy and standard deviation of 5 runs.

Implementation. We implement our models with pytorch
1.4.01 and DGL2 [Wang et al., 2019]. All data is publicly
available and our code can be found at https://github.
com/raspberryice/ala-gcn.

5.2 Performance Results and Discussion
Performance on the node classification task is summarized in
Table 3 and Table 4, where the highest score in each block
is underlined, and the highest score in each column is high-
lighted in bold.

In comparison with GNN-based methods, as shown in Ta-
ble 3, our methods perform the best in most cases on all three
datasets. When the ratio of training data becomes smaller,
the improvement introduced by our method is larger. For ex-
ample, on the Cora dataset, ALaGCN outperforms the vanilla
GCN by 2.7% with 5% training data, and outperforms it by
14.1% with 1% training data.

1https://pytorch.org/tutorials/
2https://www.dgl.ai/

We also observe that for our methods, when there is less
labeled data, a larger aggregation degree L is preferred. How-
ever, most of the baselines are not able to perform well with
deeper layers due to over-fitting and over-smoothing prob-
lems. Our methods, on the other hand, are able to circumvent
both problems because the number of parameters do not grow
with the number of layers, and we control the aggregation
for individual nodes based on our computed metrics. In ad-
dition to our methods, APPNP, GResNet, SGC Co/self-train
and PairNorm also yield competitive results in some scenar-
ios through alleviating over-fitting or over-smoothing.

The improvement brought by ALaGAT is relatively lim-
ited compared to GAT. We suspect that the neighbor weight-
ing scheme in GAT has some overlap with the function of
Adaptive-layer.

The performance also varies across datasets due to differ-
ent graph topology. The Citeseer dataset has low average de-
gree (< 3) compared to the other two datasets, which results
in high variance of our neighbor-based metrics.

In Table 4, we compare our methods against both GNNs
and non-GNN methods. Our method reaches the highest ac-
curacy on all three datasets.

5.3 Aggregation Degree Analysis
We first open up our model to see the distribution of node-
wise aggregation degree in Figure 4 when the max aggrega-
tion degree is set to 9. We only consider nodes with a rela-
tively large z value as actively performing aggregation in the
target layer. From Figure 4a, we see that around 1

3 of the
nodes choose to have an aggregation degree of 9 with another
mode appearing near L = 3. We then divide all nodes into 3
groups based on their associated aggregation degree. Figure

�1 �2 �3 �4 �5 �6 �7 �8
�A�g�g�r�e�g�a�t�i�o�n� �d�e�g�r�e�e�s

�0�.�0

�0�.�1

�0�.�2

�0�.�3

�0�.�4

�p
�e

�r
�c

�e
�n

�t�
a�

g�
e

(a)

�0�-�2 �3�-�5 �6�-�8
�A�g�g�r�e�g�a�t�i�o�n� �d�e�g�r�e�e�s

�0�.�0
�0�.�1
�0�.�2
�0�.�3
�0�.�4
�0�.�5
�0�.�6
�0�.�7
�0�.�8
�0�.�9

�A
�c

�c

�G�C�N �S�G�C �A�L�a�G�C�N

(b)
Figure 4: Actual aggregation degree distribution and group-wise
performance. The experiment is done on Cora with 1% labeled data.

	Introduction
	Preliminary
	Graph Neural Networks (GNN)
	Simple Graph Convolution (SGC)

	Analysis
	Neighborhood Entropy
	Center-Neighbor Similarity
	Putting Metrics to Test

	Model
	Experiments
	Experiment Setup
	Performance Results and Discussion
	Aggregation Degree Analysis
	Efficiency

	Related Work
	Conclusion and Future Work

